-
1
-
-
15744401773
-
Eukaryotic cytosine methyltransferases
-
Goll MG, Bestor TH. 2005. Eukaryotic cytosine methyltransferases. Annu. Rev. Biochem. 74:481-514
-
(2005)
Annu. Rev. Biochem
, vol.74
, pp. 481-514
-
-
Goll, M.G.1
Bestor, T.H.2
-
2
-
-
81355146483
-
N6-Methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO
-
Jia G, Fu Y, Zhao X, Dai Q, Zheng G, et al. 2011. N6-Methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat. Chem. Biol. 7:885-87
-
(2011)
Nat. Chem. Biol
, vol.7
, pp. 885-887
-
-
Jia, G.1
Fu, Y.2
Zhao, X.3
Dai, Q.4
Zheng, G.5
-
3
-
-
32344450824
-
Genomic DNA methylation: The mark and its mediators
-
Klose RJ, Bird AP. 2006. Genomic DNA methylation: The mark and its mediators. Trends Biochem. Sci. 31:89-97
-
(2006)
Trends Biochem. Sci
, vol.31
, pp. 89-97
-
-
Klose, R.J.1
Bird, A.P.2
-
4
-
-
84874194072
-
DNA methylation: Roles in mammalian development
-
Smith ZD, Meissner A. 2013. DNA methylation: roles in mammalian development. Nat. Rev. Genet. 14:204-20
-
(2013)
Nat. Rev. Genet
, vol.14
, pp. 204-220
-
-
Smith, Z.D.1
Meissner, A.2
-
5
-
-
84872268888
-
Nucleic acid modifications with epigenetic significance
-
Fu Y, He C. 2012. Nucleic acid modifications with epigenetic significance. Curr. Opin. Chem. Biol. 16:516-24
-
(2012)
Curr. Opin. Chem. Biol
, vol.16
, pp. 516-524
-
-
Fu, Y.1
He, C.2
-
6
-
-
80053144962
-
A decade of exploring the cancer epigenome-biological and translational implications
-
Baylin SB, Jones PA. 2011. A decade of exploring the cancer epigenome-biological and translational implications. Nat. Rev. Cancer 11:726-34
-
(2011)
Nat. Rev. Cancer
, vol.11
, pp. 726-734
-
-
Baylin, S.B.1
Jones, P.A.2
-
9
-
-
66149146320
-
Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1
-
Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, et al. 2009. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324:930-35
-
(2009)
Science
, vol.324
, pp. 930-935
-
-
Tahiliani, M.1
Koh, K.P.2
Shen, Y.3
Pastor, W.A.4
Bandukwala, H.5
-
10
-
-
77956189495
-
Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification
-
Ito S, DAlessio AC, Taranova OV, Hong K, Sowers LC, Zhang Y. 2010. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 466:1129-33
-
(2010)
Nature
, vol.466
, pp. 1129-1133
-
-
Ito, S.1
Dalessio, A.C.2
Taranova, O.V.3
Hong, K.4
Sowers, L.C.5
Zhang, Y.6
-
11
-
-
80052461558
-
Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine
-
Ito S, Shen L, Dai Q, Wu SC, Collins LB, et al. 2011. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333:1300-3
-
(2011)
Science
, vol.333
, pp. 1300-1303
-
-
Ito, S.1
Shen, L.2
Dai, Q.3
Wu, S.C.4
Collins, L.B.5
-
12
-
-
80052495940
-
Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA
-
He YF, Li BZ, Li Z, Liu P, Wang Y, et al. 2011. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333:1303-7
-
(2011)
Science
, vol.333
, pp. 1303-1307
-
-
He, Y.F.1
Li, B.Z.2
Li, Z.3
Liu, P.4
Wang, Y.5
-
13
-
-
80053917872
-
Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: Potential implications for active demethylation of CpG sites
-
Maiti A, Drohat AC. 2011. Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: potential implications for active demethylation of CpG sites. J. Biol. Chem. 286:35334-38
-
(2011)
J. Biol. Chem
, vol.286
, pp. 35334-35338
-
-
Maiti, A.1
Drohat, A.C.2
-
14
-
-
84862776719
-
Thymine DNA glycosylase specifically recognizes 5-carboxylcytosine- modified DNA
-
Zhang L, Lu X, Lu J, Liang H, Dai Q, et al. 2012. Thymine DNA glycosylase specifically recognizes 5-carboxylcytosine-modified DNA. Nat. Chem. Biol. 8:328-30
-
(2012)
Nat. Chem. Biol
, vol.8
, pp. 328-330
-
-
Zhang, L.1
Lu, X.2
Lu, J.3
Liang, H.4
Dai, Q.5
-
15
-
-
84872274463
-
ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility
-
Zheng G, Dahl JA, Niu Y, Fedorcsak P, Huang CM, et al. 2013. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol. Cell 49:18-29
-
(2013)
Mol. Cell
, vol.49
, pp. 18-29
-
-
Zheng, G.1
Dahl, J.A.2
Niu, Y.3
Fedorcsak, P.4
Huang, C.M.5
-
16
-
-
84878260646
-
TETonic shift: Biological roles of TET proteins in DNA demethylation and transcription
-
Pastor WA, Aravind L, Rao A. 2013. TETonic shift: biological roles of TET proteins in DNA demethylation and transcription. Nat. Rev. Mol. Cell Biol. 14:341-56
-
(2013)
Nat. Rev. Mol. Cell Biol
, vol.14
, pp. 341-356
-
-
Pastor, W.A.1
Aravind, L.2
Rao, A.3
-
17
-
-
84872847340
-
Reversible RNA adenosine methylation in biological regulation
-
Jia G, Fu Y, He C. 2013. Reversible RNA adenosine methylation in biological regulation. Trends Genet. 29:108-15
-
(2013)
Trends Genet
, vol.29
, pp. 108-115
-
-
Jia, G.1
Fu, Y.2
He, C.3
-
18
-
-
84879235514
-
5-Hydroxymethylcytosine: Generation, fate, and genomic distribution
-
Shen L, Zhang Y. 2013. 5-Hydroxymethylcytosine: generation, fate, and genomic distribution. Curr. Opin. Cell Biol. 25:289-96
-
(2013)
Curr. Opin. Cell Biol
, vol.25
, pp. 289-296
-
-
Shen, L.1
Zhang, Y.2
-
19
-
-
84877930005
-
DNA methylation and methylcytosine oxidation in cell fate decisions
-
Koh KP, Rao A. 2013. DNA methylation and methylcytosine oxidation in cell fate decisions. Curr. Opin. Cell Biol. 25:152-61
-
(2013)
Curr. Opin. Cell Biol
, vol.25
, pp. 152-161
-
-
Koh, K.P.1
Rao, A.2
-
20
-
-
78650864017
-
Physiological and biochemical aspects of hydroxylations and demethylations catalyzed by human 2-oxoglutarate oxygenases
-
Loenarz C, Schofield CJ. 2011. Physiological and biochemical aspects of hydroxylations and demethylations catalyzed by human 2-oxoglutarate oxygenases. Trends Biochem. Sci. 36:7-18
-
(2011)
Trends Biochem. Sci
, vol.36
, pp. 7-18
-
-
Loenarz, C.1
Schofield, C.J.2
-
21
-
-
74049151209
-
A non-heme iron-mediated chemical demethylation in DNA and RNA
-
Yi C, Yang CG, He C. 2009. A non-heme iron-mediated chemical demethylation in DNA and RNA. Acc. Chem. Res. 42:519-29
-
(2009)
Acc. Chem. Res
, vol.42
, pp. 519-529
-
-
Yi, C.1
Yang, C.G.2
He, C.3
-
24
-
-
0037099537
-
LCX, leukemia-associated protein with aCXXCdomain, is fused toMLLin acute myeloid leukemia with trilineage dysplasia having t(10;11)(q22;q23)
-
Ono R, Taki T, Taketani T, Taniwaki M, Kobayashi H, Hayashi Y. 2002. LCX, leukemia-associated protein with aCXXCdomain, is fused toMLLin acute myeloid leukemia with trilineage dysplasia having t(10;11)(q22;q23). Cancer Res. 62:4075-80
-
(2002)
Cancer Res
, vol.62
, pp. 4075-4080
-
-
Ono, R.1
Taki, T.2
Taketani, T.3
Taniwaki, M.4
Kobayashi, H.5
Hayashi, Y.6
-
25
-
-
0037350661
-
TET1, a member of a novel protein family, is fused to MLL in acute myeloid leukemia containing the t(10;11)(q22;q23)
-
Lorsbach RB, Moore J, Mathew S, Raimondi SC, Mukatira ST, Downing JR. 2003. TET1, a member of a novel protein family, is fused to MLL in acute myeloid leukemia containing the t(10;11)(q22;q23). Leukemia 17:637-41
-
(2003)
Leukemia
, vol.17
, pp. 637-641
-
-
Lorsbach, R.B.1
Moore, J.2
Mathew, S.3
Raimondi, S.C.4
Mukatira, S.T.5
Downing, J.R.6
-
27
-
-
66749152204
-
Prediction of novel families of enzymes involved in oxidative and other complex modifications of bases in nucleic acids
-
Iyer LM, Tahiliani M, Rao A, Aravind L. 2009. Prediction of novel families of enzymes involved in oxidative and other complex modifications of bases in nucleic acids. Cell Cycle 8:1698-710
-
(2009)
Cell Cycle
, vol.8
, pp. 1698-1710
-
-
Iyer, L.M.1
Tahiliani, M.2
Rao, A.3
Aravind, L.4
-
28
-
-
84894560490
-
Crystal structure of TET2-DNA complex: Insight into TET-mediated 5mC oxidation
-
Hu L, Li Z, Cheng J, Rao Q, Gong W, et al. 2013. Crystal structure of TET2-DNA complex: Insight into TET-mediated 5mC oxidation. Cell 155:1545-55
-
(2013)
Cell
, vol.155
, pp. 1545-1555
-
-
Hu, L.1
Li, Z.2
Cheng, J.3
Rao, Q.4
