-
1
-
-
0000211141
-
The Discovery of 5-methyl-cytosine in Tuberculinic Acid, The Nucleic Acid of The Tubercle Bacillus
-
Johnson TB, Coghill RD. The Discovery of 5-methyl-cytosine in Tuberculinic Acid, The Nucleic Acid of The Tubercle Bacillus. J Am Chem Soc. 1925; 47: 2838-44. doi:10.1021/ja01688a030
-
(1925)
J am Chem Soc
, vol.47
, pp. 2838-2844
-
-
Johnson, T.B.1
Coghill, R.D.2
-
2
-
-
84957846754
-
The quantitative separation of purines, pyrimidines, and nucleosides by paper chromatography
-
Hotchkiss RD. The quantitative separation of purines, pyrimidines, and nucleosides by paper chromatography. J Biol Chem. 1948; 175: 315-32
-
(1948)
J Biol Chem
, vol.175
, pp. 315-332
-
-
Hotchkiss, R.D.1
-
3
-
-
0016692220
-
X inactivation, differentiation, and DNA methylation
-
Riggs AD. X inactivation, differentiation, and DNA methylation. Cytogenet Cell Genet. 1975; 14: 9-25
-
(1975)
Cytogenet Cell Genet
, vol.14
, pp. 9-25
-
-
Riggs, A.D.1
-
4
-
-
0016439429
-
DNA modification mechanisms and gene activity during development
-
Holliday R, Pugh JE. DNA modification mechanisms and gene activity during development. Science. 1975; 187: 226-32
-
(1975)
Science
, vol.187
, pp. 226-232
-
-
Holliday, R.1
Pugh, J.E.2
-
5
-
-
33645958291
-
De novo methylation, long-term promoter silencing, methylation patterns in the human genome, and consequences of foreign DNA insertion
-
Doerfler W. De novo methylation, long-term promoter silencing, methylation patterns in the human genome, and consequences of foreign DNA insertion. Curr Top Microbiol Immunol. 2006; 301: 125-75
-
(2006)
Curr Top Microbiol Immunol
, vol.301
, pp. 125-175
-
-
Doerfler, W.1
-
9
-
-
0033753779
-
The DNA methyltransferases of mammals
-
Bestor TH. The DNA methyltransferases of mammals. Hum Mol Genet. 2000; 9: 2395-402
-
(2000)
Hum Mol Genet
, vol.9
, pp. 2395-2402
-
-
Bestor, T.H.1
-
10
-
-
77951836633
-
Genome, epigenome and RNA sequences of monozygotic twins discordant for multiple sclerosis
-
Baranzini SE, Mudge J, van Velkinburgh JC, Khankhanian P, Khrebtukova I, Miller NA, et al. Genome, epigenome and RNA sequences of monozygotic twins discordant for multiple sclerosis. Nature. 2010; 464: 1351-6. doi:10.1038/nature08990
-
(2010)
Nature
, vol.464
, pp. 1351-1356
-
-
Baranzini, S.E.1
Mudge, J.2
Van Velkinburgh, J.C.3
Khankhanian, P.4
Khrebtukova, I.5
Miller, N.A.6
-
11
-
-
79952716583
-
Transcriptionally repressed genes become aberrantly methylated and distinguish tumors of different lineages in breast cancer
-
Sproul D, Nestor C, Culley J, Dickson JH, Dixon JM, Harrison DJ, et al. Transcriptionally repressed genes become aberrantly methylated and distinguish tumors of different lineages in breast cancer. Proc Natl Acad Sci U S A. 2011; 108: 4364-9. doi:10.1073/pnas.1013224108
-
(2011)
Proc Natl Acad Sci U S A
, vol.108
, pp. 4364-4369
-
-
Sproul, D.1
Nestor, C.2
Culley, J.3
Dickson, J.H.4
Dixon, J.M.5
Harrison, D.J.6
-
12
-
-
3142782118
-
Effect of limited DNA methylation reprogramming in the normal sheep embryo on somatic cell nuclear transfer
-
Beaujean N, Taylor J, Gardner J, Wilmut I, Meehan R, Young L. Effect of limited DNA methylation reprogramming in the normal sheep embryo on somatic cell nuclear transfer. Biol Reprod. 2004; 71: 185-93. doi:10.1095/biolreprod.103.026559
-
(2004)
Biol Reprod
, vol.71
, pp. 185-193
-
-
Beaujean, N.1
Taylor, J.2
Gardner, J.3
Wilmut, I.4
Meehan, R.5
Young, L.6
-
13
-
-
67349255210
-
CpG islands--'a rough guide'
-
Illingworth RS, Bird AP. CpG islands--'a rough guide'. FEBS Lett. 2009; 583: 1713-20. doi:10.1016/j.febslet.2009.04.012
-
(2009)
FEBS Lett
, vol.583
, pp. 1713-1720
-
-
Illingworth, R.S.1
Bird, A.P.2
-
14
-
-
78049419464
-
Orphan CpG islands identify numerous conserved promoters in the mammalian genome
-
Illingworth RS, Gruenewald-Schneider U, Webb S, Kerr AR, James KD, Turner DJ, et al. Orphan CpG islands identify numerous conserved promoters in the mammalian genome. PLoS genetics. 2010; 6. doi:10.1371/journal.pgen.1001134
-
(2010)
Plos Genetics
, vol.6
-
-
Illingworth, R.S.1
Gruenewald-Schneider, U.2
Webb, S.3
Kerr, A.R.4
James, K.D.5
Turner, D.J.6
-
15
-
-
66149123748
-
The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain
-
Kriaucionis S, Heintz N. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science. 2009; 324: 929-30. doi:10.1126/science.1169786
-
(2009)
Science
, vol.324
, pp. 929-930
-
-
Kriaucionis, S.1
Heintz, N.2
-
16
-
-
66149146320
-
Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1
-
Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 2009; 324: 930-5. doi:10.1126/science.1170116
-
(2009)
Science
, vol.324
, pp. 930-935
-
-
Tahiliani, M.1
Koh, K.P.2
Shen, Y.3
Pastor, W.A.4
Bandukwala, H.5
Brudno, Y.6
-
17
-
-
80053917872
-
Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: Potential implications for active demethylation of CpG sites
-
Maiti A, Drohat AC. Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: potential implications for active demethylation of CpG sites. J Biol Chem. 2011; 286: 35334-8. doi:10.1074/jbc.C111.284620
-
(2011)
J Biol Chem
, vol.286
, pp. 35334-35338
-
-
Maiti, A.1
Drohat, A.C.2
-
18
-
-
77956095231
-
Active DNA demethylation: Many roads lead to Rome
-
Wu SC, Zhang Y. Active DNA demethylation: many roads lead to Rome. Nat Rev Mol Cell Biol. 2010; 11: 607-20. doi:10.1038/nrm2950
-
(2010)
Nat Rev Mol Cell Biol
, vol.11
, pp. 607-620
-
-
Wu, S.C.1
Zhang, Y.2
-
19
-
-
80052495940
-
Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA
-
He YF, Li BZ, Li Z, Liu P, Wang Y, Tang Q, et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science. 2011; 333: 1303-7. doi:10.1126/science.1210944
-
(2011)
Science
, vol.333
, pp. 1303-1307
-
-
He, Y.F.1
Li, B.Z.2
Li, Z.3
Liu, P.4
Wang, Y.5
Tang, Q.6
-
20
-
-
84928813871
-
The Emerging Nexus of Active DNA Demethylation and Mitochondrial Oxidative Metabolism in Post-Mitotic Neurons
-
Meng H, Chen G, Gao HM, Song X, Shi Y, Cao L. The Emerging Nexus of Active DNA Demethylation and Mitochondrial Oxidative Metabolism in Post-Mitotic Neurons. Int J Mol Sci. 2014; 15: 22604-25. doi:10.3390/ijms151222604
-
(2014)
Int J Mol Sci
, vol.15
, pp. 22604-22625
-
-
Meng, H.1
Chen, G.2
Gao, H.M.3
Song, X.4
Shi, Y.5
Cao, L.6
-
21
-
-
70450217879
-
Human DNA methylomes at base resolution show widespread epigenomic differences
-
Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature. 2009; 462: 315-22. doi:10.1038/nature08514
-
(2009)
Nature
, vol.462
, pp. 315-322
-
-
Lister, R.1
Pelizzola, M.2
Dowen, R.H.3
Hawkins, R.D.4
Hon, G.5
Tonti-Filippini, J.6
-
22
-
-
0034625064
-
Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a
-
Ramsahoye BH, Biniszkiewicz D, Lyko F, Clark V, Bird AP, Jaenisch R. Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a. Proc Natl Acad Sci U S A. 2000; 97: 5237-42
-
(2000)
Proc Natl Acad Sci U S A
, vol.97
, pp. 5237-5242
-
-
Ramsahoye, B.H.1
Biniszkiewicz, D.2
Lyko, F.3
Clark, V.4
Bird, A.P.5
Jaenisch, R.6
-
23
-
-
0036733675
-
Chromatin modification and epigenetic reprogramming in mammalian development
-
Li E. Chromatin modification and epigenetic reprogramming in mammalian development. Nat Rev Genet. 2002; 3: 662-73. doi:10.1038/nrg887
-
(2002)
Nat Rev Genet
, vol.3
, pp. 662-673
-
-
Li, E.1
-
24
-
-
33847032960
-
The mammalian epigenome
-
Bernstein BE, Meissner A, Lander ES. The mammalian epigenome. Cell. 2007; 128: 669-81. doi:10.1016/j.cell.2007.01.033
-
(2007)
Cell
, vol.128
, pp. 669-681
-
-
Bernstein, B.E.1
Meissner, A.2
Lander, E.S.3
-
25
-
-
66749152204
-
Prediction of novel families of enzymes involved in oxidative and other complex modifications of bases in nucleic acids
-
Iyer LM, Tahiliani M, Rao A, Aravind L. Prediction of novel families of enzymes involved in oxidative and other complex modifications of bases in nucleic acids. Cell cycle. 2009; 8: 1698-710
-
(2009)
Cell Cycle
, vol.8
, pp. 1698-1710
-
-
Iyer, L.M.1
Tahiliani, M.2
Rao, A.3
Aravind, L.4
-
26
-
-
82655187105
-
Generation and replication-dependent dilution of 5fC and 5caC during mouse preimplantation development
-
Inoue A, Shen L, Dai Q, He C, Zhang Y. Generation and replication-dependent dilution of 5fC and 5caC during mouse preimplantation development. Cell Res. 2011; 21: 1670-6. doi:10.1038/cr.2011.189
-
(2011)
Cell Res
, vol.21
, pp. 1670-1676
-
-
Inoue, A.1
Shen, L.2
Dai, Q.3
He, C.4
Zhang, Y.5
-
27
-
-
84876907152
-
Genome-wide profiling of 5-formylcytosine reveals its roles in epigenetic priming
-
Song CX, Szulwach KE, Dai Q, Fu Y, Mao SQ, Lin L, et al. Genome-wide profiling of 5-formylcytosine reveals its roles in epigenetic priming. Cell. 2013; 153: 678-91. doi:10.1016/j.cell.2013.04.001
-
(2013)
Cell
, vol.153
, pp. 678-691
-
-
Song, C.X.1
Szulwach, K.E.2
Dai, Q.3
Fu, Y.4
Mao, S.Q.5
Lin, L.6
-
28
-
-
77954061853
-
Enzymatic approaches and bisulfite sequencing cannot distinguish between 5-methylcytosine and 5-hydroxymethylcytosine in DNA
-
Nestor C, Ruzov A, Meehan R, Dunican D. Enzymatic approaches and bisulfite sequencing cannot distinguish between 5-methylcytosine and 5-hydroxymethylcytosine in DNA. Biotechniques. 2010; 48: 317-9. doi:10.2144/000113403
-
(2010)
Biotechniques
, vol.48
, pp. 317-319
-
-
Nestor, C.1
Ruzov, A.2
Meehan, R.3
Dunican, D.4
-
29
-
-
77749277177
-
The behaviour of 5-hydroxymethylcytosine in bisulfite sequencing
-
Huang Y, Pastor WA, Shen Y, Tahiliani M, Liu DR, Rao A. The behaviour of 5-hydroxymethylcytosine in bisulfite sequencing. PLoS One. 2010; 5: e8888. doi:10.1371/journal.pone.0008888
-
(2010)
Plos One
, vol.5
-
-
Huang, Y.1
Pastor, W.A.2
Shen, Y.3
Tahiliani, M.4
Liu, D.R.5
Rao, A.6
-
30
-
-
78651280460
-
Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine
-
Song CX, Szulwach KE, Fu Y, Dai Q, Yi C, Li X, et al. Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. Nat Biotechnol. 2011; 29: 68-72. doi:10.1038/nbt.1732
-
(2011)
Nat Biotechnol
, vol.29
, pp. 68-72
-
-
Song, C.X.1
Szulwach, K.E.2
Fu, Y.3
Dai, Q.4
Yi, C.5
Li, X.6
-
31
-
-
84857891830
-
Tissue type is a major modifier of the 5-hydroxymethylcytosine content of human genes
-
Nestor CE, Ottaviano R, Reddington J, Sproul D, Reinhardt D, Dunican D, et al. Tissue type is a major modifier of the 5-hydroxymethylcytosine content of human genes. Genome Res. 2012; 22: 467-77. doi:10.1101/gr.126417.111
-
(2012)
Genome Res
, vol.22
, pp. 467-477
-
-
Nestor, C.E.1
Ottaviano, R.2
Reddington, J.3
Sproul, D.4
Reinhardt, D.5
Dunican, D.6
-
32
-
-
82955207588
-
Mechanisms and functions of Tet protein-mediated 5-methylcytosine oxidation
-
Wu H, Zhang Y. Mechanisms and functions of Tet protein-mediated 5-methylcytosine oxidation. Genes Dev. 2011; 25: 2436-52. doi:10.1101/gad.179184.111
-
(2011)
Genes Dev
, vol.25
, pp. 2436-2452
-
-
Wu, H.1
Zhang, Y.2
-
33
-
-
49649125042
-
Genome-scale DNA methylation maps of pluripotent and differentiated cells
-
Meissner A, Mikkelsen TS, Gu H, Wernig M, Hanna J, Sivachenko A, et al. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature. 2008; 454: 766-70. doi:10.1038/nature07107
-
(2008)
Nature
, vol.454
, pp. 766-770
-
-
Meissner, A.1
Mikkelsen, T.S.2
Gu, H.3
Wernig, M.4
Hanna, J.5
Sivachenko, A.6
-
34
-
-
84879663784
-
Global epigenomic reconfiguration during mammalian brain development
-
Lister R, Mukamel EA, Nery JR, Urich M, Puddifoot CA, Johnson ND, et al. Global epigenomic reconfiguration during mammalian brain development. Science. 2013; 341: 1237905. doi:10.1126/science.1237905
-
(2013)
Science
, vol.341
-
-
Lister, R.1
Mukamel, E.A.2
Nery, J.R.3
Urich, M.4
Puddifoot, C.A.5
Johnson, N.D.6
-
36
-
-
0022000776
-
Fraction of the mouse genome that is derived from islands of nonmethylated, CpG-rich DNA
-
Bird A, Taggart M, Frommer M, Miller OJ, Macleod D. A fraction of the mouse genome that is derived from islands of nonmethylated, CpG-rich DNA. Cell. 1985; 40: 91-9
-
(1985)
Cell
, vol.40
, pp. 91-99
-
-
Bird, A.1
Taggart, M.2
Frommer, M.3
Miller, O.J.4
Macleod, D.A.5
-
37
-
-
0037133565
-
Comprehensive analysis of CpG islands in human chromosomes 21 and 22
-
Takai D, Jones PA. Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc Natl Acad Sci U S A. 2002; 99: 3740-5. doi:10.1073/pnas.052410099
-
(2002)
Proc Natl Acad Sci U S A
, vol.99
, pp. 3740-3745
-
-
Takai, D.1
Jones, P.A.2
-
38
-
-
0022540321
-
CpG-rich islands and the function of DNA methylation
-
Bird AP. CpG-rich islands and the function of DNA methylation. Nature. 1986; 321: 209-13. doi:10.1038/321209a0
-
(1986)
Nature
, vol.321
, pp. 209-213
-
-
Bird, A.P.1
-
39
-
-
0021768605
-
Complete concordance between glucose-6-phosphate dehydrogenase activity and hypomethylation of 3' CpG clusters: Implications for X chromosome dosage compensation
-
Wolf SF, Dintzis S, Toniolo D, Persico G, Lunnen KD, Axelman J, et al. Complete concordance between glucose-6-phosphate dehydrogenase activity and hypomethylation of 3' CpG clusters: implications for X chromosome dosage compensation. Nucleic Acids Res. 1984; 12: 9333-48
-
(1984)
Nucleic Acids Res
, vol.12
, pp. 9333-9348
-
-
Wolf, S.F.1
Dintzis, S.2
Toniolo, D.3
Persico, G.4
Lunnen, K.D.5
Axelman, J.6
-
41
-
-
77649267695
-
Dynamic changes in the human methylome during differentiation
-
Laurent L, Wong E, Li G, Huynh T, Tsirigos A, Ong CT, et al. Dynamic changes in the human methylome during differentiation. Genome Res. 2010; 20: 320-31. doi:10.1101/gr.101907.109
-
(2010)
Genome Res
, vol.20
, pp. 320-331
-
-
Laurent, L.1
Wong, E.2
Li, G.3
Huynh, T.4
Tsirigos, A.5
Ong, C.T.6
-
42
-
-
63449103531
-
DNA methylation analysis of chromosome 21 gene promoters at single base pair and single allele resolution
-
Zhang Y, Rohde C, Tierling S, Jurkowski TP, Bock C, Santacruz D, et al. DNA methylation analysis of chromosome 21 gene promoters at single base pair and single allele resolution. PLoS genetics. 2009; 5: e1000438. doi:10.1371/journal.pgen.1000438
-
(2009)
Plos Genetics
, vol.5
-
-
Zhang, Y.1
Rohde, C.2
Tierling, S.3
Jurkowski, T.P.4
Bock, C.5
Santacruz, D.6
-
43
-
-
84655162785
-
Regions of focal DNA hypermethylation and long-range hypomethylation in colorectal cancer coincide with nuclear lamina-associated domains
-
Berman BP, Weisenberger DJ, Aman JF, Hinoue T, Ramjan Z, Liu Y, et al. Regions of focal DNA hypermethylation and long-range hypomethylation in colorectal cancer coincide with nuclear lamina-associated domains. Nat Genet. 2012; 44: 40-6. doi:10.1038/ng.969
-
(2012)
Nat Genet
, vol.44
, pp. 40-46
-
-
Berman, B.P.1
Weisenberger, D.J.2
Aman, J.F.3
Hinoue, T.4
Ramjan, Z.5
Liu, Y.6
-
44
-
-
79960927422
-
Increased methylation variation in epigenetic domains across cancer types
-
Hansen KD, Timp W, Bravo HC, Sabunciyan S, Langmead B, McDonald OG, et al. Increased methylation variation in epigenetic domains across cancer types. Nat Genet. 2011; 43: 768-75. doi:10.1038/ng.865
-
(2011)
Nat Genet
, vol.43
, pp. 768-775
-
-
Hansen, K.D.1
Timp, W.2
Bravo, H.C.3
Sabunciyan, S.4
Langmead, B.5
McDonald, O.G.6
-
45
-
-
1242285594
-
Hypomethylation of L1 retrotransposons in colorectal cancer and adjacent normal tissue
-
Suter CM, Martin DI, Ward RL. Hypomethylation of L1 retrotransposons in colorectal cancer and adjacent normal tissue. Int J Colorectal Dis. 2004; 19: 95-101. doi:10.1007/s00384-003-0539-3
-
(2004)
Int J Colorectal Dis
, vol.19
, pp. 95-101
-
-
Suter, C.M.1
Martin, D.I.2
Ward, R.L.3
-
46
-
-
0034614637
-
The hallmarks of cancer
-
Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000; 100: 57-70
-
(2000)
Cell
, vol.100
, pp. 57-70
-
-
Hanahan, D.1
Weinberg, R.A.2
-
48
-
-
0033615717
-
DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development
-
Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell. 1999; 99: 247-57
-
(1999)
Cell
, vol.99
, pp. 247-257
-
-
Okano, M.1
Bell, D.W.2
Haber, D.A.3
Li, E.4
-
49
-
-
0031860739
-
Cloning and characterization of a family of novel mammalian DNA (Cytosine-5) methyltransferases
-
Okano M, Xie S, Li E. Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat Genet. 1998; 19: 219-20. doi:10.1038/890
-
(1998)
Nat Genet
, vol.19
, pp. 219-220
-
-
Okano, M.1
Xie, S.2
Li, E.3
-
51
-
-
15744401773
-
Eukaryotic cytosine methyltransferases
-
Goll MG, Bestor TH. Eukaryotic cytosine methyltransferases. Annu Rev Biochem. 2005; 74: 481-514. doi:10.1146/annurev.biochem.74.010904.153721
-
(2005)
Annu Rev Biochem
, vol.74
, pp. 481-514
-
-
Goll, M.G.1
Bestor, T.H.2
-
52
-
-
0026439115
-
A targeting sequence directs DNA methyltransferase to sites of DNA replication in mammalian nuclei
-
Leonhardt H, Page AW, Weier HU, Bestor TH. A targeting sequence directs DNA methyltransferase to sites of DNA replication in mammalian nuclei. Cell. 1992; 71: 865-73
-
(1992)
Cell
, vol.71
, pp. 865-873
-
-
Leonhardt, H.1
Page, A.W.2
Weier, H.U.3
Bestor, T.H.4
-
53
-
-
34648833002
-
UHRF1 plays a role in maintaining DNA methylation in mammalian cells
-
Bostick M, Kim JK, Esteve PO, Clark A, Pradhan S, Jacobsen SE. UHRF1 plays a role in maintaining DNA methylation in mammalian cells. Science. 2007; 317: 1760-4. doi:10.1126/science.1147939
-
(2007)
Science
, vol.317
, pp. 1760-1764
-
-
Bostick, M.1
Kim, J.K.2
Esteve, P.O.3
Clark, A.4
Pradhan, S.5
Jacobsen, S.E.6
-
54
-
-
79955069748
-
Recruitment of Dnmt1 roles of the SRA protein Np95 (Uhrf1) and other factors
-
Sharif J, Koseki H. Recruitment of Dnmt1 roles of the SRA protein Np95 (Uhrf1) and other factors. Prog Mol Biol Transl Sci. 2011; 101: 289-310. doi:10.1016/B978-0-12-387685-0.00008-1
-
(2011)
Prog Mol Biol Transl Sci
, vol.101
, pp. 289-310
-
-
Sharif, J.1
Koseki, H.2
-
55
-
-
41649115827
-
The interaction of the SRA domain of ICBP90 with a novel domain of DNMT1 is involved in the regulation of VEGF gene expression
-
Achour M, Jacq X, Ronde P, Alhosin M, Charlot C, Chataigneau T, et al. The interaction of the SRA domain of ICBP90 with a novel domain of DNMT1 is involved in the regulation of VEGF gene expression. Oncogene. 2008; 27: 2187-97. doi:10.1038/sj.onc.1210855
-
(2008)
Oncogene
, vol.27
, pp. 2187-2197
-
-
Achour, M.1
Jacq, X.2
Ronde, P.3
Alhosin, M.4
Charlot, C.5
Chataigneau, T.6
-
56
-
-
34249066239
-
Functional cooperation between HP1 and DNMT1 mediates gene silencing
-
Smallwood A, Esteve PO, Pradhan S, Carey M. Functional cooperation between HP1 and DNMT1 mediates gene silencing. Genes Dev. 2007; 21: 1169-78. doi:10.1101/gad.1536807
-
(2007)
Genes Dev
, vol.21
, pp. 1169-1178
-
-
Smallwood, A.1
Esteve, P.O.2
Pradhan, S.3
Carey, M.4
-
57
-
-
33751209468
-
Direct interaction between DNMT1 and G9a coordinates DNA and histone methylation during replication
-
Esteve PO, Chin HG, Smallwood A, Feehery GR, Gangisetty O, Karpf AR, et al. Direct interaction between DNMT1 and G9a coordinates DNA and histone methylation during replication. Genes Dev. 2006; 20: 3089-103. doi:10.1101/gad.1463706
-
(2006)
Genes Dev
, vol.20
, pp. 3089-3103
-
-
Esteve, P.O.1
Chin, H.G.2
Smallwood, A.3
Feehery, G.R.4
Gangisetty, O.5
Karpf, A.R.6
-
58
-
-
77957901287
-
Dynamic instability of genomic methylation patterns in pluripotent stem cells
-
Ooi SK, Wolf D, Hartung O, Agarwal S, Daley GQ, Goff SP, et al. Dynamic instability of genomic methylation patterns in pluripotent stem cells. Epigenetics & chromatin. 2010; 3: 17. doi:10.1186/1756-8935-3-17
-
(2010)
Epigenetics &Amp; Chromatin
, vol.3
-
-
Ooi, S.K.1
Wolf, D.2
Hartung, O.3
Agarwal, S.4
Daley, G.Q.5
Goff, S.P.6
-
59
-
-
0037168587
-
The DNA methyltransferase-like protein DNMT3L stimulates de novo methylation by Dnmt3a
-
Chedin F, Lieber MR, Hsieh CL. The DNA methyltransferase-like protein DNMT3L stimulates de novo methylation by Dnmt3a. Proc Natl Acad Sci U S A. 2002; 99: 16916-21. doi:10.1073/pnas.262443999
-
(2002)
Proc Natl Acad Sci U S A
, vol.99
, pp. 16916-16921
-
-
Chedin, F.1
Lieber, M.R.2
Hsieh, C.L.3
-
60
-
-
26444561533
-
Physical and functional interactions between the human DNMT3L protein and members of the de novo methyltransferase family
-
Chen ZX, Mann JR, Hsieh CL, Riggs AD, Chedin F. Physical and functional interactions between the human DNMT3L protein and members of the de novo methyltransferase family. J Cell Biochem. 2005; 95: 902-17. doi:10.1002/jcb.20447
-
(2005)
J Cell Biochem
, vol.95
, pp. 902-917
-
-
Chen, Z.X.1
Mann, J.R.2
Hsieh, C.L.3
Riggs, A.D.4
Chedin, F.5
-
61
-
-
17144369504
-
Mechanism of stimulation of catalytic activity of Dnmt3A and Dnmt3B DNA-(Cytosine-C5)-methyltransferases by Dnmt3L
-
Gowher H, Liebert K, Hermann A, Xu G, Jeltsch A. Mechanism of stimulation of catalytic activity of Dnmt3A and Dnmt3B DNA-(cytosine-C5)-methyltransferases by Dnmt3L. J Biol Chem. 2005; 280: 13341-8. doi:10.1074/jbc.M413412200
-
(2005)
J Biol Chem
, vol.280
, pp. 13341-13348
-
-
Gowher, H.1
Liebert, K.2
Hermann, A.3
Xu, G.4
Jeltsch, A.5
-
62
-
-
33748740832
-
Reconstitution and mechanism of the stimulation of de novo methylation by human DNMT3L
-
Kareta MS, Botello ZM, Ennis JJ, Chou C, Chedin F. Reconstitution and mechanism of the stimulation of de novo methylation by human DNMT3L. J Biol Chem. 2006; 281: 25893-902. doi:10.1074/jbc.M603140200
-
(2006)
J Biol Chem
, vol.281
, pp. 25893-25902
-
-
Kareta, M.S.1
Botello, Z.M.2
Ennis, J.J.3
Chou, C.4
Chedin, F.5
-
63
-
-
34548603504
-
Structure of Dnmt3a bound to Dnmt3L suggests a model for de novo DNA methylation
-
Jia D, Jurkowska RZ, Zhang X, Jeltsch A, Cheng X. Structure of Dnmt3a bound to Dnmt3L suggests a model for de novo DNA methylation. Nature. 2007; 449: 248-51. doi:10.1038/nature06146
-
(2007)
Nature
, vol.449
, pp. 248-251
-
-
Jia, D.1
Jurkowska, R.Z.2
Zhang, X.3
Jeltsch, A.4
Cheng, X.5
-
64
-
-
79959900027
-
Oligomerization and binding of the Dnmt3a DNA methyltransferase to parallel DNA molecules: Heterochromatic localization and role of Dnmt3L
-
Jurkowska RZ, Rajavelu A, Anspach N, Urbanke C, Jankevicius G, Ragozin S, et al. Oligomerization and binding of the Dnmt3a DNA methyltransferase to parallel DNA molecules: heterochromatic localization and role of Dnmt3L. J Biol Chem. 2011; 286: 24200-7. doi:10.1074/jbc.M111.254987
-
(2011)
J Biol Chem
, vol.286
, pp. 24200-24207
-
-
Jurkowska, R.Z.1
Rajavelu, A.2
Anspach, N.3
Urbanke, C.4
Jankevicius, G.5
Ragozin, S.6
-
65
-
-
84884827480
-
Dnmt3L antagonizes DNA methylation at bivalent promoters and favors DNA methylation at gene bodies in ESCs
-
Neri F, Krepelova A, Incarnato D, Maldotti M, Parlato C, Galvagni F, et al. Dnmt3L antagonizes DNA methylation at bivalent promoters and favors DNA methylation at gene bodies in ESCs. Cell. 2013; 155: 121-34. doi:10.1016/j.cell.2013.08.056
-
(2013)
Cell
, vol.155
, pp. 121-134
-
-
Neri, F.1
Krepelova, A.2
Incarnato, D.3
Maldotti, M.4
Parlato, C.5
Galvagni, F.6
-
66
-
-
32344450824
-
Genomic DNA methylation: The mark and its mediators
-
Klose RJ, Bird AP. Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci. 2006; 31: 89-97. doi:10.1016/j.tibs.2005.12.008
-
(2006)
Trends Biochem Sci
, vol.31
, pp. 89-97
-
-
Klose, R.J.1
Bird, A.P.2
-
67
-
-
84863770814
-
Cancer genetics and epigenetics: Two sides of the same coin?