Gong, W.5
-
29
-
-
84894257068
-
Structure of a Naegleria Tet-like dioxygenase in complex with 5-methylcytosine DNA
-
Hashimoto H, Pais JE, Zhang X, Saleh L, Fu ZQ, et al. 2013. Structure of a Naegleria Tet-like dioxygenase in complex with 5-methylcytosine DNA. Nature 506:391-95
-
(2013)
Nature
, vol.506
, pp. 391-395
-
-
Hashimoto, H.1
Pais, J.E.2
Zhang, X.3
Saleh, L.4
Fu, Z.Q.5
-
30
-
-
78649658053
-
Structural studies on human 2-oxoglutarate dependent oxygenases
-
McDonough MA, Loenarz C, Chowdhury R, Clifton IJ, Schofield CJ. 2010. Structural studies on human 2-oxoglutarate dependent oxygenases. Curr. Opin. Struct. Biol. 20:659-72
-
(2010)
Curr. Opin. Struct. Biol
, vol.20
, pp. 659-672
-
-
McDonough, M.A.1
Loenarz, C.2
Chowdhury, R.3
Clifton, I.J.4
Schofield, C.J.5
-
31
-
-
82955195630
-
Coordinated methyl-lysine erasure: Structural and functional linkage of a Jumonji demethylase domain and a reader domain
-
Upadhyay AK, Horton JR, Zhang X, Cheng X. 2011. Coordinated methyl-lysine erasure: structural and functional linkage of a Jumonji demethylase domain and a reader domain. Curr. Opin. Struct. Biol. 21:750-60
-
(2011)
Curr. Opin. Struct. Biol
, vol.21
, pp. 750-760
-
-
Upadhyay, A.K.1
Horton, J.R.2
Zhang, X.3
Cheng, X.4
-
32
-
-
84870883633
-
Tet3 CXXC domain and dioxygenase activity cooperatively regulate key genes for Xenopus eye and neural development
-
Xu Y, Xu C, Kato A, Tempel W, Abreu JG, et al. 2012. Tet3 CXXC domain and dioxygenase activity cooperatively regulate key genes for Xenopus eye and neural development. Cell 151:1200-13
-
(2012)
Cell
, vol.151
, pp. 1200-1213
-
-
Xu, Y.1
Xu, C.2
Kato, A.3
Tempel, W.4
Abreu, J.G.5
-
33
-
-
84877778628
-
Intrinsic and extrinsic connections of Tet3 dioxygenase with CXXC zinc finger modules
-
Liu N, WangM, DengW, Schmidt CS, Qin W, et al. 2013. Intrinsic and extrinsic connections of Tet3 dioxygenase with CXXC zinc finger modules. PLoS ONE 8:e62755
-
(2013)
PLoS ONE
, vol.8
-
-
Liu, N.1
Wang, M.2
Deng, W.3
Schmidt, C.S.4
Qin, W.5
-
34
-
-
84877582944
-
Modulation of TET2 expression and 5-methylcytosine oxidation by the CXXC domain protein IDAX
-
Ko M, An J, Bandukwala HS, Chavez L, Aijo T, et al. 2013. Modulation of TET2 expression and 5-methylcytosine oxidation by the CXXC domain protein IDAX. Nature 497:122-26
-
(2013)
Nature
, vol.497
, pp. 122-126
-
-
Ko, M.1
An, J.2
Bandukwala, H.S.3
Chavez, L.4
Aijo, T.5
-
35
-
-
53849113697
-
Base J: Discovery, biosynthesis, and possible functions
-
Borst P, Sabatini R. 2008. Base J: discovery, biosynthesis, and possible functions. Annu. Rev. Microbiol. 62:235-51
-
(2008)
Annu. Rev. Microbiol
, vol.62
, pp. 235-251
-
-
Borst, P.1
Sabatini, R.2
-
36
-
-
78650175023
-
Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2
-
Ko M, Huang Y, Jankowska AM, Pape UJ, Tahiliani M, et al. 2010. Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature 468:839-43
-
(2010)
Nature
, vol.468
, pp. 839-843
-
-
Ko, M.1
Huang, Y.2
Jankowska, A.M.3
Pape, U.J.4
Tahiliani, M.5
-
37
-
-
66149123748
-
The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain
-
Kriaucionis S, Heintz N. 2009. The nuclear DNA base 5- hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 324:929-30
-
(2009)
Science
, vol.324
, pp. 929-930
-
-
Kriaucionis, S.1
Heintz, N.2
-
38
-
-
77956095231
-
Active DNA demethylation: Many roads lead to Rome
-
Wu SC, Zhang Y. 2010. Active DNA demethylation: Many roads lead to Rome. Nat. Rev. Mol. Cell Biol. 11:607-20
-
(2010)
Nat. Rev. Mol. Cell Biol
, vol.11
, pp. 607-620
-
-
Wu, S.C.1
Zhang, Y.2
-
39
-
-
0015805627
-
Catalysis of three sequential dioxygenase reactions by thymine 7-hydroxylase
-
Liu CK, Hsu CA, Abbott MT. 1973. Catalysis of three sequential dioxygenase reactions by thymine 7-hydroxylase. Arch. Biochem. Biophys. 159:180-87
-
(1973)
Arch. Biochem. Biophys
, vol.159
, pp. 180-187
-
-
Liu, C.K.1
Hsu, C.A.2
Abbott, M.T.3
-
40
-
-
79960626636
-
The discovery of 5-formylcytosine in embryonic stem cell DNA
-
Pfaffeneder T, Hackner B, Trub, MünzelM, MüllerM, et al. 2011. The discovery of 5-formylcytosine in embryonic stem cell DNA. Angew. Chem. Int. Ed. 50:7008-12
-
(2011)
Angew. Chem. Int. Ed
, vol.50
, pp. 7008-7012
-
-
Pfaffeneder, T.1
Hackner, B.2
Trub Münzel, M.3
Müller, M.4
-
41
-
-
84886860116
-
TET enzymes, TDG and the dynamics of DNA demethylation
-
Kohli RM, Zhang Y. 2013. TET enzymes, TDG and the dynamics of DNA demethylation. Nature 502:472-79
-
(2013)
Nature
, vol.502
, pp. 472-479
-
-
Kohli, R.M.1
Zhang, Y.2
-
42
-
-
19744376088
-
Genes of the thymidine salvage pathway: Thymine-7-hydroxylase from a Rhodotorula glutinis cDNA library and iso-orotate decarboxylase from Neurospora crassa
-
Smiley JA, Kundracik M, Landfried DA, BarnesVRSr, Axhemi AA. 2005. Genes of the thymidine salvage pathway: Thymine-7-hydroxylase from a Rhodotorula glutinis cDNA library and iso-orotate decarboxylase from Neurospora crassa. Biochim. Biophys. Acta 1723:256-64
-
(2005)
Biochim. Biophys. Acta
, vol.1723
, pp. 256-264
-
-
Smiley, J.A.1
Kundracik, M.2
Landfried, D.A.3
Barnes Sr., V.R.4
Axhemi, A.A.5
-
43
-
-
84862681459
-
Mechanism and stemcell activity of 5-carboxycytosine decarboxylation determined by isotope tracing
-
Schiesser S, Hackner B, Pfaffeneder T, Müller M, Hagemeier C, et al. 2012. Mechanism and stemcell activity of 5-carboxycytosine decarboxylation determined by isotope tracing. Angew. Chem. Int. Ed. 51:6516-20
-
(2012)
Angew. Chem. Int. Ed
, vol.51
, pp. 6516-6520
-
-
Schiesser, S.1
Hackner, B.2
Pfaffeneder, T.3
Müller, M.4
Hagemeier, C.5
-
44
-
-
84866940776
-
Themammalian de novoDNAmethyltransferasesDNMT3Aand DNMT3B are also DNA 5-hydroxymethylcytosine dehydroxymethylases
-
Chen CC, Wang KY, Shen CK. 2012. Themammalian de novoDNAmethyltransferasesDNMT3Aand DNMT3B are also DNA 5-hydroxymethylcytosine dehydroxymethylases. J. Biol. Chem. 287:33116-21
-
(2012)
J. Biol. Chem
, vol.287
, pp. 33116-33121
-
-
Chen, C.C.1
Wang, K.Y.2
Shen, C.K.3
-
45
-
-
67349212165
-
Cytosine-5- methyltransferases add aldehydes to DNA
-
Liutkeviĉiut?e Z, Lukinaviĉius G, Maseviĉius V, Daujotyt?e D, Klimaŝauskas S. 2009. Cytosine-5- methyltransferases add aldehydes to DNA. Nat. Chem. Biol. 5:400-2
-
(2009)
Nat. Chem. Biol
, vol.5
, pp. 400-402
-
-
Liutkeviĉiute, Z.1
Lukinaviĉius, G.2
Maseviĉius, V.3
Daujotyte, D.4
Klimaŝauskas, S.5
-
46
-
-
84860221291
-
Recognition and potential mechanisms for replication and erasure of cytosine hydroxymethylation
-
Hashimoto H, Liu Y, Upadhyay AK, Chang Y, Howerton SB, et al. 2012. Recognition and potential mechanisms for replication and erasure of cytosine hydroxymethylation. Nucleic Acids Res. 40:4841-49
-
(2012)
Nucleic Acids Res
, vol.40
, pp. 4841-4849
-
-
Hashimoto, H.1
Liu, Y.2
Upadhyay, A.K.3
Chang, Y.4
Howerton, S.B.5
-
47
-
-
33847055935
-
Endogenous cytosine damage products alter the site selectivity of human DNA maintenance methyltransferase DNMT1
-
Valinluck V, Sowers LC. 2007. Endogenous cytosine damage products alter the site selectivity of human DNA maintenance methyltransferase DNMT1. Cancer Res. 67:946-50
-
(2007)
Cancer Res
, vol.67
, pp. 946-950
-
-
Valinluck, V.1
Sowers, L.C.2
-
48
-
-
79955538247
-
Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain
-
Guo JU, Su Y, Zhong C, Ming GL, Song H. 2011. Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell 145:423-34
-
(2011)
Cell
, vol.145
, pp. 423-434
-
-
Guo, J.U.1
Su, Y.2
Zhong, C.3
Ming, G.L.4
Song, H.5
-
49
-
-
0037388165
-
Activation-induced cytidine deaminase deaminates deoxycytidine on single-strandedDNAbut requires the action of RNase
-
Bransteitter R, Pham P, Scharff MD, Goodman MF. 2003. Activation-induced cytidine deaminase deaminates deoxycytidine on single-strandedDNAbut requires the action of RNase. Proc. Natl. Acad. Sci. USA 100:4102-7
-
(2003)
Proc. Natl. Acad. Sci. USA
, vol.100
, pp. 4102-4107
-
-
Bransteitter, R.1
Pham, P.2
Scharff, M.D.3
Goodman, M.F.4
-
50
-
-
84865329141
-
AID/APOBEC deaminases disfavor modified cytosines implicated in DNA demethylation
-
Nabel CS, Jia H, Ye Y, Shen L, Goldschmidt HL, et al. 2012. AID/APOBEC deaminases disfavor modified cytosines implicated in DNA demethylation. Nat. Chem. Biol. 8:751-58
-
(2012)
Nat. Chem. Biol
, vol.8
, pp. 751-758
-
-
Nabel, C.S.1
Jia, H.2
Ye, Y.3
Shen, L.4
Goldschmidt, H.L.5
-
51
-
-
73349104113
-
Active DNA demethylation mediated by DNA glycosylases
-
Zhu JK. 2009. Active DNA demethylation mediated by DNA glycosylases. Annu. Rev. Genet. 43:143-66
-
(2009)
Annu. Rev. Genet
, vol.43
, pp. 143-166
-
-
Zhu, J.K.1
-
52
-
-
57649196594
-
DNA demethylation in zebrafish involves the coupling of a deaminase, a glycosylase, and Gadd45
-
Rai K, Huggins IJ, James SR, Karpf AR, Jones DA, Cairns BR. 2008. DNA demethylation in zebrafish involves the coupling of a deaminase, a glycosylase, and Gadd45. Cell 135:1201-12
-
(2008)
Cell
, vol.135
, pp. 1201-1212
-
-
Rai, K.1
Huggins, I.J.2
James, S.R.3
Karpf, A.R.4
Jones, D.A.5
Cairns, B.R.6
-
53
-
-
77249148019
-
Genome-wide erasure of DNA methylation in mouse primordial germ cells is affected by AID deficiency
-
Popp C, Dean W, Feng S, Cokus SJ, Andrews S, et al. 2010. Genome-wide erasure of DNA methylation in mouse primordial germ cells is affected by AID deficiency. Nature 463:1101-5
-
(2010)
Nature
, vol.463
, pp. 1101-1105
-
-
Popp, C.1
Dean, W.2
Feng, S.3
Cokus, S.J.4
Andrews, S.5
-
54
-
-
77649104794
-
Reprogramming towards pluripotency requires AID-dependent DNA demethylation
-
BhutaniN, Brady JJ, Damian M, Sacco A, Corbel SY, Blau HM. 2010. Reprogramming towards pluripotency requires AID-dependent DNA demethylation. Nature 463:1042-47
-
(2010)
Nature
, vol.463
, pp. 1042-1047
-
-
Bhutani, N.1
Brady, J.J.2
Damian, M.3
Sacco, A.4
Corbel, S.Y.5
Blau, H.M.6
-
55
-
-
0042342532
-
A mechanistic perspective on the chemistry of DNA repair glycosylases
-
Stivers JT, Jiang YL. 2003. A mechanistic perspective on the chemistry of DNA repair glycosylases. Chem. Rev. 103:2729-59
-
(2003)
Chem. Rev
, vol.103
, pp. 2729-2759
-
-
Stivers, J.T.1
Jiang, Y.L.2
-
56
-
-
33749171576
-
Specificity of human thymine DNA glycosylase depends on N-glycosidic bond stability
-
Bennett MT, Rodgers MT, Hebert AS, Ruslander LE, Eisele L, Drohat AC. 2006. Specificity of human thymine DNA glycosylase depends on N-glycosidic bond stability. J. Am. Chem. Soc. 128:12510-19
-
(2006)
J. Am. Chem. Soc
, vol.128
, pp. 12510-12519
-
-
Bennett, M.T.1
Rodgers, M.T.2
Hebert, A.S.3
Ruslander, L.E.4
Eisele, L.5
Drohat, A.C.6
-
57
-
-
84865140657
-
A density functional theory study on the kinetics and thermodynamics of N-glycosidic bond cleavage in 5-substituted 2-deoxycytidines
-
Williams RT, Wang Y. 2012. A density functional theory study on the kinetics and thermodynamics of N-glycosidic bond cleavage in 5-substituted 2-deoxycytidines. Biochemistry 51:6458-62
-
(2012)
Biochemistry
, vol.51
, pp. 6458-6462
-
-
Williams, R.T.1
Wang, Y.2
-
58
-
-
84876946045
-
Genome-wide analysis reveals TETand TDG-dependent 5-methylcytosine oxidation dynamics
-
Shen L, Wu H, Diep D, Yamaguchi S, DAlessio AC, et al. 2013. Genome-wide analysis reveals TETand TDG-dependent 5-methylcytosine oxidation dynamics. Cell 153:692-706
-
(2013)
Cell
, vol.153
, pp. 692-706
-
-
Shen, L.1
Wu, H.2
Diep, D.3
Yamaguchi, S.4
Dalessio, A.C.5
-
59
-
-
84876907152
-
Genome-wide profiling of 5-formylcytosine reveals its roles in epigenetic priming
-
Song CX, Szulwach KE, Dai Q, Fu Y, Mao SQ, et al. 2013. Genome-wide profiling of 5-formylcytosine reveals its roles in epigenetic priming. Cell 153:678-91
-
(2013)
Cell
, vol.153
, pp. 678-691
-
-
Song, C.X.1
Szulwach, K.E.2
Dai, Q.3
Fu, Y.4
Mao, S.Q.5
-
60
-
-
79959937861
-
Thymine DNA glycosylase is essential for active DNA demethylation by linked deamination-base excision repair
-
Cortellino S, Xu J, Sannai M, Moore R, Caretti E, et al. 2011. Thymine DNA glycosylase is essential for active DNA demethylation by linked deamination-base excision repair. Cell 146:67-79
-
(2011)
Cell
, vol.146
, pp. 67-79
-
-
Cortellino, S.1
Xu, J.2
Sannai, M.3
Moore, R.4
Caretti, E.5
-
61
-
-
79951810964
-
Embryonic lethal phenotype reveals a function of TDG in maintaining epigenetic stability
-
Cortázar D, Kunz C, Selfridge J, Lettieri T, Saito Y, et al. 2011. Embryonic lethal phenotype reveals a function of TDG in maintaining epigenetic stability. Nature 470:419-23
-
(2011)
Nature
, vol.470
, pp. 419-423
-
-
Cortázar, D.1
Kunz, C.2
Selfridge, J.3
Lettieri, T.4
Saito, Y.5
-
62
-
-
0037135130
-
Enhanced CpG mutability and tumorigenesis in MBD4-deficient mice
-
Millar CB, Guy J, Sansom OJ, Selfridge J, MacDougall E, et al. 2002. Enhanced CpG mutability and tumorigenesis in MBD4-deficient mice. Science 297:403-5
-
(2002)
Science
, vol.297
, pp. 403-405
-
-
Millar, C.B.1
Guy, J.2
Sansom, O.J.3
Selfridge, J.4
Macdougall, E.5
-
64
-
-
77249170184
-
Establishing, maintaining and modifying DNA methylation patterns in plants and animals
-
Law JA, Jacobsen SE. 2010. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat. Rev. Genet. 11:204-20
-
(2010)
Nat. Rev. Genet
, vol.11
, pp. 204-220
-
-
Law, J.A.1
Jacobsen, S.E.2
-
65
-
-
84871438065
-
Tet1 controls meiosis by regulating meiotic gene expression
-
Yamaguchi S, Hong K, Liu R, Shen L, Inoue A, et al. 2012. Tet1 controls meiosis by regulating meiotic gene expression. Nature 492:443-47
-
(2012)
Nature
, vol.492
, pp. 443-447
-
-
Yamaguchi, S.1
Hong, K.2
Liu, R.3
Shen, L.4
Inoue, A.5
-
66
-
-
79952713567
-
5-Hydroxymethylcytosine in the mammalian zygote is linked with epigenetic reprogramming
-
Wossidlo M, Nakamura T, Lepikhov K, Marques CJ, Zakhartchenko V, et al. 2011. 5-Hydroxymethylcytosine in the mammalian zygote is linked with epigenetic reprogramming. Nat. Commun. 2:241
-
(2011)
Nat. Commun
, vol.2
, pp. 241
-
-
Wossidlo, M.1
Nakamura, T.2
Lepikhov, K.3
Marques, C.J.4
Zakhartchenko, V.5
-
67
-
-
79952763586
-
Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine
-
Iqbal K, Jin SG, Pfeifer GP, Szabó PE. 2011. Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine. Proc. Natl. Acad. Sci. USA 108:3642-47
-
(2011)
Proc. Natl. Acad. Sci. USA
, vol.108
, pp. 3642-3647
-
-
Iqbal, K.1
Jin, S.G.2
Pfeifer, G.P.3
Szabó, P.E.4
-
68
-
-
84872770694
-
Germline DNA demethylation dynamics and imprint erasure through 5-hydroxymethylcytosine
-
Hackett JA, Sengupta R, Zylicz JJ, Murakami K, Lee C, et al. 2013. Germline DNA demethylation dynamics and imprint erasure through 5-hydroxymethylcytosine. Science 339:448-52
-
(2013)
Science
, vol.339
, pp. 448-452
-
-
Hackett, J.A.1
Sengupta, R.2
Zylicz, J.J.3
Murakami, K.4
Lee, C.5
-
69
-
-
84874655393
-
Dynamics of 5-methylcytosine and 5-hydroxymethylcytosine during germ cell reprogramming
-
Yamaguchi S, Hong K, LiuR, Inoue A, ShenL, et al. 2013. Dynamics of 5-methylcytosine and 5-hydroxymethylcytosine during germ cell reprogramming. Cell Res. 23:329-39
-
(2013)
Cell Res
, vol.23
, pp. 329-339
-
-
Yamaguchi, S.1
Hong, K.2
Liu, R.3
Inoue, A.4
Shen, L.5
-
70
-
-
79956323623
-
Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation
-
Ficz G, Branco MR, Seisenberger S, Santos F, Krueger F, et al. 2011. Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation. Nature 473:398-402
-
(2011)
Nature
, vol.473
, pp. 398-402
-
-
Ficz, G.1
Branco, M.R.2
Seisenberger, S.3
Santos, F.4
Krueger, F.5
-
71
-
-
79551587102
-