-
You JS, Jones PA. Cancer genetics and epigenetics: two sides of the same coin? Cancer Cell. 2012; 22: 9-20. doi:10.1016/j.ccr.2012.06.008
-
(2012)
Cancer Cell
, vol.22
, pp. 9-20
-
-
You, J.S.1
Jones, P.A.2
-
68
-
-
84904647822
-
DNA methyltransferases: A novel target for prevention and therapy
-
Subramaniam D, Thombre R, Dhar A, Anant S. DNA methyltransferases: a novel target for prevention and therapy. Front Oncol. 2014; 4: 80. doi:10.3389/fonc.2014.00080
-
(2014)
Front Oncol
, vol.4
-
-
Subramaniam, D.1
Thombre, R.2
Dhar, A.3
Anant, S.4
-
69
-
-
0037456636
-
Mutation of the DNA methyltransferase (DNMT) 1 gene in human colorectal cancers
-
Kanai Y, Ushijima S, Nakanishi Y, Sakamoto M, Hirohashi S. Mutation of the DNA methyltransferase (DNMT) 1 gene in human colorectal cancers. Cancer Lett. 2003; 192: 75-82
-
(2003)
Cancer Lett
, vol.192
, pp. 75-82
-
-
Kanai, Y.1
Ushijima, S.2
Nakanishi, Y.3
Sakamoto, M.4
Hirohashi, S.5
-
70
-
-
0035283201
-
Expression of DNA methyltransferases DNMT1, 3A, and 3B in normal hematopoiesis and in acute and chronic myelogenous leukemia
-
Mizuno S, Chijiwa T, Okamura T, Akashi K, Fukumaki Y, Niho Y, et al. Expression of DNA methyltransferases DNMT1, 3A, and 3B in normal hematopoiesis and in acute and chronic myelogenous leukemia. Blood. 2001; 97: 1172-9
-
(2001)
Blood
, vol.97
, pp. 1172-1179
-
-
Mizuno, S.1
Chijiwa, T.2
Okamura, T.3
Akashi, K.4
Fukumaki, Y.5
Niho, Y.6
-
71
-
-
80052641133
-
Epigenetic regulation of DNA methyltransferases: DNMT1 and DNMT3B in gliomas
-
Rajendran G, Shanmuganandam K, Bendre A, Muzumdar D, Goel A, Shiras A. Epigenetic regulation of DNA methyltransferases: DNMT1 and DNMT3B in gliomas. J Neurooncol. 2011; 104: 483-94. doi:10.1007/s11060-010-0520-2
-
(2011)
J Neurooncol
, vol.104
, pp. 483-494
-
-
Rajendran, G.1
Shanmuganandam, K.2
Bendre, A.3
Muzumdar, D.4
Goel, A.5
Shiras, A.6
-
72
-
-
43649106748
-
Expression of methylation-related genes is associated with overall survival in patients with non-small cell lung cancer
-
Xing J, Stewart DJ, Gu J, Lu C, Spitz MR, Wu X. Expression of methylation-related genes is associated with overall survival in patients with non-small cell lung cancer. Br J Cancer. 2008; 98: 1716-22. doi:10.1038/sj.bjc.6604343
-
(2008)
Br J Cancer
, vol.98
, pp. 1716-1722
-
-
Xing, J.1
Stewart, D.J.2
Gu, J.3
Lu, C.4
Spitz, M.R.5
Wu, X.6
-
73
-
-
77953571951
-
Pancreatic cancer DNMT1 expression and sensitivity to DNMT1 inhibitors
-
Li A, Omura N, Hong SM, Goggins M. Pancreatic cancer DNMT1 expression and sensitivity to DNMT1 inhibitors. Cancer Biol Ther. 2010; 9: 321-9. doi:10.4161/cbt.9.4.10750
-
(2010)
Cancer Biol Ther
, vol.9
, pp. 321-329
-
-
Li, A.1
Omura, N.2
Hong, S.M.3
Goggins, M.4
-
74
-
-
1542319832
-
Increased DNA methyltransferase 1 (DNMT1) protein expression correlates significantly with poorer tumor differentiation and frequent DNA hypermethylation of multiple CpG islands in gastric cancers
-
Etoh T, Kanai Y, Ushijima S, Nakagawa T, Nakanishi Y, Sasako M, et al. Increased DNA methyltransferase 1 (DNMT1) protein expression correlates significantly with poorer tumor differentiation and frequent DNA hypermethylation of multiple CpG islands in gastric cancers. Am J Pathol. 2004; 164: 689-99. doi:10.1016/S0002-9440(10)63156-2
-
(2004)
Am J Pathol
, vol.164
, pp. 689-699
-
-
Etoh, T.1
Kanai, Y.2
Ushijima, S.3
Nakagawa, T.4
Nakanishi, Y.5
Sasako, M.6
-
75
-
-
0042668688
-
Expression of DNA (5-cytosin)-methyltransferases (DNMTs) in hepatocellular carcinomas
-
Nagai M, Nakamura A, Makino R, Mitamura K. Expression of DNA (5-cytosin)-methyltransferases (DNMTs) in hepatocellular carcinomas. Hepatol Res. 2003; 26: 186-91
-
(2003)
Hepatol Res
, vol.26
, pp. 186-191
-
-
Nagai, M.1
Nakamura, A.2
Makino, R.3
Mitamura, K.4
-
76
-
-
84876084653
-
Expression of DNA methyltransferases in breast cancer patients and to analyze the effect of natural compounds on DNA methyltransferases and associated proteins
-
Mirza S, Sharma G, Parshad R, Gupta SD, Pandya P, Ralhan R. Expression of DNA methyltransferases in breast cancer patients and to analyze the effect of natural compounds on DNA methyltransferases and associated proteins. J Breast Cancer. 2013; 16: 23-31. doi:10.4048/jbc.2013.16.1.23
-
(2013)
J Breast Cancer
, vol.16
, pp. 23-31
-
-
Mirza, S.1
Sharma, G.2
Parshad, R.3
Gupta, S.D.4
Pandya, P.5
Ralhan, R.6
-
77
-
-
0026708177
-
Targeted mutation of the DNA methyltransferase gene results in embryonic lethality
-
Li E, Bestor TH, Jaenisch R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell. 1992; 69: 915-26
-
(1992)
Cell
, vol.69
, pp. 915-926
-
-
Li, E.1
Bestor, T.H.2
Jaenisch, R.3
-
78
-
-
0035937404
-
Genomic imprinting disrupted by a maternal effect mutation in the Dnmt1 gene
-
Howell CY, Bestor TH, Ding F, Latham KE, Mertineit C, Trasler JM, et al. Genomic imprinting disrupted by a maternal effect mutation in the Dnmt1 gene. Cell. 2001; 104: 829-38
-
(2001)
Cell
, vol.104
, pp. 829-838
-
-
Howell, C.Y.1
Bestor, T.H.2
Ding, F.3
Latham, K.E.4
Mertineit, C.5
Trasler, J.M.6
-
79
-
-
0035127794
-
Expression of mRNA for DNA methyltransferases and methyl-CpG-binding proteins and DNA methylation status on CpG islands and pericentromeric satellite regions during human hepatocarcinogenesis
-
Saito Y, Kanai Y, Sakamoto M, Saito H, Ishii H, Hirohashi S. Expression of mRNA for DNA methyltransferases and methyl-CpG-binding proteins and DNA methylation status on CpG islands and pericentromeric satellite regions during human hepatocarcinogenesis. Hepatology. 2001; 33: 561-8. doi:10.1053/jhep.2001.22507
-
(2001)
Hepatology
, vol.33
, pp. 561-568
-
-
Saito, Y.1
Kanai, Y.2
Sakamoto, M.3
Saito, H.4
Ishii, H.5
Hirohashi, S.6
-
80
-
-
0035863455
-
DNA methyltransferase expression and DNA methylation of CPG islands and peri-centromeric satellite regions in human colorectal and stomach cancers
-
Kanai Y, Ushijima S, Kondo Y, Nakanishi Y, Hirohashi S. DNA methyltransferase expression and DNA methylation of CPG islands and peri-centromeric satellite regions in human colorectal and stomach cancers. Int J Cancer. 2001; 91: 205-12
-
(2001)
Int J Cancer
, vol.91
, pp. 205-212
-
-
Kanai, Y.1
Ushijima, S.2
Kondo, Y.3
Nakanishi, Y.4
Hirohashi, S.5
-
81
-
-
31144449613
-
Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2
-
Goll MG, Kirpekar F, Maggert KA, Yoder JA, Hsieh CL, Zhang X, et al. Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2. Science. 2006; 311: 395-8. doi:10.1126/science.1120976
-
(2006)
Science
, vol.311
, pp. 395-398
-
-
Goll, M.G.1
Kirpekar, F.2
Maggert, K.A.3
Yoder, J.A.4
Hsieh, C.L.5
Zhang, X.6
-
82
-
-
78649906060
-
DNMT3A mutations in acute myeloid leukemia
-
Ley TJ, Ding L, Walter MJ, McLellan MD, Lamprecht T, Larson DE, et al. DNMT3A mutations in acute myeloid leukemia. N Engl J Med. 2010; 363: 2424-33. doi:10.1056/NEJMoa1005143
-
(2010)
N Engl J Med
, vol.363
, pp. 2424-2433
-
-
Ley, T.J.1
Ding, L.2
Walter, M.J.3
McLellan, M.D.4
Lamprecht, T.5
Larson, D.E.6
-
83
-
-
79953176952
-
Exome sequencing identifies somatic mutations of DNA methyltransferase gene DNMT3A in acute monocytic leukemia
-
Yan XJ, Xu J, Gu ZH, Pan CM, Lu G, Shen Y, et al. Exome sequencing identifies somatic mutations of DNA methyltransferase gene DNMT3A in acute monocytic leukemia. Nat Genet. 2011; 43: 309-15. doi:10.1038/ng.788
-
(2011)
Nat Genet
, vol.43
, pp. 309-315
-
-
Yan, X.J.1
Xu, J.2
Gu, Z.H.3
Pan, C.M.4
Lu, G.5
Shen, Y.6
-
84
-
-
80053097241
-
Clinical significance of the expression of DNA methyltransferase proteins in gastric cancer
-
Yang J, Wei X, Wu Q, Xu Z, Gu D, Jin Y, et al. Clinical significance of the expression of DNA methyltransferase proteins in gastric cancer. Mol Med Rep. 2011; 4: 1139-43. doi:10.3892/mmr.2011.578
-
(2011)
Mol Med Rep
, vol.4
, pp. 1139-1143
-
-
Yang, J.1
Wei, X.2
Wu, Q.3
Xu, Z.4
Gu, D.5
Jin, Y.6
-
85
-
-
81055124827
-
Expression of DNMT1 and DNMT3a are regulated by GLI1 in human pancreatic cancer
-
He S, Wang F, Yang L, Guo C, Wan R, Ke A, et al. Expression of DNMT1 and DNMT3a are regulated by GLI1 in human pancreatic cancer. PLoS One. 2011; 6: e27684. doi:10.1371/journal.pone.0027684
-
(2011)
Plos One
, vol.6
-
-
He, S.1
Wang, F.2
Yang, L.3
Guo, C.4
Wan, R.5
Ke, A.6
-
86
-
-
0033153303
-
The human DNA methyltransferases (DNMTs) 1, 3a and 3b: Coordinate mRNA expression in normal tissues and overexpression in tumors
-
Robertson KD, Uzvolgyi E, Liang G, Talmadge C, Sumegi J, Gonzales FA, et al. The human DNA methyltransferases (DNMTs) 1, 3a and 3b: coordinate mRNA expression in normal tissues and overexpression in tumors. Nucleic Acids Res. 1999; 27: 2291-8
-
(1999)
Nucleic Acids Res
, vol.27
, pp. 2291-2298
-
-
Robertson, K.D.1
Uzvolgyi, E.2
Liang, G.3
Talmadge, C.4
Sumegi, J.5
Gonzales, F.A.6
-
87
-
-
0034530273
-
Genetic variation in ICF syndrome: Evidence for genetic heterogeneity
-
Wijmenga C, Hansen RS, Gimelli G, Bjorck EJ, Davies EG, Valentine D, et al. Genetic variation in ICF syndrome: evidence for genetic heterogeneity. Hum Mutat. 2000; 16: 509-17
-
(2000)
Hum Mutat
, vol.16
, pp. 509-517
-
-
Wijmenga, C.1
Hansen, R.S.2
Gimelli, G.3
Bjorck, E.J.4
Davies, E.G.5
Valentine, D.6
-
88
-
-
0036735345
-
A novel polymorphism in human cytosine DNA-methyltransferase-3B promoter is associated with an increased risk of lung cancer
-
Shen H, Wang L, Spitz MR, Hong WK, Mao L, Wei Q. A novel polymorphism in human cytosine DNA-methyltransferase-3B promoter is associated with an increased risk of lung cancer. Cancer Res. 2002; 62: 4992-5
-
(2002)
Cancer Res
, vol.62
, pp. 4992-4995
-
-
Shen, H.1
Wang, L.2
Spitz, M.R.3
Hong, W.K.4
Mao, L.5
Wei, Q.6
-
89
-
-
79952539026
-
Sequential DNA methylation changes are associated with DNMT3B overexpression in colorectal neoplastic progression
-
Ibrahim AE, Arends MJ, Silva AL, Wyllie AH, Greger L, Ito Y, et al. Sequential DNA methylation changes are associated with DNMT3B overexpression in colorectal neoplastic progression. Gut. 2011; 60: 499-508. doi:10.1136/gut.2010.223602
-
(2011)
Gut
, vol.60
, pp. 499-508
-
-
Ibrahim, A.E.1
Arends, M.J.2
Silva, A.L.3
Wyllie, A.H.4
Greger, L.5
Ito, Y.6
-
90
-
-
79959875910
-
DNA methylation profiling reveals novel biomarkers and important roles for DNA methyltransferases in prostate cancer
-
Kobayashi Y, Absher DM, Gulzar ZG, Young SR, McKenney JK, Peehl DM, et al. DNA methylation profiling reveals novel biomarkers and important roles for DNA methyltransferases in prostate cancer. Genome Res. 2011; 21: 1017-27. doi:10.1101/gr.119487.110
-
(2011)
Genome Res
, vol.21
, pp. 1017-1027
-
-
Kobayashi, Y.1
Absher, D.M.2
Gulzar, Z.G.3
Young, S.R.4
McKenney, J.K.5
Peehl, D.M.6
-
91
-
-
0141995080
-