Tet1 and Tet2 regulate 5-hydroxymethylcytosine production and cell lineage specification in mouse embryonic stem cells
-
Koh KP, Yabuuchi A, Rao S, Huang Y, Cunniff K, et al. 2011. Tet1 and Tet2 regulate 5-hydroxymethylcytosine production and cell lineage specification in mouse embryonic stem cells. Cell Stem Cell 8:200-13
-
(2011)
Cell Stem Cell
, vol.8
, pp. 200-213
-
-
Koh, K.P.1
Yabuuchi, A.2
Rao, S.3
Huang, Y.4
Cunniff, K.5
-
72
-
-
84880571480
-
The oncogenic microRNA miR-22 targets the TET2 tumor suppressor to promote hematopoietic stem cell self-renewal and transformation
-
Song SJ, Ito K, Ala U, Kats L, Webster K, et al. 2013. The oncogenic microRNA miR-22 targets the TET2 tumor suppressor to promote hematopoietic stem cell self-renewal and transformation. Cell Stem Cell 13:87-101
-
(2013)
Cell Stem Cell
, vol.13
, pp. 87-101
-
-
Song, S.J.1
Ito, K.2
Ala, U.3
Kats, L.4
Webster, K.5
-
73
-
-
84880570961
-
MicroRNA antagonism regulates breast cancer stemness and metastasis via TET-family-dependent chromatin remodeling
-
Song SJ, Poliseno L, Song MS, Ala U, Webster K, et al. 2013. MicroRNA antagonism regulates breast cancer stemness and metastasis via TET-family-dependent chromatin remodeling. Cell 154:311-24
-
(2013)
Cell
, vol.154
, pp. 311-324
-
-
Song, S.J.1
Poliseno, L.2
Song, M.S.3
Ala, U.4
Webster, K.5
-
74
-
-
84880530231
-
Ten-eleven translocation 1 (Tet1) is regulated by O-linked N-acetylglucosamine transferase (OGT) for target gene repression in mouse embryonic stem cells
-
Shi FT, Kim H, Lu W, He Q, Liu D, et al. 2013. Ten-eleven translocation 1 (Tet1) is regulated by O-linked N-acetylglucosamine transferase (OGT) for target gene repression in mouse embryonic stem cells. J. Biol. Chem. 288:20776-84
-
(2013)
J. Biol. Chem
, vol.288
, pp. 20776-20784
-
-
Shi, F.T.1
Kim, H.2
Lu, W.3
He, Q.4
Liu, D.5
-
75
-
-
79956302047
-
TET1and hydroxymethylcytosine in transcription and DNA methylation fidelity
-
Williams K, Christensen J, Pedersen MT, Johansen JV, Cloos PA, et al. 2011.TET1and hydroxymethylcytosine in transcription and DNA methylation fidelity. Nature 473:343-48
-
(2011)
Nature
, vol.473
, pp. 343-348
-
-
Williams, K.1
Christensen, J.2
Pedersen, M.T.3
Johansen, J.V.4
Cloos, P.A.5
-
76
-
-
84875218124
-
TET2 and TET3 regulate GlcNAcylation and H3K4 methylation through OGT and SET1/COMPASS
-
Deplus R, Delatte B, Schwinn MK, Defrance M, Méndez J, et al. 2013. TET2 and TET3 regulate GlcNAcylation and H3K4 methylation through OGT and SET1/COMPASS. EMBO J. 32:645-55
-
(2013)
EMBO J
, vol.32
, pp. 645-655
-
-
Deplus, R.1
Delatte, B.2
Schwinn, M.K.3
Defrance, M.4
Méndez, J.5
-
77
-
-
84872953223
-
TET2 promotes histone O-GlcNAcylation during gene transcription
-
Chen Q, Chen Y, Bian C, Fujiki R, Yu X. 2013. TET2 promotes histone O-GlcNAcylation during gene transcription. Nature 493:561-64
-
(2013)
Nature
, vol.493
, pp. 561-564
-
-
Chen, Q.1
Chen, Y.2
Bian, C.3
Fujiki, R.4
Yu, X.5
-
78
-
-
84874266225
-
Tet proteins connect the O-linked N-acetylglucosamine transferase OGT to chromatin in embryonic stem cells
-
Vella P, Scelfo A, Jammula S, Chiacchiera F, Williams K, et al. 2013. Tet proteins connect the O-linked N-acetylglucosamine transferase OGT to chromatin in embryonic stem cells. Mol. Cell 49:645-56
-
(2013)
Mol. Cell
, vol.49
, pp. 645-656
-
-
Vella, P.1
Scelfo, A.2
Jammula, S.3
Chiacchiera, F.4
Williams, K.5
-
79
-
-
84455167621
-
Mbd3/NURD complex regulates expression of 5-hydroxymethylcytosine marked genes in embryonic stem cells
-
Yildirim O, Li R, Hung JH, Chen PB, Dong X, et al. 2011. Mbd3/NURD complex regulates expression of 5-hydroxymethylcytosine marked genes in embryonic stem cells. Cell 147:1498-510
-
(2011)
Cell
, vol.147
, pp. 1498-1510
-
-
Yildirim, O.1
Li, R.2
Hung, J.H.3
Chen, P.B.4
Dong, X.5
-
80
-
-
84874771985
-
Dynamic readers for 5-(hydroxy)methylcytosine and its oxidized derivatives
-
Spruijt CG, Gnerlich F, Smits AH, Pfaffeneder T, Jansen PWTC, et al. 2013. Dynamic readers for 5-(hydroxy)methylcytosine and its oxidized derivatives. Cell 152:1146-59
-
(2013)
Cell
, vol.152
, pp. 1146-1159
-
-
Spruijt, C.G.1
Gnerlich, F.2
Smits, A.H.3
Pfaffeneder, T.4
Pwtc, J.5
-
81
-
-
78650019179
-
Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation
-
Figueroa ME, Abdel-Wahab O, Lu C, Ward PS, Patel J, et al. 2010. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 18:553-67
-
(2010)
Cancer Cell
, vol.18
, pp. 553-567
-
-
Figueroa, M.E.1
Abdel-Wahab, O.2
Lu, C.3
Ward, P.S.4
Patel, J.5
-
82
-
-
78651463452
-
Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases
-
Xu W, Yang H, Liu Y, Yang Y, Wang P, et al. 2011. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Cancer Cell 19:17-30
-
(2011)
Cancer Cell
, vol.19
, pp. 17-30
-
-
Xu, W.1
Yang, H.2
Liu, Y.3
Yang, Y.4
Wang, P.5
-
83
-
-
77649305610
-
The common feature of leukemiaassociated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting α-ketoglutarate to 2-hydroxyglutarate
-
Ward PS, Patel J, Wise DR, Abdel-WahabO, Bennett BD, et al. 2010. The common feature of leukemiaassociated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting α-ketoglutarate to 2-hydroxyglutarate. Cancer Cell 17:225-34
-
(2010)
Cancer Cell
, vol.17
, pp. 225-234
-
-
Ward, P.S.1
Patel, J.2
Wise, D.R.3
Abdel-Wahab, O.4
Bennett, B.D.5
-
84
-
-
72049125350
-
Cancer-associated IDH1mutations produce 2-hydroxyglutarate
-
Dang L, WhiteDW, Gross S, Bennett BD, Bittinger MA, et al. 2009. Cancer-associated IDH1mutations produce 2-hydroxyglutarate. Nature 462:739-44
-
(2009)
Nature
, vol.462
, pp. 739-744
-
-
Dang, L.1
White, D.W.2
Gross, S.3
Bennett, B.D.4
Bittinger, M.A.5
-
85
-
-
84862632865
-
Inhibition of α-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors
-
Xiao M, Yang H, Xu W, Ma S, Lin H, et al. 2012. Inhibition of α-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors. Genes Dev. 26:1326-38
-
(2012)
Genes Dev
, vol.26
, pp. 1326-1338
-
-
Xiao, M.1
Yang, H.2
Xu, W.3
Ma, S.4
Lin, H.5
-
86
-
-
84880344660
-
Ascorbic acid enhances Tet-mediated 5-methylcytosine oxidation and promotes DNA demethylation in mammals
-
Yin R, Mao S-Q, Zhao B, Chong Z, Yang Y, et al. 2013. Ascorbic acid enhances Tet-mediated 5-methylcytosine oxidation and promotes DNA demethylation in mammals. J. Am. Chem. Soc. 135:10396-403
-
(2013)
J. Am. Chem. Soc
, vol.135
, pp. 10396-10403
-
-
Yin, R.1
Mao, S.-Q.2
Zhao, B.3
Chong, Z.4
Yang, Y.5
-
87
-
-
84877693964
-
Ascorbate induces ten-eleven translocation (Tet) methylcytosine dioxygenase-mediated generation of 5-hydroxymethylcytosine
-
Minor EA, Court BL, Young JI, Wang G. 2013. Ascorbate induces ten-eleven translocation (Tet) methylcytosine dioxygenase-mediated generation of 5-hydroxymethylcytosine. J. Biol. Chem. 288:13669-74
-
(2013)
J. Biol. Chem
, vol.288
, pp. 13669-13674
-
-
Minor, E.A.1
Court, B.L.2
Young, J.I.3
Wang, G.4
-
88
-
-
84881476916
-
Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cells
-
Blaschke K, Ebata KT, Karimi MM, Zepeda-Mart?äez JA, Goyal P, et al. 2013. Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cells. Nature 500:222-26
-
(2013)
Nature
, vol.500
, pp. 222-226
-
-
Blaschke, K.1
Ebata, K.T.2
Karimi, M.M.3
Zepeda-Martäez, J.A.4
Goyal, P.5
-
89
-
-
84885130071
-
Hydroquinone increases 5-hydroxymethylcytosine formation through ten eleven translocation 1 (Tet1) 5-methylcytosine dioxygenase
-
Coulter JB, ODriscoll CM, Bressler JP. 2013. Hydroquinone increases 5-hydroxymethylcytosine formation through ten eleven translocation 1 (Tet1) 5-methylcytosine dioxygenase. J. Biol. Chem. 288:28792-800
-
(2013)
J. Biol. Chem
, vol.288
, pp. 28792-28800
-
-
Coulter, J.B.1
Odriscoll, C.M.2
Bressler, J.P.3
-
90
-
-
84869392308
-
Mapping recently identified nucleotide variants in the genome and transcriptome
-
Song CX, Yi C, He C. 2012. Mapping recently identified nucleotide variants in the genome and transcriptome. Nat. Biotechnol. 30:1107-16
-
(2012)
Nat. Biotechnol
, vol.30
, pp. 1107-1116
-
-
Song, C.X.1
Yi, C.2
He, C.3
-
91
-
-
42649089780
-
The methylome: Approaches for global DNA methylation profiling
-
Beck S, Rakyan VK. 2008. The methylome: Approaches for global DNA methylation profiling. Trends Genet. 24:231-37
-
(2008)
Trends Genet
, vol.24
, pp. 231-237
-
-
Beck, S.1
Rakyan, V.K.2
-
92
-
-
70450217879
-
Human DNA methylomes at base resolution show widespread epigenomic differences
-
Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, et al. 2009. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462:315-22
-
(2009)
Nature
, vol.462
, pp. 315-322
-
-
Lister, R.1
Pelizzola, M.2
Dowen, R.H.3
Hawkins, R.D.4
Hon, G.5
-
93
-
-
77749277177
-
The behaviour of 5-hydroxymethylcytosine in bisulfite sequencing
-
Huang Y, Pastor WA, Shen Y, Tahiliani M, Liu DR, Rao A. 2010. The behaviour of 5-hydroxymethylcytosine in bisulfite sequencing. PLoS ONE 5:e8888
-
(2010)
PLoS ONE
, vol.5
-
-
Huang, Y.1
Pastor, W.A.2
Shen, Y.3
Tahiliani, M.4
Liu, D.R.5
Rao, A.6
-
94
-
-
77954362183
-
Examination of the specificity of DNA methylation profiling techniques towards 5-methylcytosine and 5-hydroxymethylcytosine
-
Jin SG, Kadam S, Pfeifer GP. 2010. Examination of the specificity of DNA methylation profiling techniques towards 5-methylcytosine and 5-hydroxymethylcytosine. Nucleic Acids Res. 38:e125
-
(2010)
Nucleic Acids Res
, vol.38
-
-
Jin, S.G.1
Kadam, S.2
Pfeifer, G.P.3
-
95
-
-
84861221693
-
Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution
-
Booth MJ, Branco MR, Ficz G, Oxley D, Krueger F, et al. 2012. Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution. Science 336:934-37
-
(2012)
Science
, vol.336
, pp. 934-937
-
-
Booth, M.J.1
Branco, M.R.2
Ficz, G.3
Oxley, D.4
Krueger, F.5
-
96
-
-
84861990517
-
Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome
-
Yu M, Hon G, Szulwach KE, Song CX, Zhang L, et al. 2012. Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome. Cell 149:1368-80
-
(2012)
Cell
, vol.149
, pp. 1368-1380
-
-
Yu, M.1
Hon, G.2
Szulwach, K.E.3
Song, C.X.4
Zhang, L.5
-
97
-
-
79954457998
-
Genome-wide analysis of 5-hydroxymethylcytosine distribution reveals its dual function in transcriptional regulation in mouse embryonic stem cells
-
Wu H, DAlessio AC, Ito S, Wang Z, Cui K, et al. 2011. Genome-wide analysis of 5-hydroxymethylcytosine distribution reveals its dual function in transcriptional regulation in mouse embryonic stem cells. Genes Dev. 25:679-84
-
(2011)
Genes Dev
, vol.25
, pp. 679-684
-
-
Wu, H.1
Dalessio, A.C.2
Ito, S.3
Wang, Z.4
Cui, K.5
-
98
-
-
79955948324
-
Genome-wide regulation of 5hmC, 5mC, and gene expression by Tet1 hydroxylase in mouse embryonic stem cells
-
Xu Y, Wu F, Tan L, Kong L, Xiong L, et al. 2011. Genome-wide regulation of 5hmC, 5mC, and gene expression by Tet1 hydroxylase in mouse embryonic stem cells. Mol. Cell 42:451-64
-
(2011)
Mol. Cell
, vol.42
, pp. 451-464
-
-
Xu, Y.1
Wu, F.2
Tan, L.3
Kong, L.4
Xiong, L.5
-
99
-
-
79959209733
-
5-Hydroxymethylcytosine is associated with enhancers and gene bodies in human embryonic stem cells
-
Stroud H, Feng S, MoreyKinney S, Pradhan S, Jacobsen S. 2011. 5-Hydroxymethylcytosine is associated with enhancers and gene bodies in human embryonic stem cells. Genome Biol. 12:R54
-
(2011)
Genome Biol
, vol.12
-
-
Stroud, H.1
Feng, S.2
Moreykinney, S.3
Pradhan, S.4
Jacobsen, S.5
-
100
-
-
79960249232
-
Genomic mapping of 5-hydroxymethylcytosine in the human brain
-
Jin SG, Wu X, Li AX, Pfeifer GP. 2011. Genomic mapping of 5-hydroxymethylcytosine in the human brain. Nucleic Acids Res. 39:5015-24
-
(2011)
Nucleic Acids Res
, vol.39
, pp. 5015-5024
-
-
Jin, S.G.1
Wu, X.2
Li, A.X.3
Pfeifer, G.P.4
-
101
-
-
79956308473
-
Genome-wide mapping of 5-hydroxymethylcytosine in embryonic stem cells
-
Pastor WA, Pape UJ, Huang Y, Henderson HR, Lister R, et al. 2011. Genome-wide mapping of 5-hydroxymethylcytosine in embryonic stem cells. Nature 473:394-97
-
(2011)
Nature
, vol.473
, pp. 394-397
-
-
Pastor, W.A.1
Pape, U.J.2
Huang, Y.3
Henderson, H.R.4
Lister, R.5
-
102
-
-
79955571248
-
A novel method for the efficient and selective identification of 5-hydroxymethylcytosine in genomic DNA
-
Robertson AB, Dahl JA, Vagbø CB, Tripathi P, Krokan HE, Klungland A. 2011. A novel method for the efficient and selective identification of 5-hydroxymethylcytosine in genomic DNA. Nucleic Acids Res. 39:e55
-
(2011)
Nucleic Acids Res
, vol.39
-
-
Robertson, A.B.1
Dahl, J.A.2
Vagbø, C.B.3
Tripathi, P.4
Krokan, H.E.5
Klungland, A.6
-
104
-
-
84863042219
-
Biochemical characterization of recombinant β-glucosyltransferase and analysis of global 5-hydroxymethylcytosine in unique genomes
-
Terragni J, Bitinaite J, Zheng Y, Pradhan S. 2012. Biochemical characterization of recombinant β-glucosyltransferase and analysis of global 5-hydroxymethylcytosine in unique genomes. Biochemistry 51:1009-19
-
(2012)
Biochemistry
, vol.51
, pp. 1009-1019
-
-
Terragni, J.1
Bitinaite, J.2
Zheng, Y.3
Pradhan, S.4
-
105
-
-
78651280460
-
Selective chemical labeling reveals the genomewide distribution of 5-hydroxymethylcytosine
-
Song CX, Szulwach KE, Fu Y, Dai Q, Yi C, et al. 2011. Selective chemical labeling reveals the genomewide distribution of 5-hydroxymethylcytosine. Nat. Biotechnol. 29:68-72
-
(2011)
Nat. Biotechnol
, vol.29
, pp. 68-72
-
-
Song, C.X.1
Szulwach, K.E.2
Fu, Y.3
Dai, Q.4
Yi, C.5
-
106
-
-
84865061978
-
Genome-wide distribution of 5- formylcytosine in ES cells is associated with transcription and depends on thymine DNA glycosylase
-
Raiber EA, Beraldi D, Ficz G, Burgess H, Branco MR, et al. 2012. Genome-wide distribution of 5- formylcytosine in ES cells is associated with transcription and depends on thymine DNA glycosylase. Genome Biol. 13:R69
-
(2012)
Genome Biol
, vol.13
-
-
Raiber, E.A.1
Beraldi, D.2
Ficz, G.3
Burgess, H.4
Branco, M.R.5
-
107
-
-
84879547408
-
Chemical modification-assisted bisulfite sequencing (CAB-Seq) for 5-carboxylcytosine detection inDNA
-
Lu X, Song CX, Szulwach K, Wang Z, Weidenbacher P, et al. 2013. Chemical modification-assisted bisulfite sequencing (CAB-Seq) for 5-carboxylcytosine detection inDNA. J. Am. Chem. Soc. 135:9315-17
-
(2013)
J. Am. Chem. Soc
, vol.135
, pp. 9315-9317
-
-
Lu, X.1
Song, C.X.2
Szulwach, K.3
Wang, Z.4
Weidenbacher, P.5
-
108
-
-
84867230056
-
5-hmC in the brain is abundant in synaptic genes and shows differences at the exon-intron boundary
-
Khare T, Pai S, Koncevicius K, Pal M, Kriukiene E, et al. 2012. 5-hmC in the brain is abundant in synaptic genes and shows differences at the exon-intron boundary. Nat. Struct. Mol. Biol. 19:1037-43
-
(2012)
Nat. Struct. Mol. Biol
, vol.19
, pp. 1037-1043
-
-
Khare, T.1
Pai, S.2
Koncevicius, K.3
Pal, M.4
Kriukiene, E.5
-
109
-
-
84875852476
-
Integrated detection of both 5-mC and 5-hmC by high-throughput tag sequencing technology highlights methylation reprogramming of bivalent genes during cellular differentiation
-
Gao F, Xia Y, Wang J, Luo H, Gao Z, et al. 2013. Integrated detection of both 5-mC and 5-hmC by high-throughput tag sequencing technology highlights methylation reprogramming of bivalent genes during cellular differentiation. Epigenetics 8:421-30
-
(2013)
Epigenetics
, vol.8
, pp. 421-430
-
-
Gao, F.1
Xia, Y.2
Wang, J.3
Luo, H.4
Gao, Z.5
-
110
-
-
79959859654
-
Integrating 5-hydroxymethylcytosine into the epigenomic landscape of human embryonic stem cells
-