Expression analysis of DNA methyltransferases 1, 3A, and 3B in sporadic breast carcinomas
-
Girault I, Tozlu S, Lidereau R, Bieche I. Expression analysis of DNA methyltransferases 1, 3A, and 3B in sporadic breast carcinomas. Clin Cancer Res. 2003; 9: 4415-22
-
(2003)
Clin Cancer Res
, vol.9
, pp. 4415-4422
-
-
Girault, I.1
Tozlu, S.2
Lidereau, R.3
Bieche, I.4
-
92
-
-
38449115628
-
DNA methylation profile at the DNMT3L promoter: A potential biomarker for cervical cancer
-
Gokul G, Gautami B, Malathi S, Sowjanya AP, Poli UR, Jain M, et al. DNA methylation profile at the DNMT3L promoter: a potential biomarker for cervical cancer. Epigenetics. 2007; 2: 80-5
-
(2007)
Epigenetics
, vol.2
, pp. 80-85
-
-
Gokul, G.1
Gautami, B.2
Malathi, S.3
Sowjanya, A.P.4
Poli, U.R.5
Jain, M.6
-
93
-
-
77952385407
-
DNMT3L is a novel marker and is essential for the growth of human embryonal carcinoma
-
Minami K, Chano T, Kawakami T, Ushida H, Kushima R, Okabe H, et al. DNMT3L is a novel marker and is essential for the growth of human embryonal carcinoma. Clin Cancer Res. 2010; 16: 2751-9. doi:10.1158/1078-0432.CCR-09-3338
-
(2010)
Clin Cancer Res
, vol.16
, pp. 2751-2759
-
-
Minami, K.1
Chano, T.2
Kawakami, T.3
Ushida, H.4
Kushima, R.5
Okabe, H.6
-
94
-
-
20144374921
-
Meiotic and epigenetic defects in Dnmt3L-knockout mouse spermatogenesis
-
Webster KE, O'Bryan MK, Fletcher S, Crewther PE, Aapola U, Craig J, et al. Meiotic and epigenetic defects in Dnmt3L-knockout mouse spermatogenesis. Proc Natl Acad Sci U S A. 2005; 102: 4068-73. doi:10.1073/pnas.0500702102
-
(2005)
Proc Natl Acad Sci U S A
, vol.102
, pp. 4068-4073
-
-
Webster, K.E.1
O'bryan, M.K.2
Fletcher, S.3
Crewther, P.E.4
Aapola, U.5
Craig, J.6
-
95
-
-
0035930660
-
Dnmt3L and the establishment of maternal genomic imprints
-
Bourc'his D, Xu GL, Lin CS, Bollman B, Bestor TH. Dnmt3L and the establishment of maternal genomic imprints. Science. 2001; 294: 2536-9. doi:10.1126/science.1065848
-
(2001)
Science
, vol.294
, pp. 2536-2539
-
-
Bourc'his, D.1
Xu, G.L.2
Lin, C.S.3
Bollman, B.4
Bestor, T.H.5
-
96
-
-
0035094767
-
A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome
-
Guy J, Hendrich B, Holmes M, Martin JE, Bird A. A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome. Nat Genet. 2001; 27: 322-6. doi:10.1038/85899
-
(2001)
Nat Genet
, vol.27
, pp. 322-326
-
-
Guy, J.1
Hendrich, B.2
Holmes, M.3
Martin, J.E.4
Bird, A.5
-
97
-
-
0035093830
-
Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice
-
Chen RZ, Akbarian S, Tudor M, Jaenisch R. Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice. Nat Genet. 2001; 27: 327-31. doi:10.1038/85906
-
(2001)
Nat Genet
, vol.27
, pp. 327-331
-
-
Chen, R.Z.1
Akbarian, S.2
Tudor, M.3
Jaenisch, R.4
-
98
-
-
0037636512
-
Mice lacking methyl-CpG binding protein 1 have deficits in adult neurogenesis and hippocampal function
-
Zhao X, Ueba T, Christie BR, Barkho B, McConnell MJ, Nakashima K, et al. Mice lacking methyl-CpG binding protein 1 have deficits in adult neurogenesis and hippocampal function. Proc Natl Acad Sci U S A. 2003; 100: 6777-82. doi:10.1073/pnas.1131928100
-
(2003)
Proc Natl Acad Sci U S A
, vol.100
, pp. 6777-6782
-
-
Zhao, X.1
Ueba, T.2
Christie, B.R.3
Barkho, B.4
McConnell, M.J.5
Nakashima, K.6
-
99
-
-
0035868824
-
Closely related proteins MBD2 and MBD3 play distinctive but interacting roles in mouse development
-
Hendrich B, Guy J, Ramsahoye B, Wilson VA, Bird A. Closely related proteins MBD2 and MBD3 play distinctive but interacting roles in mouse development. Genes Dev. 2001; 15: 710-23. doi:10.1101/gad.194101
-
(2001)
Genes Dev
, vol.15
, pp. 710-723
-
-
Hendrich, B.1
Guy, J.2
Ramsahoye, B.3
Wilson, V.A.4
Bird, A.5
-
100
-
-
84898801197
-
Reduced mRNA expression levels of MBD2 and MBD3 in gastric carcinogenesis
-
Pontes TB, Chen ES, Gigek CO, Calcagno DQ, Wisnieski F, Leal MF, et al. Reduced mRNA expression levels of MBD2 and MBD3 in gastric carcinogenesis. Tumour Biol. 2014; 35: 3447-53. doi:10.1007/s13277-013-1455-y
-
(2014)
Tumour Biol
, vol.35
, pp. 3447-3453
-
-
Pontes, T.B.1
Chen, E.S.2
Gigek, C.O.3
Calcagno, D.Q.4
Wisnieski, F.5
Leal, M.F.6
-
101
-
-
33644764030
-
The NuRD component Mbd3 is required for pluripotency of embryonic stem cells
-
Kaji K, Caballero IM, MacLeod R, Nichols J, Wilson VA, Hendrich B. The NuRD component Mbd3 is required for pluripotency of embryonic stem cells. Nat Cell Biol. 2006; 8: 285-92. doi:10.1038/ncb1372
-
(2006)
Nat Cell Biol
, vol.8
, pp. 285-292
-
-
Kaji, K.1
Caballero, I.M.2
Macleod, R.3
Nichols, J.4
Wilson, V.A.5
Hendrich, B.6
-
102
-
-
0032743063
-
The DNA repair gene MBD4 (MED1) is mutated in human carcinomas with microsatellite instability
-
Riccio A, Aaltonen LA, Godwin AK, Loukola A, Percesepe A, Salovaara R, et al. The DNA repair gene MBD4 (MED1) is mutated in human carcinomas with microsatellite instability. Nat Genet. 1999; 23: 266-8. doi:10.1038/15443
-
(1999)
Nat Genet
, vol.23
, pp. 266-268
-
-
Riccio, A.1
Aaltonen, L.A.2
Godwin, A.K.3
Loukola, A.4
Percesepe, A.5
Salovaara, R.6
-
103
-
-
33847233256
-
A human cancer-associated truncation of MBD4 causes dominant negative impairment of DNA repair in colon cancer cells
-
Bader SA, Walker M, Harrison DJ. A human cancer-associated truncation of MBD4 causes dominant negative impairment of DNA repair in colon cancer cells. Br J Cancer. 2007; 96: 660-6. doi:10.1038/sj.bjc.6603592
-
(2007)
Br J Cancer
, vol.96
, pp. 660-666
-
-
Bader, S.A.1
Walker, M.2
Harrison, D.J.3
-
104
-
-
0037135130
-
Enhanced CpG mutability and tumorigenesis in MBD4-deficient mice
-
Millar CB, Guy J, Sansom OJ, Selfridge J, MacDougall E, Hendrich B, et al. Enhanced CpG mutability and tumorigenesis in MBD4-deficient mice. Science. 2002; 297: 403-5. doi:10.1126/science.1073354
-
(2002)
Science
, vol.297
, pp. 403-405
-
-
Millar, C.B.1
Guy, J.2
Sansom, O.J.3
Selfridge, J.4
Macdougall, E.5
Hendrich, B.6
-
105
-
-
0037069366
-
Mbd4 inactivation increases Cright-arrowT transition mutations and promotes gastrointestinal tumor formation
-
Wong E, Yang K, Kuraguchi M, Werling U, Avdievich E, Fan K, et al. Mbd4 inactivation increases Cright-arrowT transition mutations and promotes gastrointestinal tumor formation. Proc Natl Acad Sci U S A. 2002; 99: 14937-42. doi:10.1073/pnas.232579299
-
(2002)
Proc Natl Acad Sci U S A
, vol.99
, pp. 14937-14942
-
-
Wong, E.1
Yang, K.2
Kuraguchi, M.3
Werling, U.4
Avdievich, E.5
Fan, K.6
-
106
-
-
32344449372
-
Kaiso-deficient mice show resistance to intestinal cancer
-
Prokhortchouk A, Sansom O, Selfridge J, Caballero IM, Salozhin S, Aithozhina D, et al. Kaiso-deficient mice show resistance to intestinal cancer. Mol Cell Biol. 2006; 26: 199-208. doi:10.1128/MCB.26.1.199-208.2006
-
(2006)
Mol Cell Biol
, vol.26
, pp. 199-208
-
-
Prokhortchouk, A.1
Sansom, O.2
Selfridge, J.3
Caballero, I.M.4
Salozhin, S.5
Aithozhina, D.6
-
107
-
-
84857355139
-
Identification of oncogenic microRNA-17-92/ZBTB4/specificity protein axis in breast cancer
-
Kim K, Chadalapaka G, Lee SO, Yamada D, Sastre-Garau X, Defossez PA, et al. Identification of oncogenic microRNA-17-92/ZBTB4/specificity protein axis in breast cancer. Oncogene. 2012; 31: 1034-44. doi:10.1038/onc.2011.296
-
(2012)
Oncogene
, vol.31
, pp. 1034-1044
-
-
Kim, K.1
Chadalapaka, G.2
Lee, S.O.3
Yamada, D.4
Sastre-Garau, X.5
Defossez, P.A.6
-
108
-
-
84893758816
-
UHRF1 overexpression drives DNA hypomethylation and hepatocellular carcinoma
-
Mudbhary R, Hoshida Y, Chernyavskaya Y, Jacob V, Villanueva A, Fiel MI, et al. UHRF1 overexpression drives DNA hypomethylation and hepatocellular carcinoma. Cancer Cell. 2014; 25: 196-209. doi:10.1016/j.ccr.2014.01.003
-
(2014)
Cancer Cell
, vol.25
, pp. 196-209
-
-
Mudbhary, R.1
Hoshida, Y.2
Chernyavskaya, Y.3
Jacob, V.4
Villanueva, A.5
Fiel, M.I.6
-
109
-
-
67649859436
-
UHRF1 is a novel molecular marker for diagnosis and the prognosis of bladder cancer
-
Unoki M, Kelly JD, Neal DE, Ponder BA, Nakamura Y, Hamamoto R. UHRF1 is a novel molecular marker for diagnosis and the prognosis of bladder cancer. Br J Cancer. 2009; 101: 98-105. doi:10.1038/sj.bjc.6605123
-
(2009)
Br J Cancer
, vol.101
, pp. 98-105
-
-
Unoki, M.1
Kelly, J.D.2
Neal, D.E.3
Ponder, B.A.4
Nakamura, Y.5
Hamamoto, R.6
-
110
-
-
77954656715
-
UHRF1 is a novel diagnostic marker of lung cancer
-
Unoki M, Daigo Y, Koinuma J, Tsuchiya E, Hamamoto R, Nakamura Y. UHRF1 is a novel diagnostic marker of lung cancer. Br J Cancer. 2010; 103: 217-22. doi:10.1038/sj.bjc.6605717
-
(2010)
Br J Cancer
, vol.103
, pp. 217-222
-
-
Unoki, M.1
Daigo, Y.2
Koinuma, J.3
Tsuchiya, E.4
Hamamoto, R.5
Nakamura, Y.6
-
111
-
-
36849072573
-
The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA
-
Sharif J, Muto M, Takebayashi S, Suetake I, Iwamatsu A, Endo TA, et al. The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA. Nature. 2007; 450: 908-12. doi:10.1038/nature06397
-
(2007)
Nature
, vol.450
, pp. 908-912
-
-
Sharif, J.1
Muto, M.2
Takebayashi, S.3
Suetake, I.4
Iwamatsu, A.5
Endo, T.A.6
-
112
-
-
84908123681
-
Ubiquitin-like with PHD and ring finger domains 2 is a predictor of survival and a potential therapeutic target in colon cancer
-
Lu S, Yan D, Wu Z, Jiang T, Chen J, Yuan L, et al. Ubiquitin-like with PHD and ring finger domains 2 is a predictor of survival and a potential therapeutic target in colon cancer. Oncol Rep. 2014; 31: 1802-10. doi:10.3892/or.2014.3035
-
(2014)
Oncol Rep
, vol.31
, pp. 1802-1810
-
-
Lu, S.1
Yan, D.2
Wu, Z.3
Jiang, T.4
Chen, J.5
Yuan, L.6
-
113
-
-
77955838329
-
Recruitment of MBD1 to target genes requires sequence-specific interaction of the MBD domain with methylated DNA
-
Clouaire T, de Las Heras JI, Merusi C, Stancheva I. Recruitment of MBD1 to target genes requires sequence-specific interaction of the MBD domain with methylated DNA. Nucleic Acids Res. 2010; 38: 4620-34. doi:10.1093/nar/gkq228
-
(2010)
Nucleic Acids Res
, vol.38
, pp. 4620-4634
-
-
Clouaire, T.1
De Las Heras, J.I.2
Merusi, C.3
Stancheva, I.4
-
114
-
-
80052016907
-
Solution structure and dynamic analysis of chicken MBD2 methyl binding domain bound to a target-methylated DNA sequence
-
Scarsdale JN, Webb HD, Ginder GD, Williams DC, Jr. Solution structure and dynamic analysis of chicken MBD2 methyl binding domain bound to a target-methylated DNA sequence. Nucleic Acids Res. 2011; 39: 6741-52. doi:10.1093/nar/gkr262
-
(2011)
Nucleic Acids Res
, vol.39
, pp. 6741-6752
-
-
Scarsdale, J.N.1
Webb, H.D.2
Ginder, G.D.3
Williams, D.C.4
-
115
-
-
24044523177
-
DNA binding selectivity of MeCP2 due to a requirement for A/T sequences adjacent to methyl-CpG
-
Klose RJ, Sarraf SA, Schmiedeberg L, McDermott SM, Stancheva I, Bird AP. DNA binding selectivity of MeCP2 due to a requirement for A/T sequences adjacent to methyl-CpG. Mol Cell. 2005; 19: 667-78. doi:10.1016/j.molcel.2005.07.021
-
(2005)
Mol Cell
, vol.19
, pp. 667-678
-
-
Klose, R.J.1
Sarraf, S.A.2
Schmiedeberg, L.3
McDermott, S.M.4
Stancheva, I.5
Bird, A.P.6
-
116
-
-
33645218438
-
A family of human zinc finger proteins that bind methylated DNA and repress transcription
-
Filion GJ, Zhenilo S, Salozhin S, Yamada D, Prokhortchouk E, Defossez PA. A family of human zinc finger proteins that bind methylated DNA and repress transcription. Mol Cell Biol. 2006; 26: 169-81. doi:10.1128/MCB.26.1.169-181.2006
-
(2006)
Mol Cell Biol
, vol.26
, pp. 169-181
-
-
Filion, G.J.1
Zhenilo, S.2
Salozhin, S.3
Yamada, D.4
Prokhortchouk, E.5
Defossez, P.A.6
-
117
-
-
0035394961
-
The p120 catenin partner Kaiso is a DNA methylation-dependent transcriptional repressor
-
Prokhortchouk A, Hendrich B, Jorgensen H, Ruzov A, Wilm M, Georgiev G, et al. The p120 catenin partner Kaiso is a DNA methylation-dependent transcriptional repressor. Genes Dev. 2001; 15: 1613-8. doi:10.1101/gad.198501
-
(2001)
Genes Dev
, vol.15
, pp. 1613-1618
-
-
Prokhortchouk, A.1
Hendrich, B.2
Jorgensen, H.3
Ruzov, A.4
Wilm, M.5
Georgiev, G.6
-
118
-
-
12344301501
-
Kaiso is a genome-wide repressor of transcription that is essential for amphibian development
-
Ruzov A, Dunican DS, Prokhortchouk A, Pennings S, Stancheva I, Prokhortchouk E, et al. Kaiso is a genome-wide repressor of transcription that is essential for amphibian development. Development. 2004; 131: 6185-94. doi:10.1242/dev.01549
-
(2004)
Development
, vol.131
, pp. 6185-6194
-
-
Ruzov, A.1
Dunican, D.S.2
Prokhortchouk, A.3
Pennings, S.4
Stancheva, I.5
Prokhortchouk, E.6
-
119
-
-
53649089723
-
The SRA domain of UHRF1 flips 5-methylcytosine out of the DNA helix
-
Hashimoto H, Horton JR, Zhang X, Bostick M, Jacobsen SE, Cheng X. The SRA domain of UHRF1 flips 5-methylcytosine out of the DNA helix. Nature. 2008; 455: 826-9. doi:10.1038/nature07280
-
(2008)
Nature
, vol.455
, pp. 826-829
-
-
Hashimoto, H.1
Horton, J.R.2
Zhang, X.3
Bostick, M.4
Jacobsen, S.E.5
Cheng, X.6
-
120
-
-
53649097070
-
Recognition of hemi-methylated DNA by the SRA protein UHRF1 by a base-flipping mechanism
-
Arita K, Ariyoshi M, Tochio H, Nakamura Y, Shirakawa M. Recognition of hemi-methylated DNA by the SRA protein UHRF1 by a base-flipping mechanism. Nature. 2008; 455: 818-21. doi:10.1038/nature07249
-
(2008)
Nature
, vol.455
, pp. 818-821
-
-
Arita, K.1
Ariyoshi, M.2
Tochio, H.3
Nakamura, Y.4
Shirakawa, M.5
-
121
-
-
53649088595
-
Structural basis for recognition of hemi-methylated DNA by the SRA domain of human UHRF1
-
Avvakumov GV, Walker JR, Xue S, Li Y, Duan S, Bronner C, et al. Structural basis for recognition of hemi-methylated DNA by the SRA domain of human UHRF1. Nature. 2008; 455: 822-5. doi:10.1038/nature07273
-
(2008)
Nature
, vol.455
, pp. 822-825
-
-
Avvakumov, G.V.1
Walker, J.R.2
Xue, S.3
Li, Y.4
Duan, S.5
Bronner, C.6
-
122
-
-
84860389582
-
Cooperative DNA and histone binding by Uhrf2 links the two major repressive epigenetic pathways
-
Pichler G, Wolf P, Schmidt CS, Meilinger D, Schneider K, Frauer C, et al. Cooperative DNA and histone binding by Uhrf2 links the two major repressive epigenetic pathways. J Cell Biochem. 2011; 112: 2585-93. doi:10.1002/jcb.23185
-
(2011)
J Cell Biochem
, vol.112
, pp. 2585-2593
-
-
Pichler, G.1
Wolf, P.2
Schmidt, C.S.3
Meilinger, D.4
Schneider, K.5
Frauer, C.6
-
123
-
-
84901950311
-
Structural Basis for Hydroxymethylcytosine Recognition by the SRA Domain of UHRF2
-
Zhou T, Xiong J, Wang M, Yang N, Wong J, Zhu B, et al. Structural Basis for Hydroxymethylcytosine Recognition by the SRA Domain of UHRF2. Mol Cell. 2014. doi:10.1016/j.molcel.2014.04.003
-
(2014)
Mol Cell
-
-
Zhou, T.1
Xiong, J.2
Wang, M.3
Yang, N.4
Wong, J.5
Zhu, B.6
-
124
-
-
0034612265
-
CpG methylation as a mechanism for the regulation of E2F activity
-
Campanero MR, Armstrong MI, Flemington EK. CpG methylation as a mechanism for the regulation of E2F activity. Proc Natl Acad Sci U S A. 2000; 97: 6481-6. doi:10.1073/pnas.100340697
-
(2000)
Proc Natl Acad Sci U S A
, vol.97
, pp. 6481-6486
-
-
Campanero, M.R.1
Armstrong, M.I.2
Flemington, E.K.3
-
125
-
-
0024673303
-
CpG methylation of the cAMP-responsive enhancer/promoter sequence TGACGTCA abolishes specific factor binding as well as transcriptional activation
-
Iguchi-Ariga SM, Schaffner W. CpG methylation of the cAMP-responsive enhancer/promoter sequence TGACGTCA abolishes specific factor binding as well as transcriptional activation. Genes Dev. 1989; 3: 612-9
-
(1989)
Genes Dev
, vol.3
, pp. 612-619
-
-
Iguchi-Ariga, S.M.1
Schaffner, W.2
-
126
-
-
0037423186
-
The methyl-CpG-binding protein MeCP2 links DNA methylation to histone methylation
-
Fuks F, Hurd PJ, Wolf D, Nan X, Bird AP, Kouzarides T. The methyl-CpG-binding protein MeCP2 links DNA methylation to histone methylation. J Biol Chem. 2003; 278: 4035-40. doi:10.1074/jbc.M210256200
-
(2003)
J Biol Chem
, vol.278
, pp. 4035-4040
-
-
Fuks, F.1
Hurd, P.J.2
Wolf, D.3
Nan, X.4
Bird, A.P.5
Kouzarides, T.6
-
127
-
-
0031837109
-
Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription
-
Jones PL, Veenstra GJ, Wade PA, Vermaak D, Kass SU, Landsberger N, et al. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet. 1998; 19: 187-91. doi:10.1038/561
-
(1998)
Nat Genet
, vol.19
, pp. 187-191
-
-
Jones, P.L.1
Veenstra, G.J.2
Wade, P.A.3
Vermaak, D.4
Kass, S.U.5
Landsberger, N.6
-
128
-
-
0032574977
-
Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex
-
Nan X, Ng HH, Johnson CA, Laherty CD, Turner BM, Eisenman RN, et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature. 1998; 393: 386-9. doi:10.1038/30764
-
(1998)
Nature
, vol.393
, pp. 386-389
-
-
Nan, X.1
Ng, H.H.2
Johnson, C.A.3
Laherty, C.D.4
Turner, B.M.5
Eisenman, R.N.6
-
129
-
-
0032845039
-
Mi-2 complex couples DNA methylation to chromatin remodelling and histone deacetylation
-
Wade PA, Gegonne A, Jones PL, Ballestar E, Aubry F, Wolffe AP. Mi-2 complex couples DNA methylation to chromatin remodelling and histone deacetylation. Nat Genet. 1999; 23: 62-6. doi:10.1038/12664
-
(1999)
Nat Genet
, vol.23
, pp. 62-66
-
-
Wade, P.A.1
Gegonne, A.2
Jones, P.L.3
Ballestar, E.4
Aubry, F.5
Wolffe, A.P.6
-
130
-
-
0035823532
-
The Ski protein family is required for MeCP2-mediated transcriptional repression
-
Kokura K, Kaul SC, Wadhwa R, Nomura T, Khan MM, Shinagawa T, et al. The Ski protein family is required for MeCP2-mediated transcriptional repression. J Biol Chem. 2001; 276: 34115-21. doi:10.1074/jbc.M105747200
-
(2001)
J Biol Chem
, vol.276
, pp. 34115-34121
-
-
Kokura, K.1
Kaul, S.C.2
Wadhwa, R.3
Nomura, T.4
Khan, M.M.5
Shinagawa, T.6
-
131
-
-
53849113697
-
Base J: Discovery, biosynthesis, and possible functions
-
Borst P, Sabatini R. Base J: discovery, biosynthesis, and possible functions. Annu Rev Microbiol. 2008; 62: 235-51. doi:10.1146/annurev.micro.62.081307.162750
-
(2008)
Annu Rev Microbiol
, vol.62
, pp. 235-251
-
-
Borst, P.1
Sabatini, R.2
-
132
-
-
79960626636
-
The discovery of 5-formylcytosine in embryonic stem cell DNA
-
Pfaffeneder T, Hackner B, Truss M, Munzel M, Muller M, Deiml CA, et al. The discovery of 5-formylcytosine in embryonic stem cell DNA. Angew Chem Int Ed Engl. 2011; 50: 7008-12. doi:10.1002/anie.201103899
-
(2011)
Angew Chem Int Ed Engl
, vol.50
, pp. 7008-7012
-
-
Pfaffeneder, T.1
Hackner, B.2
Truss, M.3
Munzel, M.4
Muller, M.5
Deiml, C.A.6
-
133
-
-
80052461558
-
Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine
-
Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA, et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science. 2011; 333: 1300-3. doi:10.1126/science.1210597
-
(2011)
Science
, vol.333
, pp. 1300-1303
-
-
Ito, S.1
Shen, L.2
Dai, Q.3
Wu, S.C.4
Collins, L.B.5
Swenberg, J.A.6
-
134
-
-
78649658053
-
Structural studies on human 2-oxoglutarate dependent oxygenases
-
McDonough MA, Loenarz C, Chowdhury R, Clifton IJ, Schofield CJ. Structural studies on human 2-oxoglutarate dependent oxygenases. Curr Opin Struct Biol. 2010; 20: 659-72. doi:10.1016/j.sbi.2010.08.006
-
(2010)
Curr Opin Struct Biol
, vol.20
, pp. 659-672
-
-
McDonough, M.A.1
Loenarz, C.2
Chowdhury, R.3
Clifton, I.J.4
Schofield, C.J.5
-
135
-
-
84870883633
-
Tet3 CXXC domain and dioxygenase activity cooperatively regulate key genes for Xenopus eye and neural development
-
Xu Y, Xu C, Kato A, Tempel W, Abreu JG, Bian C, et al. Tet3 CXXC domain and dioxygenase activity cooperatively regulate key genes for Xenopus eye and neural development. Cell. 2012; 151: 1200-13. doi:10.1016/j.cell.2012.11.014
-
(2012)
Cell
, vol.151
, pp. 1200-1213
-
-
Xu, Y.1
Xu, C.2
Kato, A.3
Tempel, W.4
Abreu, J.G.5
Bian, C.6
-
136
-
-
84855638505
-
Chemical discrimination between dC and 5MedC via their hydroxylamine adducts
-
Munzel M, Lercher L, Muller M, Carell T. Chemical discrimination between dC and 5MedC via their hydroxylamine adducts. Nucleic Acids Res. 2010; 38: e192. doi:10.1093/nar/gkq724
-
(2010)
Nucleic Acids Res
, vol.38
-
-
Munzel, M.1
Lercher, L.2
Muller, M.3
Carell, T.4
-
137
-
-
84861990517
-
Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome
-
Yu M, Hon GC, Szulwach KE, Song CX, Zhang L, Kim A, et al. Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome. Cell. 2012; 149: 1368-80. doi:10.1016/j.cell.2012.04.027
-
(2012)
Cell
, vol.149
, pp. 1368-1380
-
-
Yu, M.1
Hon, G.C.2
Szulwach, K.E.3
Song, C.X.4
Zhang, L.5
Kim, A.6
-
138
-
-
4043112183
-
Oxidative damage to methyl-CpG sequences inhibits the binding of the methyl-CpG binding domain (MBD) of methyl-CpG binding protein 2 (MeCP2)
-
Valinluck V, Tsai HH, Rogstad DK, Burdzy A, Bird A, Sowers LC. Oxidative damage to methyl-CpG sequences inhibits the binding of the methyl-CpG binding domain (MBD) of methyl-CpG binding protein 2 (MeCP2). Nucleic Acids Res. 2004; 32: 4100-8. doi:10.1093/nar/gkh739
-
(2004)
Nucleic Acids Res
, vol.32
, pp. 4100-4108
-
-
Valinluck, V.1
Tsai, H.H.2
Rogstad, D.K.3
Burdzy, A.4
Bird, A.5
Sowers, L.C.6
-
139
-
-
84860221291
-
Recognition and potential mechanisms for replication and erasure of cytosine hydroxymethylation
-
Hashimoto H, Liu Y, Upadhyay AK, Chang Y, Howerton SB, Vertino PM, et al. Recognition and potential mechanisms for replication and erasure of cytosine hydroxymethylation. Nucleic Acids Res. 2012; 40: 4841-9. doi:10.1093/nar/gks155
-
(2012)
Nucleic Acids Res
, vol.40
, pp. 4841-4849
-
-
Hashimoto, H.1
Liu, Y.2
Upadhyay, A.K.3
Chang, Y.4
Howerton, S.B.5
Vertino, P.M.6
-
140
-
-
84901911200
-
Unusual characteristics of the DNA binding domain of epigenetic regulatory protein MeCP2 determine its binding specificity