Szulwach KE, Li X, Li Y, Song CX, Han JW, et al. 2011. Integrating 5-hydroxymethylcytosine into the epigenomic landscape of human embryonic stem cells. PLoS Genet. 7:e1002154
-
(2011)
PLoS Genet
, vol.7
-
-
Szulwach, K.E.1
Li, X.2
Li, Y.3
Song, C.X.4
Han, J.W.5
-
111
-
-
82255192294
-
5-hmC-mediated epigenetic dynamics during postnatal neurodevelopment and aging
-
Szulwach KE, Li X, Li Y, Song CX, Wu H, et al. 2011. 5-hmC-mediated epigenetic dynamics during postnatal neurodevelopment and aging. Nat. Neurosci. 14:1607-16
-
(2011)
Nat. Neurosci
, vol.14
, pp. 1607-1616
-
-
Szulwach, K.E.1
Li, X.2
Li, Y.3
Song, C.X.4
Wu, H.5
-
112
-
-
84871563384
-
MeCP2 binds to 5hmC enriched within active genes and accessible chromatin in the nervous system
-
Mellén M, Ayata P, Dewell S, Kriaucionis S, Heintz N. 2012. MeCP2 binds to 5hmC enriched within active genes and accessible chromatin in the nervous system. Cell 151:1417-30
-
(2012)
Cell
, vol.151
, pp. 1417-1430
-
-
Mellén, M.1
Ayata, P.2
Dewell, S.3
Kriaucionis, S.4
Heintz, N.5
-
113
-
-
84874252793
-
Dynamics of 5-hydroxymethylcytosine and chromatin marks in mammalian neurogenesis
-
Hahn MA, Qiu R, Wu X, Li AX, Zhang H, et al. 2013. Dynamics of 5-hydroxymethylcytosine and chromatin marks in mammalian neurogenesis. Cell Rep. 3:291-300
-
(2013)
Cell Rep
, vol.3
, pp. 291-300
-
-
Hahn, M.A.1
Qiu, R.2
Wu, X.3
Li, A.X.4
Zhang, H.5
-
115
-
-
84856453032
-
Sensitive and specific single-molecule sequencing of 5- hydroxymethylcytosine
-
Song CX, Clark TA, Lu XY, Kislyuk A, Dai Q, et al. 2012. Sensitive and specific single-molecule sequencing of 5-hydroxymethylcytosine. Nat. Methods 9:75-77
-
(2012)
Nat. Methods
, vol.9
, pp. 75-77
-
-
Song, C.X.1
Clark, T.A.2
Lu, X.Y.3
Kislyuk, A.4
Dai, Q.5
-
116
-
-
84872450066
-
Enhanced 5-methylcytosine detection in single-molecule, real-time sequencing via Tet1 oxidation
-
Clark TA, Lu X, Luong K, Dai Q, Boitano M, et al. 2013. Enhanced 5-methylcytosine detection in single-molecule, real-time sequencing via Tet1 oxidation. BMC Biol. 11:4
-
(2013)
BMC Biol
, vol.11
, pp. 4
-
-
Clark, T.A.1
Lu, X.2
Luong, K.3
Dai, Q.4
Boitano, M.5
-
117
-
-
79851474623
-
Discrimination of methylcytosine from hydroxymethylcytosine in DNA molecules
-
Wanunu M, Cohen-Karni D, Johnson RR, Fields L, Benner J, et al. 2010. Discrimination of methylcytosine from hydroxymethylcytosine in DNA molecules. J. Am. Chem. Soc. 133:486-92
-
(2010)
J. Am. Chem. Soc
, vol.133
, pp. 486-492
-
-
Wanunu, M.1
Cohen-Karni, D.2
Johnson, R.R.3
Fields, L.4
Benner, J.5
-
118
-
-
77958487369
-
Identification of epigenetic DNA modifications with a protein nanopore
-
Wallace EV, Stoddart D, Heron AJ, Mikhailova E, Maglia G, et al. 2010. Identification of epigenetic DNA modifications with a protein nanopore. Chem. Commun. 46:8195-97
-
(2010)
Chem. Commun
, vol.46
, pp. 8195-8197
-
-
Wallace, E.V.1
Stoddart, D.2
Heron, A.J.3
Mikhailova, E.4
Maglia, G.5
-
119
-
-
84876241213
-
Single-molecule detection of 5-hydroxymethylcytosine in DNA through chemical modification and nanopore analysis
-
Li WW, Gong L, Bayley H. 2013. Single-molecule detection of 5-hydroxymethylcytosine in DNA through chemical modification and nanopore analysis. Angew. Chem. Int. Ed. 52:4350-55
-
(2013)
Angew. Chem. Int. Ed
, vol.52
, pp. 4350-4355
-
-
Li, W.W.1
Gong, L.2
Bayley, H.3
-
120
-
-
84879663784
-
Global epigenomic reconfiguration during mammalian brain development
-
Lister R, Mukamel EA, Nery JR, Urich M, Puddifoot CA, et al. 2013. Global epigenomic reconfiguration during mammalian brain development. Science 341:6146
-
(2013)
Science
, vol.341
, pp. 6146
-
-
Lister, R.1
Mukamel, E.A.2
Nery, J.R.3
Urich, M.4
Puddifoot, C.A.5
-
121
-
-
84874267510
-
High-resolution enzymaticmapping of genomic 5-hydroxymethylcytosine in mouse embryonic stem cells
-
Sun Z, Terragni J, Borgaro JG, Liu Y, Yu L, et al. 2013. High-resolution enzymaticmapping of genomic 5-hydroxymethylcytosine in mouse embryonic stem cells. Cell Rep. 3:567-76
-
(2013)
Cell Rep
, vol.3
, pp. 567-576
-
-
Sun, Z.1
Terragni, J.2
Borgaro, J.G.3
Liu, Y.4
Yu, L.5
-
122
-
-
84879249639
-
Conceptual links between DNA methylation reprogramming in the early embryo and primordial germ cells
-
Seisenberger S, Peat JR, ReikW. 2013. Conceptual links between DNA methylation reprogramming in the early embryo and primordial germ cells. Curr. Opin. Cell Biol. 25:281-88
-
(2013)
Curr. Opin. Cell Biol
, vol.25
, pp. 281-288
-
-
Seisenberger, S.1
Peat, J.R.2
Reik, W.3
-
123
-
-
0023119242
-
Temporal and regional changes in DNA methylation in the embryonic, extraembryonic and germ cell lineages during mouse embryo development
-
Monk M, Boubelik M, Lehnert S. 1987. Temporal and regional changes in DNA methylation in the embryonic, extraembryonic and germ cell lineages during mouse embryo development. Development 99:371-82
-
(1987)
Development
, vol.99
, pp. 371-382
-
-
Monk, M.1
Boubelik, M.2
Lehnert, S.3
-
124
-
-
0034598784
-
Demethylation of the zygotic paternal genome
-
Mayer W, Niveleau A, Walter J, Fundele R, Haaf T. 2000. Demethylation of the zygotic paternal genome. Nature 403:501-2
-
(2000)
Nature
, vol.403
, pp. 501-502
-
-
Mayer, W.1
Niveleau, A.2
Walter, J.3
Fundele, R.4
Haaf, T.5
-
125
-
-
0034176639
-
Active demethylation of the paternal genome in the mouse zygote
-
Oswald J, Engemann S, Lane N, Mayer W, Olek A, et al. 2000. Active demethylation of the paternal genome in the mouse zygote. Curr. Biol. 10:475-78
-
(2000)
Curr. Biol
, vol.10
, pp. 475-478
-
-
Oswald, J.1
Engemann, S.2
Lane, N.3
Mayer, W.4
Olek, A.5
-
126
-
-
33845885282
-
PGC7/Stella protects against DNA demethylation in early embryogenesis
-
Nakamura T, Arai Y, Umehara H, Masuhara M, Kimura T, et al. 2007. PGC7/Stella protects against DNA demethylation in early embryogenesis. Nat. Cell Biol. 9:64-71
-
(2007)
Nat. Cell Biol
, vol.9
, pp. 64-71
-
-
Nakamura, T.1
Arai, Y.2
Umehara, H.3
Masuhara, M.4
Kimura, T.5
-
127
-
-
80053348585
-
The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes
-
Gu TP, Guo F, Yang H, Wu HP, Xu GF, et al. 2011. The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Nature 477:606-10
-
(2011)
Nature
, vol.477
, pp. 606-610
-
-
Gu, T.P.1
Guo, F.2
Yang, H.3
Wu, H.P.4
Xu, G.F.5
-
128
-
-
80054097425
-
Replication-dependent loss of 5-hydroxymethylcytosine in mouse preimplantation embryos
-
Inoue A, Zhang Y. 2011. Replication-dependent loss of 5-hydroxymethylcytosine in mouse preimplantation embryos. Science 334:194
-
(2011)
Science
, vol.334
, pp. 194
-
-
Inoue, A.1
Zhang, Y.2
-
129
-
-
82655187105
-
Generation and replication-dependent dilution of 5fC and 5caC during mouse preimplantation development
-
Inoue A, Shen L, Dai Q, He C, Zhang Y. 2011. Generation and replication-dependent dilution of 5fC and 5caC during mouse preimplantation development. Cell Res. 21:1670-76
-
(2011)
Cell Res
, vol.21
, pp. 1670-1676
-
-
Inoue, A.1
Shen, L.2
Dai, Q.3
He, C.4
Zhang, Y.5
-
130
-
-
84862551364
-
PGC7 binds histone H3K9me2 to protect against conversion of 5mC to 5hmC in early embryos
-
Nakamura T, Liu YJ, Nakashima H, Umehara H, Inoue K, et al. 2012. PGC7 binds histone H3K9me2 to protect against conversion of 5mC to 5hmC in early embryos. Nature 486:415-19
-
(2012)
Nature
, vol.486
, pp. 415-419
-
-
Nakamura, T.1
Liu, Y.J.2
Nakashima, H.3
Umehara, H.4
Inoue, K.5
-
131
-
-
84859910536
-
A unique regulatory phase of DNA methylation in the early mammalian embryo
-
Smith ZD, Chan MM, Mikkelsen TS, Gu H, Gnirke A, et al. 2012. A unique regulatory phase of DNA methylation in the early mammalian embryo. Nature 484:339-44
-
(2012)
Nature
, vol.484
, pp. 339-344
-
-
Smith, Z.D.1
Chan, M.M.2
Mikkelsen, T.S.3
Gu, H.4
Gnirke, A.5
-
132
-
-
82855176833
-