-
Khrapunov S, Warren C, Cheng H, Berko ER, Greally JM, Brenowitz M. Unusual characteristics of the DNA binding domain of epigenetic regulatory protein MeCP2 determine its binding specificity. Biochemistry. 2014; 53: 3379-91. doi:10.1021/bi500424z
-
(2014)
Biochemistry
, vol.53
, pp. 3379-3391
-
-
Khrapunov, S.1
Warren, C.2
Cheng, H.3
Berko, E.R.4
Greally, J.M.5
Brenowitz, M.6
-
141
-
-
84871563384
-
MeCP2 binds to 5hmC enriched within active genes and accessible chromatin in the nervous system
-
Mellen M, Ayata P, Dewell S, Kriaucionis S, Heintz N. MeCP2 binds to 5hmC enriched within active genes and accessible chromatin in the nervous system. Cell. 2012; 151: 1417-30. doi:10.1016/j.cell.2012.11.022
-
(2012)
Cell
, vol.151
, pp. 1417-1430
-
-
Mellen, M.1
Ayata, P.2
Dewell, S.3
Kriaucionis, S.4
Heintz, N.5
-
142
-
-
84874771985
-
Dynamic readers for 5-(Hydroxy)methylcytosine and its oxidized derivatives
-
Spruijt CG, Gnerlich F, Smits AH, Pfaffeneder T, Jansen PW, Bauer C, et al. Dynamic readers for 5-(hydroxy)methylcytosine and its oxidized derivatives. Cell. 2013; 152: 1146-59. doi:10.1016/j.cell.2013.02.004
-
(2013)
Cell
, vol.152
, pp. 1146-1159
-
-
Spruijt, C.G.1
Gnerlich, F.2
Smits, A.H.3
Pfaffeneder, T.4
Jansen, P.W.5
Bauer, C.6
-
143
-
-
79959431845
-
Recognition of 5-hydroxymethylcytosine by the Uhrf1 SRA domain
-
Frauer C, Hoffmann T, Bultmann S, Casa V, Cardoso MC, Antes I, et al. Recognition of 5-hydroxymethylcytosine by the Uhrf1 SRA domain. PLoS One. 2011; 6: e21306. doi:10.1371/journal.pone.0021306
-
(2011)
Plos One
, vol.6
-
-
Frauer, C.1
Hoffmann, T.2
Bultmann, S.3
Casa, V.4
Cardoso, M.C.5
Antes, I.6
-
144
-
-
84886035297
-
A screen for hydroxymethylcytosine and formylcytosine binding proteins suggests functions in transcription and chromatin regulation
-
Iurlaro M, Ficz G, Oxley D, Raiber EA, Bachman M, Booth MJ, et al. A screen for hydroxymethylcytosine and formylcytosine binding proteins suggests functions in transcription and chromatin regulation. Genome Biol. 2013; 14: R119. doi:10.1186/gb-2013-14-10-r119
-
(2013)
Genome Biol
, vol.14
-
-
Iurlaro, M.1
Ficz, G.2
Oxley, D.3
Raiber, E.A.4
Bachman, M.5
Booth, M.J.6
-
145
-
-
73349104113
-
Active DNA demethylation mediated by DNA glycosylases
-
Zhu JK. Active DNA demethylation mediated by DNA glycosylases. Annu Rev Genet. 2009; 43: 143-66. doi:10.1146/annurev-genet-102108-134205
-
(2009)
Annu Rev Genet
, vol.43
, pp. 143-166
-
-
Zhu, J.K.1
-
146
-
-
79959937861
-
Thymine DNA glycosylase is essential for active DNA demethylation by linked deamination-base excision repair
-
Cortellino S, Xu J, Sannai M, Moore R, Caretti E, Cigliano A, et al. Thymine DNA glycosylase is essential for active DNA demethylation by linked deamination-base excision repair. Cell. 2011; 146: 67-79. doi:10.1016/j.cell.2011.06.020
-
(2011)
Cell
, vol.146
, pp. 67-79
-
-
Cortellino, S.1
Xu, J.2
Sannai, M.3
Moore, R.4
Caretti, E.5
Cigliano, A.6
-
147
-
-
84902831568
-
Tet oxidizes thymine to 5-hydroxymethyluracil in mouse embryonic stem cell DNA
-
Pfaffeneder T, Spada F, Wagner M, Brandmayr C, Laube SK, Eisen D, et al. Tet oxidizes thymine to 5-hydroxymethyluracil in mouse embryonic stem cell DNA. Nat Chem Biol. 2014; 10: 574-81. doi:10.1038/nchembio.1532
-
(2014)
Nat Chem Biol
, vol.10
, pp. 574-581
-
-
Pfaffeneder, T.1
Spada, F.2
Wagner, M.3
Brandmayr, C.4
Laube, S.K.5
Eisen, D.6
-
148
-
-
79957456954
-
Base excision repair and lesion-dependent subpathways for repair of oxidative DNA damage
-
Svilar D, Goellner EM, Almeida KH, Sobol RW. Base excision repair and lesion-dependent subpathways for repair of oxidative DNA damage. Antioxid Redox Signal. 2011; 14: 2491-507. doi:10.1089/ars.2010.3466
-
(2011)
Antioxid Redox Signal
, vol.14
, pp. 2491-2507
-
-
Svilar, D.1
Goellner, E.M.2
Almeida, K.H.3
Sobol, R.W.4
-
149
-
-
84902182150
-
Mechanism and function of oxidative reversal of DNA and RNA methylation
-
Shen L, Song CX, He C, Zhang Y. Mechanism and function of oxidative reversal of DNA and RNA methylation. Annu Rev Biochem. 2014; 83: 585-614. doi:10.1146/annurev-biochem-060713-035513
-
(2014)
Annu Rev Biochem
, vol.83
, pp. 585-614
-
-
Shen, L.1
Song, C.X.2
He, C.3
Zhang, Y.4
-
150
-
-
84859749531
-
DNA glycosylases: In DNA repair and beyond
-
Jacobs AL, Schar P. DNA glycosylases: in DNA repair and beyond. Chromosoma. 2012; 121: 1-20. doi:10.1007/s00412-011-0347-4
-
(2012)
Chromosoma
, vol.121
, pp. 1-20
-
-
Jacobs, A.L.1
Schar, P.2
-
151
-
-
22244448679
-
The role of base excision repair in the sensitivity and resistance to temozolomide-mediated cell death
-
Trivedi RN, Almeida KH, Fornsaglio JL, Schamus S, Sobol RW. The role of base excision repair in the sensitivity and resistance to temozolomide-mediated cell death. Cancer Res. 2005; 65: 6394-400. doi:10.1158/0008-5472.CAN-05-0715
-
(2005)
Cancer Res
, vol.65
, pp. 6394-6400
-
-
Trivedi, R.N.1
Almeida, K.H.2
Fornsaglio, J.L.3
Schamus, S.4
Sobol, R.W.5
-
152
-
-
0038074420
-
The versatile thymine DNA-glycosylase: A comparative characterization of the human, Drosophila and fission yeast orthologs
-
Hardeland U, Bentele M, Jiricny J, Schar P. The versatile thymine DNA-glycosylase: a comparative characterization of the human, Drosophila and fission yeast orthologs. Nucleic Acids Res. 2003; 31: 2261-71
-
(2003)
Nucleic Acids Res
, vol.31
, pp. 2261-2271
-
-
Hardeland, U.1
Bentele, M.2
Jiricny, J.3
Schar, P.4
-
153
-
-
79951810964
-
Embryonic lethal phenotype reveals a function of TDG in maintaining epigenetic stability
-
Cortazar D, Kunz C, Selfridge J, Lettieri T, Saito Y, MacDougall E, et al. Embryonic lethal phenotype reveals a function of TDG in maintaining epigenetic stability. Nature. 2011; 470: 419-23. doi:10.1038/nature09672
-
(2011)
Nature
, vol.470
, pp. 419-423
-
-
Cortazar, D.1
Kunz, C.2
Selfridge, J.3
Lettieri, T.4
Saito, Y.5
Macdougall, E.6
-
154
-
-
0344586043
-
Mutagenicity, toxicity and repair of DNA base damage induced by oxidation
-
Bjelland S, Seeberg E. Mutagenicity, toxicity and repair of DNA base damage induced by oxidation. Mutat Res. 2003; 531: 37-80
-
(2003)
Mutat Res
, vol.531
, pp. 37-80
-
-
Bjelland, S.1
Seeberg, E.2
-
155
-
-
0038771139
-
Structure and specificity of the vertebrate anti-mutator uracil-DNA glycosylase SMUG1
-
Wibley JE, Waters TR, Haushalter K, Verdine GL, Pearl LH. Structure and specificity of the vertebrate anti-mutator uracil-DNA glycosylase SMUG1. Mol Cell. 2003; 11: 1647-59
-
(2003)
Mol Cell
, vol.11
, pp. 1647-1659
-
-
Wibley, J.E.1
Waters, T.R.2
Haushalter, K.3
Verdine, G.L.4
Pearl, L.H.5
-
156
-
-
67650133665
-
Mechanisms of base selection by human single-stranded selective monofunctional uracil-DNA glycosylase
-
Darwanto A, Theruvathu JA, Sowers JL, Rogstad DK, Pascal T, Goddard W, 3rd, et al. Mechanisms of base selection by human single-stranded selective monofunctional uracil-DNA glycosylase. J Biol Chem. 2009; 284: 15835-46. doi:10.1074/jbc.M807846200
-
(2009)
J Biol Chem
, vol.284
, pp. 15835-15846
-
-
Darwanto, A.1
Theruvathu, J.A.2
Sowers, J.L.3
Rogstad, D.K.4
Pascal, T.5
Goddard, W.6
-
157
-
-
84864452214
-
Germline ablation of SMUG1 DNA glycosylase causes loss of 5-hydroxymethyluracil- and UNG-backup uracil-excision activities and increases cancer predisposition of Ung-/-Msh2-/- mice
-
Kemmerich K, Dingler FA, Rada C, Neuberger MS. Germline ablation of SMUG1 DNA glycosylase causes loss of 5-hydroxymethyluracil- and UNG-backup uracil-excision activities and increases cancer predisposition of Ung-/-Msh2-/- mice. Nucleic Acids Res. 2012; 40: 6016-25. doi:10.1093/nar/gks259
-
(2012)
Nucleic Acids Res
, vol.40
, pp. 6016-6025
-
-
Kemmerich, K.1
Dingler, F.A.2
Rada, C.3
Neuberger, M.S.4
-
158
-
-
3042766227
-
Increased postischemic brain injury in mice deficient in uracil-DNA glycosylase
-
Endres M, Biniszkiewicz D, Sobol RW, Harms C, Ahmadi M, Lipski A, et al. Increased postischemic brain injury in mice deficient in uracil-DNA glycosylase. J Clin Invest. 2004; 113: 1711-21. doi:10.1172/JCI20926
-
(2004)
J Clin Invest
, vol.113
, pp. 1711-1721
-
-
Endres, M.1
Biniszkiewicz, D.2
Sobol, R.W.3
Harms, C.4
Ahmadi, M.5
Lipski, A.6
-
159
-
-
0033636312
-
Uracil-DNA glycosylase (UNG)-deficient mice reveal a primary role of the enzyme during DNA replication
-
Nilsen H, Rosewell I, Robins P, Skjelbred CF, Andersen S, Slupphaug G, et al. Uracil-DNA glycosylase (UNG)-deficient mice reveal a primary role of the enzyme during DNA replication. Mol Cell. 2000; 5: 1059-65
-
(2000)
Mol Cell
, vol.5
, pp. 1059-1065
-
-
Nilsen, H.1
Rosewell, I.2
Robins, P.3
Skjelbred, C.F.4
Ersen, S.5
Slupphaug, G.6
-
160
-
-
32444434993
-
The metabolic syndrome resulting from a knockout of the NEIL1 DNA glycosylase
-
Vartanian V, Lowell B, Minko IG, Wood TG, Ceci JD, George S, et al. The metabolic syndrome resulting from a knockout of the NEIL1 DNA glycosylase. Proc Natl Acad Sci U S A. 2006; 103: 1864-9. doi:10.1073/pnas.0507444103
-
(2006)
Proc Natl Acad Sci U S A
, vol.103
, pp. 1864-1869
-
-
Vartanian, V.1
Lowell, B.2
Minko, I.G.3
Wood, T.G.4
Ceci, J.D.5
George, S.6
-
161
-
-
18444385675
-
Novel nuclear and mitochondrial glycosylases revealed by disruption of the mouse Nth1 gene encoding an endonuclease III homolog for repair of thymine glycols
-
Takao M, Kanno S, Shiromoto T, Hasegawa R, Ide H, Ikeda S, et al. Novel nuclear and mitochondrial glycosylases revealed by disruption of the mouse Nth1 gene encoding an endonuclease III homolog for repair of thymine glycols. EMBO J. 2002; 21: 3486-93. doi:10.1093/emboj/cdf350
-
(2002)
EMBO J
, vol.21
, pp. 3486-3493
-
-
Takao, M.1
Kanno, S.2
Shiromoto, T.3
Hasegawa, R.4
Ide, H.5
Ikeda, S.6
-
162
-
-
33645003172
-
BRCA1: Cell cycle checkpoint, genetic instability, DNA damage response and cancer evolution
-
Deng CX. BRCA1: cell cycle checkpoint, genetic instability, DNA damage response and cancer evolution. Nucleic Acids Res. 2006; 34: 1416-26. doi:10.1093/nar/gkl010
-
(2006)
Nucleic Acids Res
, vol.34
, pp. 1416-1426
-
-
Deng, C.X.1
-
163
-
-
78049484691
-
BRCA1 affects global DNA methylation through regulation of DNMT1
-
Shukla V, Coumoul X, Lahusen T, Wang RH, Xu X, Vassilopoulos A, et al. BRCA1 affects global DNA methylation through regulation of DNMT1. Cell Res. 2010; 20: 1201-15. doi:10.1038/cr.2010.128
-
(2010)
Cell Res
, vol.20
, pp. 1201-1215
-
-
Shukla, V.1
Coumoul, X.2
Lahusen, T.3
Wang, R.H.4
Xu, X.5
Vassilopoulos, A.6
-
164
-
-
69549119023
-
MBD4 and MLH1 are required for apoptotic induction in xDNMT1-depleted embryos
-
Ruzov A, Shorning B, Mortusewicz O, Dunican DS, Leonhardt H, Meehan RR. MBD4 and MLH1 are required for apoptotic induction in xDNMT1-depleted embryos. Development. 2009; 136: 2277-86. doi:10.1242/dev.032227
-
(2009)
Development
, vol.136
, pp. 2277-2286
-
-
Ruzov, A.1
Shorning, B.2
Mortusewicz, O.3
Dunican, D.S.4
Leonhardt, H.5
Meehan, R.R.6
-
165
-
-
84899141256
-
MBD4 cooperates with DNMT1 to mediate methyl-DNA repression and protects mammalian cells from oxidative stress
-
Laget S, Miotto B, Chin HG, Esteve PO, Roberts RJ, Pradhan S, et al. MBD4 cooperates with DNMT1 to mediate methyl-DNA repression and protects mammalian cells from oxidative stress. Epigenetics. 2014; 9: 546-56. doi:10.4161/epi.27695
-
(2014)
Epigenetics
, vol.9
, pp. 546-556
-
-
Laget, S.1
Miotto, B.2
Chin, H.G.3
Esteve, P.O.4
Roberts, R.J.5
Pradhan, S.6
-
166
-
-
79959734685
-
Apoptosis and DNA Methylation
-
Meng HX, Hackett JA, Nestor C, Dunican DS, Madej M, Reddington JP, et al. Apoptosis and DNA Methylation. Cancers (Basel). 2011; 3: 1798-820. doi:10.3390/cancers3021798
-
(2011)
Cancers (Basel)
, vol.3
, pp. 1798-1820
-
-
Meng, H.X.1
Hackett, J.A.2
Nestor, C.3
Dunican, D.S.4
Madej, M.5
Reddington, J.P.6
-
167
-
-
80052725628
-
The USP7/Dnmt1 complex stimulates the DNA methylation activity of Dnmt1 and regulates the stability of UHRF1
-
Felle M, Joppien S, Nemeth A, Diermeier S, Thalhammer V, Dobner T, et al. The USP7/Dnmt1 complex stimulates the DNA methylation activity of Dnmt1 and regulates the stability of UHRF1. Nucleic Acids Res. 2011; 39: 8355-65. doi:10.1093/nar/gkr528
-
(2011)
Nucleic Acids Res
, vol.39
, pp. 8355-8365
-
-
Felle, M.1
Joppien, S.2
Nemeth, A.3
Diermeier, S.4
Thalhammer, V.5
Dobner, T.6
-
168
-
-
84859475181
-
M phase phosphorylation of the epigenetic regulator UHRF1 regulates its physical association with the deubiquitylase USP7 and stability
-
Ma H, Chen H, Guo X, Wang Z, Sowa ME, Zheng L, et al. M phase phosphorylation of the epigenetic regulator UHRF1 regulates its physical association with the deubiquitylase USP7 and stability. Proc Natl Acad Sci U S A. 2012; 109: 4828-33. doi:10.1073/pnas.1116349109
-
(2012)
Proc Natl Acad Sci U S A
, vol.109
, pp. 4828-4833
-
-
Ma, H.1
Chen, H.2
Guo, X.3
Wang, Z.4
Sowa, M.E.5
Zheng, L.6
-
169
-
-
84941135602
-
MBD4 Interacts with and Recruits USP7 to heterochromatic foci
-
Meng H, Harrison DJ, Meehan RR. MBD4 Interacts with and Recruits USP7 to heterochromatic foci. J Cell Biochem. 2014. doi:10.1002/jcb.25001
-
(2014)
J Cell Biochem
-
-
Meng, H.1
Harrison, D.J.2
Meehan, R.R.3
-
170
-
-
79952850692
-
UHRF1 depletion causes a G2/M arrest, activation of DNA damage response and apoptosis
-
Tien AL, Senbanerjee S, Kulkarni A, Mudbhary R, Goudreau B, Ganesan S, et al. UHRF1 depletion causes a G2/M arrest, activation of DNA damage response and apoptosis. Biochem J. 2011; 435: 175-85. doi:10.1042/BJ20100840
-
(2011)
Biochem J
, vol.435
, pp. 175-185
-
-
Tien, A.L.1
Senbanerjee, S.2
Kulkarni, A.3
Mudbhary, R.4
Goudreau, B.5
Ganesan, S.6
-
171
-
-
78650967451
-
UHRF1 is a genome caretaker that facilitates the DNA damage response to gamma-irradiation
-
Mistry H, Tamblyn L, Butt H, Sisgoreo D, Gracias A, Larin M, et al. UHRF1 is a genome caretaker that facilitates the DNA damage response to gamma-irradiation. Genome Integr. 2010; 1: 7. doi:10.1186/2041-9414-1-7
-
(2010)
Genome Integr
, vol.1
-
-
Mistry, H.1
Tamblyn, L.2
Butt, H.3
Sisgoreo, D.4
Gracias, A.5
Larin, M.6
-
172
-
-
84883298525
-
Inhibiting UHRF1 expression enhances radiosensitivity in human esophageal squamous cell carcinoma
-
Yang C, Wang Y, Zhang F, Sun G, Li C, Jing S, et al. Inhibiting UHRF1 expression enhances radiosensitivity in human esophageal squamous cell carcinoma. Mol Biol Rep. 2013; 40: 5225-35. doi:10.1007/s11033-013-2559-6
-
(2013)
Mol Biol Rep
, vol.40
, pp. 5225-5235
-
-
Yang, C.1
Wang, Y.2
Zhang, F.3
Sun, G.4
Li, C.5
Jing, S.6
-
173
-
-
78349251748
-
Reduced levels of two modifiers of epigenetic gene silencing, Dnmt3a and Trim28, cause increased phenotypic noise
-
Whitelaw NC, Chong S, Morgan DK, Nestor C, Bruxner TJ, Ashe A, et al. Reduced levels of two modifiers of epigenetic gene silencing, Dnmt3a and Trim28, cause increased phenotypic noise. Genome Biol. 2010; 11: R111. doi:10.1186/gb-2010-11-11-r111
-
(2010)
Genome Biol
, vol.11
-
-
Whitelaw, N.C.1
Chong, S.2
Morgan, D.K.3
Nestor, C.4
Bruxner, T.J.5
Ashe, A.6
-
174
-
-
84861912630
-
Programming of DNA methylation patterns
-
Cedar H, Bergman Y. Programming of DNA methylation patterns. Annu Rev Biochem. 2012; 81: 97-117. doi:10.1146/annurev-biochem-052610-091920
-
(2012)
Annu Rev Biochem
, vol.81
, pp. 97-117
-
-
Cedar, H.1
Bergman, Y.2
-
175
-
-
0344630574
-
Chromatin structure is required to block transcription of the methylated herpes simplex virus thymidine kinase gene
-
Buschhausen G, Wittig B, Graessmann M, Graessmann A. Chromatin structure is required to block transcription of the methylated herpes simplex virus thymidine kinase gene. Proc Natl Acad Sci U S A. 1987; 84: 1177-81
-
(1987)
Proc Natl Acad Sci U S A
, vol.84
, pp. 1177-1181
-
-
Buschhausen, G.1
Wittig, B.2
Graessmann, M.3
Graessmann, A.4
-
176
-
-
0022545498
-
DNA methylation affects the formation of active chromatin
-
Keshet I, Lieman-Hurwitz J, Cedar H. DNA methylation affects the formation of active chromatin. Cell. 1986; 44: 535-43
-
(1986)
Cell
, vol.44
, pp. 535-543
-
-
Keshet, I.1
Lieman-Hurwitz, J.2
Cedar, H.3
-
177
-
-
0011923583
-
Distribution of 5-methylcytosine in chromatin
-
Razin A, Cedar H. Distribution of 5-methylcytosine in chromatin. Proc Natl Acad Sci U S A. 1977; 74: 2725-8
-
(1977)
Proc Natl Acad Sci U S A
, vol.74
, pp. 2725-2728
-
-
Razin, A.1
Cedar, H.2
-
178
-
-
0017841275
-
Organization of 5-methylcytosine in chromosomal DNA
-
Solage A, Cedar H. Organization of 5-methylcytosine in chromosomal DNA. Biochemistry. 1978; 17: 2934-8
-
(1978)
Biochemistry
, vol.17
, pp. 2934-2938
-
-
Solage, A.1
Cedar, H.2
-
179
-
-
77954659099
-
Relationship between nucleosome positioning and DNA methylation
-
Chodavarapu RK, Feng S, Bernatavichute YV, Chen PY, Stroud H, Yu Y, et al. Relationship between nucleosome positioning and DNA methylation. Nature. 2010; 466: 388-92. doi:10.1038/nature09147
-
(2010)
Nature
, vol.466
, pp. 388-392
-
-
Chodavarapu, R.K.1
Feng, S.2
Bernatavichute, Y.V.3
Chen, P.Y.4
Stroud, H.5
Yu, Y.6
-
180
-
-
0034713375
-
Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene
-
Bell AC, Felsenfeld G. Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature. 2000; 405: 482-5. doi:10.1038/35013100
-
(2000)
Nature
, vol.405
, pp. 482-485
-
-
Bell, A.C.1
Felsenfeld, G.2
-
181
-
-
77954362183
-
Examination of the specificity of DNA methylation profiling techniques towards 5-methylcytosine and 5-hydroxymethylcytosine
-
Jin SG, Kadam S, Pfeifer GP. Examination of the specificity of DNA methylation profiling techniques towards 5-methylcytosine and 5-hydroxymethylcytosine. Nucleic Acids Res. 2010; 38: e125. doi:10.1093/nar/gkq223
-
(2010)
Nucleic Acids Res
, vol.38
-
-
Jin, S.G.1
Kadam, S.2
Pfeifer, G.P.3
-
182
-
-
77951116072
-
CpG islands influence chromatin structure via the CpG-binding protein Cfp1
-
Thomson JP, Skene PJ, Selfridge J, Clouaire T, Guy J, Webb S, et al. CpG islands influence chromatin structure via the CpG-binding protein Cfp1. Nature. 2010; 464: 1082-6. doi:10.1038/nature08924
-
(2010)
Nature
, vol.464
, pp. 1082-1086
-
-
Thomson, J.P.1
Skene, P.J.2
Selfridge, J.3
Clouaire, T.4
Guy, J.5
Webb, S.6
-
183
-
-
10944251591
-
Repair and genetic consequences of endogenous DNA base damage in mammalian cells
-
Barnes DE, Lindahl T. Repair and genetic consequences of endogenous DNA base damage in mammalian cells. Annu Rev Genet. 2004; 38: 445-76. doi:10.1146/annurev.genet.38.072902.092448
-
(2004)
Annu Rev Genet
, vol.38
, pp. 445-476
-
-
Barnes, D.E.1
Lindahl, T.2
-
184
-
-
0036645687
-
The yeast THO complex and mRNA export factors link RNA metabolism with transcription and genome instability
-
Jimeno S, Rondon AG, Luna R, Aguilera A. The yeast THO complex and mRNA export factors link RNA metabolism with transcription and genome instability. EMBO J. 2002; 21: 3526-35. doi:10.1093/emboj/cdf335
-
(2002)
EMBO J
, vol.21
, pp. 3526-3535
-
-
Jimeno, S.1
Rondon, A.G.2
Luna, R.3
Aguilera, A.4
-
185
-
-
77649165394
-
Maintaining genome stability at the replication fork
-
Branzei D, Foiani M. Maintaining genome stability at the replication fork. Nat Rev Mol Cell Biol. 2010; 11: 208-19. doi:10.1038/nrm2852
-
(2010)
Nat Rev Mol Cell Biol
, vol.11
, pp. 208-219
-
-
Branzei, D.1
Foiani, M.2
-
186
-
-
73449135479
-
To promote and protect: Coordinating DNA replication and transcription for genome stability
-
Knott SR, Viggiani CJ, Aparicio OM. To promote and protect: coordinating DNA replication and transcription for genome stability. Epigenetics. 2009; 4: 362-5
-
(2009)
Epigenetics
, vol.4
, pp. 362-365
-
-
Knott, S.R.1
Viggiani, C.J.2
Aparicio, O.M.3
-
187
-
-
84860338675
-
R loops: From transcription byproducts to threats to genome stability
-
Aguilera A, Garcia-Muse T. R loops: from transcription byproducts to threats to genome stability. Mol Cell. 2012; 46: 115-24. doi:10.1016/j.molcel.2012.04.009
-
(2012)
Mol Cell
, vol.46
, pp. 115-124
-
-
Aguilera, A.1
Garcia-Muse, T.2
-
188
-
-
80053144962
-
A decade of exploring the cancer epigenome - biological and translational implications
-
Baylin SB, Jones PA. A decade of exploring the cancer epigenome - biological and translational implications. Nat Rev Cancer. 2011; 11: 726-34. doi:10.1038/nrc3130
-
(2011)
Nat Rev Cancer
, vol.11
, pp. 726-734
-
-
Baylin, S.B.1
Jones, P.A.2
-
189
-
-
80051578149
-
Dominantly inherited constitutional epigenetic silencing of MLH1 in a cancer-affected family is linked to a single nucleotide variant within the 5'UTR
-
Hitchins MP, Rapkins RW, Kwok CT, Srivastava S, Wong JJ, Khachigian LM, et al. Dominantly inherited constitutional epigenetic silencing of MLH1 in a cancer-affected family is linked to a single nucleotide variant within the 5'UTR. Cancer Cell. 2011; 20: 200-13. doi:10.1016/j.ccr.2011.07.003
-
(2011)
Cancer Cell
, vol.20
, pp. 200-213
-
-
Hitchins, M.P.1
Rapkins, R.W.2
Kwok, C.T.3
Srivastava, S.4
Wong, J.J.5
Khachigian, L.M.6
-
190
-
-
84856549042
-
Genome-scale analysis of aberrant DNA methylation in colorectal cancer
-
Hinoue T, Weisenberger DJ, Lange CP, Shen H, Byun HM, Van Den Berg D, et al. Genome-scale analysis of aberrant DNA methylation in colorectal cancer. Genome Res. 2012; 22: 271-82. doi:10.1101/gr.117523.110
-
(2012)
Genome Res
, vol.22
, pp. 271-282
-
-
Hinoue, T.1
Weisenberger, D.J.2
Lange, C.P.3
Shen, H.4
Byun, H.M.5
Van Den Berg, D.6
-
191
-
-
33644846509
-
Epigenetic gene silencing in cancer - a mechanism for early oncogenic pathway addiction?