Epigenetic reprogramming in mouse pre-implantation development and primordial germ cells
-
Saitou M, Kagiwada S, Kurimoto K. 2012. Epigenetic reprogramming in mouse pre-implantation development and primordial germ cells. Development 139:15-31
-
(2012)
Development
, vol.139
, pp. 15-31
-
-
Saitou, M.1
Kagiwada, S.2
Kurimoto, K.3
-
133
-
-
77954345408
-
Genome-wide reprogramming in the mouse germ line entails the base excision repair pathway
-
Hajkova P, Jeffries SJ, Lee C, Miller N, Jackson SP, Surani MA. 2010. Genome-wide reprogramming in the mouse germ line entails the base excision repair pathway. Science 329:78-82
-
(2010)
Science
, vol.329
, pp. 78-82
-
-
Hajkova, P.1
Jeffries, S.J.2
Lee, C.3
Miller, N.4
Jackson, S.P.5
Surani, M.A.6
-
134
-
-
84875949201
-
Stage-specific roles for Tet1 and Tet2 in DNA demethylation in primordial germ cells
-
Vincent JJ, Huang Y, Chen PY, Feng S, Calvopina JH, et al. 2013. Stage-specific roles for Tet1 and Tet2 in DNA demethylation in primordial germ cells. Cell Stem Cell 12:470-78
-
(2013)
Cell Stem Cell
, vol.12
, pp. 470-478
-
-
Vincent, J.J.1
Huang, Y.2
Chen, P.Y.3
Feng, S.4
Calvopina, J.H.5
-
135
-
-
12944308793
-
Extensive and orderly reprogramming of genome-wide chromatin modifications associated with specification and early development of germ cells in mice
-
Seki Y, Hayashi K, Itoh K, Mizugaki M, Saitou M, Matsui Y. 2005. Extensive and orderly reprogramming of genome-wide chromatin modifications associated with specification and early development of germ cells in mice. Dev. Biol. 278:440-58
-
(2005)
Dev. Biol
, vol.278
, pp. 440-458
-
-
Seki, Y.1
Hayashi, K.2
Itoh, K.3
Mizugaki, M.4
Saitou, M.5
Matsui, Y.6
-
136
-
-
0036768615
-
Epigenetic reprogramming in mouse primordial germ cells
-
Hajkova P, Erhardt S, Lane N, Haaf T, El-Maarri O, et al. 2002. Epigenetic reprogramming in mouse primordial germ cells. Mech. Dev. 117:15-23
-
(2002)
Mech. Dev
, vol.117
, pp. 15-23
-
-
Hajkova, P.1
Erhardt, S.2
Lane, N.3
Haaf, T.4
El-Maarri, O.5
-
137
-
-
84873570094
-
Replication-coupled passive DNA demethylation for the erasure of genome imprints in mice
-
Kagiwada S, Kurimoto K, Hirota T, Yamaji M, Saitou M. 2013. Replication-coupled passive DNA demethylation for the erasure of genome imprints in mice. EMBO J. 32:340-53
-
(2013)
EMBO J
, vol.32
, pp. 340-353
-
-
Kagiwada, S.1
Kurimoto, K.2
Hirota, T.3
Yamaji, M.4
Saitou, M.5
-
138
-
-
84871702441
-
The dynamics of genome-wide DNA methylation reprogramming in mouse primordial germ cells
-
Seisenberger S, Andrews S, Krueger F, Arand J, Walter J, et al. 2012. The dynamics of genome-wide DNA methylation reprogramming in mouse primordial germ cells. Mol. Cell 48:849-62
-
(2012)
Mol. Cell
, vol.48
, pp. 849-862
-
-
Seisenberger, S.1
Andrews, S.2
Krueger, F.3
Arand, J.4
Walter, J.5
-
139
-
-
45349107280
-
Complex genome-wide transcription dynamics orchestrated by Blimp1 for the specification of the germ cell lineage in mice
-
Kurimoto K, Yabuta Y, Ohinata Y, Shigeta M, Yamanaka K, Saitou M. 2008. Complex genome-wide transcription dynamics orchestrated by Blimp1 for the specification of the germ cell lineage in mice. Genes Dev. 22:1617-35
-
(2008)
Genes Dev
, vol.22
, pp. 1617-1635
-
-
Kurimoto, K.1
Yabuta, Y.2
Ohinata, Y.3
Shigeta, M.4
Yamanaka, K.5
Saitou, M.6
-
140
-
-
84873707539
-
Combined deficiency of Tet1 and Tet2 causes epigenetic abnormalities but is compatible with postnatal development
-
Dawlaty MM, Breiling A, Le T, Raddatz G, Barrasa MI, et al. 2013. Combined deficiency of Tet1 and Tet2 causes epigenetic abnormalities but is compatible with postnatal development. Dev. Cell 24:310-23
-
(2013)
Dev. Cell
, vol.24
, pp. 310-323
-
-
Dawlaty, M.M.1
Breiling, A.2
Le Raddatz T, G.3
Barrasa, M.I.4
-
141
-
-
84890568163
-
Role of Tet1 in genomic imprinting erasure
-
Yamaguchi S, Shen L, Liu Y, Sendler D, Zhang Y. 2013. Role of Tet1 in genomic imprinting erasure. Nature 504:460-64
-
(2013)
Nature
, vol.504
, pp. 460-464
-
-
Yamaguchi, S.1
Shen, L.2
Liu, Y.3
Sendler, D.4
Zhang, Y.5
-
142
-
-
82955207588
-
Mechanisms and functions of Tet protein-mediated 5-methylcytosine oxidation
-
Wu H, Zhang Y. 2011. Mechanisms and functions of Tet protein-mediated 5-methylcytosine oxidation. Genes Dev. 25:2436-52
-
(2011)
Genes Dev
, vol.25
, pp. 2436-2452
-
-
Wu, H.1
Zhang, Y.2
-
143
-
-
84555189745
-
DNAmethylation:TETproteins-guardians ofCpG islands?
-
Williams K, Christensen J, Helin K. 2012.DNAmethylation:TETproteins- guardians ofCpG islands? EMBO Rep. 13:28-35
-
(2012)
EMBO Rep
, vol.13
, pp. 28-35
-
-
Williams, K.1
Christensen, J.2
Helin, K.3
-
144
-
-
79956292024
-
Dual functions of Tet1 in transcriptional regulation in mouse embryonic stem cells
-
Wu H, DAlessio AC, Ito S, Xia K, Wang Z, et al. 2011. Dual functions of Tet1 in transcriptional regulation in mouse embryonic stem cells. Nature 473:389-93
-
(2011)
Nature
, vol.473
, pp. 389-393
-
-
Wu, H.1
Dalessio, A.C.2
Ito, S.3
Xia, K.4
Wang, Z.5
-
145
-
-
84875201183
-
Naive pluripotency is associated with global DNA hypomethylation
-
Leitch HG, McEwen KR, Turp A, Encheva V, Carroll T, et al. 2013. Naive pluripotency is associated with global DNA hypomethylation. Nat. Struct. Mol. Biol. 20:311-16
-
(2013)
Nat. Struct. Mol. Biol
, vol.20
, pp. 311-316
-
-
Leitch, H.G.1
McEwen, K.R.2
Turp, A.3
Encheva, V.4
Carroll, T.5
-
146
-
-
84884164554
-
FGF signaling inhibition in ESCs drives rapid genome-wide demethylation to the epigenetic ground state of pluripotency
-
Ficz G, Hore TA, Santos F, Lee HJ, DeanW, et al. 2013. FGF signaling inhibition in ESCs drives rapid genome-wide demethylation to the epigenetic ground state of pluripotency. Cell Stem Cell 13:351-59
-
(2013)
Cell Stem Cell
, vol.13
, pp. 351-359
-
-
Ficz, G.1
Hore, T.A.2
Santos, F.3
Lee, H.J.4
Dean, W.5
-
147
-
-
84884133672
-
Whole-genome bisulfite sequencing of two distinct interconvertible DNA methylomes of mouse embryonic stem cells
-
Habibi E, Brinkman AB, Arand J, Kroeze LI, Kerstens HH, et al. 2013. Whole-genome bisulfite sequencing of two distinct interconvertible DNA methylomes of mouse embryonic stem cells. Cell Stem Cell 13:360-69
-
(2013)
Cell Stem Cell
, vol.13
, pp. 360-369
-
-
Habibi, E.1
Brinkman, A.B.2
Arand, J.3
Kroeze, L.I.4
Kerstens, H.H.5
-
148
-
-
84865486793
-
Early-stage epigenetic modification during somatic cell reprogramming by Parp1 and Tet2
-
Doege CA, Inoue K, Yamashita T, Rhee DB, Travis S, et al. 2012. Early-stage epigenetic modification during somatic cell reprogramming by Parp1 and Tet2. Nature 488:652-55
-
(2012)
Nature
, vol.488
, pp. 652-655
-
-
Doege, C.A.1
Inoue, K.2
Yamashita, T.3
Rhee, D.B.4
Travis, S.5
-
149
-
-
84875370281
-
NANOG-dependent function of TET1 and TET2 in establishment of pluripotency
-
Costa Y, Ding J, Theunissen TW, Faiola F, Hore TA, et al. 2013. NANOG-dependent function of TET1 and TET2 in establishment of pluripotency. Nature 495:370-74
-
(2013)
Nature
, vol.495
, pp. 370-374
-
-
Costa, Y.1
Ding, J.2
Theunissen, T.W.3
Faiola, F.4
Hore, T.A.5
-
150
-
-
84875923762
-
Replacement of Oct4 by Tet1 during iPSC induction reveals an important role of DNA methylation and hydroxymethylation in reprogramming
-
Gao Y, Chen J, Li K, Wu T, Huang B, et al. 2013. Replacement of Oct4 by Tet1 during iPSC induction reveals an important role of DNA methylation and hydroxymethylation in reprogramming. Cell Stem Cell 12:453-69
-
(2013)
Cell Stem Cell
, vol.12
, pp. 453-469
-
-
Gao, Y.1
Chen, J.2
Li, K.3
Wu, T.4
Huang, B.5
-
151
-
-
84875783959
-
Different roles for Tet1 and Tet2 proteins in reprogramming-mediated erasure of imprints induced by EGC fusion
-
Piccolo FM, Bagci H, Brown KE, Landeira D, Soza-Ried J, et al. 2013. Different roles for Tet1 and Tet2 proteins in reprogramming-mediated erasure of imprints induced by EGC fusion. Mol. Cell 49:1023-33