-
Baylin SB, Ohm JE. Epigenetic gene silencing in cancer - a mechanism for early oncogenic pathway addiction? Nat Rev Cancer. 2006; 6: 107-16. doi:10.1038/nrc1799
-
(2006)
Nat Rev Cancer
, vol.6
, pp. 107-116
-
-
Baylin, S.B.1
Ohm, J.E.2
-
192
-
-
0035422226
-
Global and gene-specific epigenetic patterns in human bladder cancer genomes are relatively stable in vivo and in vitro over time
-
Markl ID, Cheng J, Liang G, Shibata D, Laird PW, Jones PA. Global and gene-specific epigenetic patterns in human bladder cancer genomes are relatively stable in vivo and in vitro over time. Cancer Res. 2001; 61: 5875-84
-
(2001)
Cancer Res
, vol.61
, pp. 5875-5884
-
-
Markl, I.D.1
Cheng, J.2
Liang, G.3
Shibata, D.4
Laird, P.W.5
Jones, P.A.6
-
193
-
-
84863986133
-
Functions of DNA methylation: Islands, start sites, gene bodies and beyond
-
Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet. 2012; 13: 484-92. doi:10.1038/nrg3230
-
(2012)
Nat Rev Genet
, vol.13
, pp. 484-492
-
-
Jones, P.A.1
-
194
-
-
0037444026
-
The affinity of different MBD proteins for a specific methylated locus depends on their intrinsic binding properties
-
Fraga MF, Ballestar E, Montoya G, Taysavang P, Wade PA, Esteller M. The affinity of different MBD proteins for a specific methylated locus depends on their intrinsic binding properties. Nucleic Acids Res. 2003; 31: 1765-74
-
(2003)
Nucleic Acids Res
, vol.31
, pp. 1765-1774
-
-
Fraga, M.F.1
Ballestar, E.2
Montoya, G.3
Taysavang, P.4
Wade, P.A.5
Esteller, M.6
-
196
-
-
1042272175
-
Methylation of the hypoxanthine phosphoribosyltransferase locus on the human X chromosome: Implications for X-chromosome inactivation
-
Wolf SF, Jolly DJ, Lunnen KD, Friedmann T, Migeon BR. Methylation of the hypoxanthine phosphoribosyltransferase locus on the human X chromosome: implications for X-chromosome inactivation. Proc Natl Acad Sci U S A. 1984; 81: 2806-10
-
(1984)
Proc Natl Acad Sci U S A
, vol.81
, pp. 2806-2810
-
-
Wolf, S.F.1
Jolly, D.J.2
Lunnen, K.D.3
Friedmann, T.4
Migeon, B.R.5
-
197
-
-
33847304609
-
Gene body-specific methylation on the active X chromosome
-
Hellman A, Chess A. Gene body-specific methylation on the active X chromosome. Science. 2007; 315: 1141-3. doi:10.1126/science.1136352
-
(2007)
Science
, vol.315
, pp. 1141-1143
-
-
Hellman, A.1
Chess, A.2
-
198
-
-
0030840954
-
Cytosine methylation and the ecology of intragenomic parasites
-
Yoder JA, Walsh CP, Bestor TH. Cytosine methylation and the ecology of intragenomic parasites. Trends Genet. 1997; 13: 335-40
-
(1997)
Trends Genet
, vol.13
, pp. 335-340
-
-
Yoder, J.A.1
Walsh, C.P.2
Bestor, T.H.3
-
199
-
-
80455176999
-
CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing
-
Shukla S, Kavak E, Gregory M, Imashimizu M, Shutinoski B, Kashlev M, et al. CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing. Nature. 2011; 479: 74-9. doi:10.1038/nature10442
-
(2011)
Nature
, vol.479
, pp. 74-79
-
-
Shukla, S.1
Kavak, E.2
Gregory, M.3
Imashimizu, M.4
Shutinoski, B.5
Kashlev, M.6
-
200
-
-
79956323623
-
Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation
-
Ficz G, Branco MR, Seisenberger S, Santos F, Krueger F, Hore TA, et al. Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation. Nature. 2011; 473: 398-402. doi:10.1038/nature10008
-
(2011)
Nature
, vol.473
, pp. 398-402
-
-
Ficz, G.1
Branco, M.R.2
Seisenberger, S.3
Santos, F.4
Krueger, F.5
Hore, T.A.6
-
201
-
-
79955948324
-
Genome-wide regulation of 5hmC, 5mC, and gene expression by Tet1 hydroxylase in mouse embryonic stem cells
-
Xu Y, Wu F, Tan L, Kong L, Xiong L, Deng J, et al. Genome-wide regulation of 5hmC, 5mC, and gene expression by Tet1 hydroxylase in mouse embryonic stem cells. Mol Cell. 2011; 42: 451-64. doi:10.1016/j.molcel.2011.04.005
-
(2011)
Mol Cell
, vol.42
, pp. 451-464
-
-
Xu, Y.1
Wu, F.2
Tan, L.3
Kong, L.4
Xiong, L.5
Deng, J.6
-
202
-
-
79954457998
-
Genome-wide analysis of 5-hydroxymethylcytosine distribution reveals its dual function in transcriptional regulation in mouse embryonic stem cells
-
Wu H, D'Alessio AC, Ito S, Wang Z, Cui K, Zhao K, et al. Genome-wide analysis of 5-hydroxymethylcytosine distribution reveals its dual function in transcriptional regulation in mouse embryonic stem cells. Genes Dev. 2011; 25: 679-84. doi:10.1101/gad.2036011
-
(2011)
Genes Dev
, vol.25
, pp. 679-684
-
-
Wu, H.1
D'alessio, A.C.2
Ito, S.3
Wang, Z.4
Cui, K.5
Zhao, K.6
-
203
-
-
79956308473
-
Genome-wide mapping of 5-hydroxymethylcytosine in embryonic stem cells
-
Pastor WA, Pape UJ, Huang Y, Henderson HR, Lister R, Ko M, et al. Genome-wide mapping of 5-hydroxymethylcytosine in embryonic stem cells. Nature. 2011; 473: 394-7. doi:10.1038/nature10102
-
(2011)
Nature
, vol.473
, pp. 394-397
-
-
Pastor, W.A.1
Pape, U.J.2
Huang, Y.3
Henderson, H.R.4
Lister, R.5
Ko, M.6
-
204
-
-
0023853921
-
The CpG dinucleotide and human genetic disease
-
Cooper DN, Youssoufian H. The CpG dinucleotide and human genetic disease. Hum Genet. 1988; 78: 151-5
-
(1988)
Hum Genet
, vol.78
, pp. 151-155
-
-
Cooper, D.N.1
Youssoufian, H.2
-
205
-
-
0025145277
-
5-Methylcytosine as an endogenous mutagen in the human LDL receptor and p53 genes
-
Rideout WM, 3rd, Coetzee GA, Olumi AF, Jones PA. 5-Methylcytosine as an endogenous mutagen in the human LDL receptor and p53 genes. Science. 1990; 249: 1288-90
-
(1990)
Science
, vol.249
, pp. 1288-1290
-
-
Rideout, W.M.1
Coetzee, G.A.2
Olumi, A.F.3
Jones, P.A.4
-
206
-
-
0019198357
-
Mutagenic deamination of cytosine residues in DNA
-
Duncan BK, Miller JH. Mutagenic deamination of cytosine residues in DNA. Nature. 1980; 287: 560-1
-
(1980)
Nature
, vol.287
, pp. 560-561
-
-
Duncan, B.K.1
Miller, J.H.2
-
207
-
-
84868214089
-
Estimating the human mutation rate using autozygosity in a founder population
-
Campbell CD, Chong JX, Malig M, Ko A, Dumont BL, Han L, et al. Estimating the human mutation rate using autozygosity in a founder population. Nat Genet. 2012; 44: 1277-81. doi:10.1038/ng.2418
-
(2012)
Nat Genet
, vol.44
, pp. 1277-1281
-
-
Campbell, C.D.1
Chong, J.X.2
Malig, M.3
Ko, A.4
Dumont, B.L.5
Han, L.6
-
208
-
-
84884413307
-
Properties and rates of germline mutations in humans
-
Campbell CD, Eichler EE. Properties and rates of germline mutations in humans. Trends Genet. 2013; 29: 575-84. doi:10.1016/j.tig.2013.04.005
-
(2013)
Trends Genet
, vol.29
, pp. 575-584
-
-
Campbell, C.D.1
Eichler, E.E.2
-
209
-
-
0037224621
-
Direct estimates of human per nucleotide mutation rates at 20 loci causing Mendelian diseases
-
Kondrashov AS. Direct estimates of human per nucleotide mutation rates at 20 loci causing Mendelian diseases. Hum Mutat. 2003; 21: 12-27. doi:10.1002/humu.10147
-
(2003)
Hum Mutat
, vol.21
, pp. 12-27
-
-
Kondrashov, A.S.1
-
210
-
-
84865208871
-
Rate of de novo mutations and the importance of father's age to disease risk
-
Kong A, Frigge ML, Masson G, Besenbacher S, Sulem P, Magnusson G, et al. Rate of de novo mutations and the importance of father's age to disease risk. Nature. 2012; 488: 471-5. doi:10.1038/nature11396
-
(2012)
Nature
, vol.488
, pp. 471-475
-
-
Kong, A.1
Frigge, M.L.2
Masson, G.3
Besenbacher, S.4
Sulem, P.5
Magnusson, G.6
-
211
-
-
75749103383
-
Rate, molecular spectrum, and consequences of human mutation
-
Lynch M. Rate, molecular spectrum, and consequences of human mutation. Proc Natl Acad Sci U S A. 2010; 107: 961-8. doi:10.1073/pnas.0912629107
-
(2010)
Proc Natl Acad Sci U S A
, vol.107
, pp. 961-968
-
-
Lynch, M.1
-
213
-
-
2942523593
-
Endogenous DNA damage in humans: A review of quantitative data
-
De Bont R, van Larebeke N. Endogenous DNA damage in humans: a review of quantitative data. Mutagenesis. 2004; 19: 169-85
-
(2004)
Mutagenesis
, vol.19
, pp. 169-185
-
-
De Bont, R.1
Van Larebeke, N.2
-
214
-
-
0031031049
-
Tumors associated with p53 germline mutations: A synopsis of 91 families
-
Kleihues P, Schauble B, zur Hausen A, Esteve J, Ohgaki H. Tumors associated with p53 germline mutations: a synopsis of 91 families. Am J Pathol. 1997; 150: 1-13
-
(1997)
Am J Pathol
, vol.150
, pp. 1-13
-
-
Kleihues, P.1
Schauble, B.2
Zur Hausen, A.3
Esteve, J.4
Ohgaki, H.5
-
215
-
-
84862173376
-
Description and analysis of genetic variants in French hereditary breast and ovarian cancer families recorded in the UMD-BRCA1/BRCA2 databases
-
Caputo S, Benboudjema L, Sinilnikova O, Rouleau E, Beroud C, Lidereau R, et al. Description and analysis of genetic variants in French hereditary breast and ovarian cancer families recorded in the UMD-BRCA1/BRCA2 databases. Nucleic Acids Res. 2012; 40: D992-1002. doi:10.1093/nar/gkr1160.
-
(2012)
Nucleic Acids Res
, vol.40
, pp. D992-D1002
-
-
Caputo, S.1
Benboudjema, L.2
Sinilnikova, O.3
Rouleau, E.4
Beroud, C.5
Lidereau, R.6
|