-
(2013)
Mol. Cell
, vol.49
, pp. 1023-1033
-
-
Piccolo, F.M.1
Bagci, H.2
Brown, K.E.3
Landeira, D.4
Soza-Ried, J.5
-
152
-
-
13844320649
-
Aberrant DNA methylation as a cancer-inducing mechanism
-
Esteller M. 2005. Aberrant DNA methylation as a cancer-inducing mechanism. Annu. Rev. Pharmacol. Toxicol. 45:629-56
-
(2005)
Annu. Rev. Pharmacol. Toxicol
, vol.45
, pp. 629-656
-
-
Esteller, M.1
-
153
-
-
84879001094
-
HMGA2/TET1/HOXA9 signaling pathway regulates breast cancer growth and metastasis
-
Sun M, Song CX, Huang H, Frankenberger CA, Sankarasharma D, et al. 2013.HMGA2/TET1/HOXA9 signaling pathway regulates breast cancer growth and metastasis. Proc. Natl. Acad. Sci. USA 110:9920-25
-
(2013)
Proc. Natl. Acad. Sci. USA
, vol.110
, pp. 9920-9925
-
-
Sun, M.1
Song, C.X.2
Huang, H.3
Frankenberger, C.A.4
Sankarasharma, D.5
-
154
-
-
66249137734
-
Mutation in TET2 in myeloid cancers
-
Delhommeau F, Dupont S, Della Valle V, James C, Trannoy S, et al. 2009. Mutation in TET2 in myeloid cancers. N. Engl. J. Med. 360:2289-301
-
(2009)
N. Engl. J. Med
, vol.360
, pp. 2289-2301
-
-
Delhommeau, F.1
Dupont, S.2
Della Valle, V.3
James, C.4
Trannoy, S.5
-
155
-
-
84859229392
-
Role of TET2 mutations in myeloproliferative neoplasms
-
Pronier E, Delhommeau F. 2012. Role of TET2 mutations in myeloproliferative neoplasms. Curr. Hematol. Malig. Rep. 7:57-64
-
(2012)
Curr. Hematol. Malig. Rep
, vol.7
, pp. 57-64
-
-
Pronier, E.1
Delhommeau, F.2
-
156
-
-
67649876132
-
Acquired mutations in TET2 are common in myelodysplastic syndromes
-
Langemeijer SM, Kuiper RP, Berends M, Knops R, Aslanyan MG, et al. 2009. Acquired mutations in TET2 are common in myelodysplastic syndromes. Nat. Genet. 41:838-42
-
(2009)
Nat. Genet
, vol.41
, pp. 838-842
-
-
Langemeijer, S.M.1
Kuiper, R.P.2
Berends, M.3
Knops, R.4
Aslanyan, M.G.5
-
157
-
-
80052284526
-
Ten-eleven-translocation 2 (TET2) negatively regulates homeostasis and differentiation of hematopoietic stem cells in mice
-
Ko M, Bandukwala HS, An J, Lamperti ED, Thompson EC, et al. 2011. Ten-eleven-translocation 2 (TET2) negatively regulates homeostasis and differentiation of hematopoietic stem cells in mice. Proc. Natl. Acad. Sci. USA 108:14566-71
-
(2011)
Proc. Natl. Acad. Sci. USA
, vol.108
, pp. 14566-14571
-
-
Ko, M.1
Bandukwala, H.S.2
An, J.3
Lamperti, E.D.4
Thompson, E.C.5
-
158
-
-
79960062301
-
TET2 inactivation results in pleiotropic hematopoietic abnormalities inmouse and is a recurrent event during human lymphomagenesis
-
Quivoron C, Couronne L, Della Valle V, Lopez CK, Plo I, et al. 2011. TET2 inactivation results in pleiotropic hematopoietic abnormalities inmouse and is a recurrent event during human lymphomagenesis. Cancer Cell 20:25-38
-
(2011)
Cancer Cell
, vol.20
, pp. 25-38
-
-
Quivoron, C.1
Couronne, L.2
Della Valle, V.3
Lopez, C.K.4
Plo, I.5
-
159
-
-
80052285127
-
Deletion of Tet2 in mice leads to dysregulated hematopoietic stem cells and subsequent development of myeloid malignancies
-
Li Z, Cai X, Cai CL, Wang J, Zhang W, et al. 2011. Deletion of Tet2 in mice leads to dysregulated hematopoietic stem cells and subsequent development of myeloid malignancies. Blood 118:4509-18
-
(2011)
Blood
, vol.118
, pp. 4509-4518
-
-
Li, Z.1
Cai, X.2
Cai, C.L.3
Wang, J.4
Zhang, W.5
-
160
-
-
79960064353
-
Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation
-
Moran-Crusio K, Reavie L, Shih A, Abdel-Wahab O, Ndiaye-Lobry D, et al. 2011. Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell 20:11-24
-
(2011)
Cancer Cell
, vol.20
, pp. 11-24
-
-
Moran-Crusio, K.1
Reavie, L.2
Shih, A.3
Abdel-Wahab, O.4
Ndiaye-Lobry, D.5
-
161
-
-
84866419591
-
Loss of 5-hydroxymethylcytosine is an epigenetic hallmark of melanoma
-
Lian CG, Xu Y, Ceol C, Wu F, Larson A, et al. 2012. Loss of 5-hydroxymethylcytosine is an epigenetic hallmark of melanoma. Cell 150:1135-46
-
(2012)
Cell
, vol.150
, pp. 1135-1146
-
-
Lian, C.G.1
Xu, Y.2
Ceol, C.3
Wu, F.4
Larson, A.5
-
162
-
-
84873411803
-
Tumor development is associated with decrease of TET gene expression and 5-methylcytosine hydroxylation
-
Yang H, Liu Y, Bai F, Zhang JY, Ma SH, et al. 2013. Tumor development is associated with decrease of TET gene expression and 5-methylcytosine hydroxylation. Oncogene 32:663-69
-
(2013)
Oncogene
, vol.32
, pp. 663-669
-
-
Yang, H.1
Liu, Y.2
Bai, F.3
Zhang, J.Y.4
Ma, S.H.5
-
163
-
-
84866908544
-
TET1 suppresses cancer invasion by activating the tissue inhibitors of metalloproteinases
-
Hsu CH, Peng KL, Kang ML, Chen YR, Yang YC, et al. 2012. TET1 suppresses cancer invasion by activating the tissue inhibitors of metalloproteinases. Cell Rep. 2:568-79
-
(2012)
Cell Rep
, vol.2
, pp. 568-579
-
-
Hsu, C.H.1
Peng, K.L.2
Kang, M.L.3
Chen, Y.R.4
Yang, Y.C.5
-
164
-
-
84880366679
-
TET1 plays an essential oncogenic role in MLLrearranged leukemia
-
Huang H, Jiang X, Li Z, Li Y, Song CX, et al. 2013. TET1 plays an essential oncogenic role in MLLrearranged leukemia. Proc. Natl. Acad. Sci. USA 110:11994-99
-
(2013)
Proc. Natl. Acad. Sci. USA
, vol.110
, pp. 11994-11999
-
-
Huang, H.1
Jiang, X.2
Li, Z.3
Li, Y.4
Song, C.X.5
-
165
-
-
0016809932
-
The methylated constituents of L cell messenger RNA: Evidence for an unusual cluster at the 5 terminus
-
Perry RP, Kelley DE, Friderici K, Rottman F. 1975. The methylated constituents of L cell messenger RNA: Evidence for an unusual cluster at the 5 terminus. Cell 4:387-94
-
(1975)
Cell
, vol.4
, pp. 387-394
-
-
Perry, R.P.1
Kelley, D.E.2
Friderici, K.3
Rottman, F.4
-
166
-
-
37549024986
-
Kinetic studies of Escherichia coli AlkB using a new fluorescence-based assay for DNA demethylation
-
Roy TW, Bhagwat AS. 2007. Kinetic studies of Escherichia coli AlkB using a new fluorescence-based assay for DNA demethylation. Nucleic Acids Res. 35:e147
-
(2007)
Nucleic Acids Res
, vol.35
-
-
Roy, T.W.1
Bhagwat, A.S.2
-
167
-
-
34249777814
-
Variation in FTOcontributes to childhood obesity and severe adult obesity
-
Dina C, Meyre D, Gallina S, Durand E, Körner A, et al. 2007. Variation in FTOcontributes to childhood obesity and severe adult obesity. Nat. Genet. 39:724-26
-
(2007)
Nat. Genet
, vol.39
, pp. 724-726
-
-
Dina, C.1
Meyre, D.2
Gallina, S.3
Durand, E.4
Körner, A.5
-
168
-
-
34248594090
-
A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity
-
Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, et al. 2007. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 316:889-94
-
(2007)
Science
, vol.316
, pp. 889-894
-
-
Frayling, T.M.1
Timpson, N.J.2
Weedon, M.N.3
Zeggini, E.4
Freathy, R.M.5
-
169
-
-
34547625955
-
Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits
-
Scuteri A, Sanna S, Chen WM, Uda M, Albai G, et al. 2007. Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLoS Genet. 3:e115
-
(2007)
PLoS Genet
, vol.3
-
-
Scuteri, A.1
Sanna, S.2
Chen, W.M.3
Uda, M.4
Albai, G.5
-
170
-
-
84880916638
-
The fat mass and obesity associated gene (Fto) regulates activity of the dopaminergic midbrain circuitry
-
Hess ME, Hess S, Meyer KD, Verhagen LAW, Koch L, et al. 2013. The fat mass and obesity associated gene (Fto) regulates activity of the dopaminergic midbrain circuitry. Nat. Neurosci. 16:1042-48
-
(2013)
Nat. Neurosci
, vol.16
, pp. 1042-1048
-
-
Hess, M.E.1
Hess, S.2
Meyer, K.D.3
Law, V.4
Koch, L.5
-
171
-
-
84860779086
-
Topology of the human and mouse m6A RNA methylomes revealed by m6A-Seq
-
Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, et al. 2012. Topology of the human and mouse m6A RNA methylomes revealed by m6A-Seq. Nature 485:201-6
-
(2012)
Nature
, vol.485
, pp. 201-206
-
-
Dominissini, D.1
Moshitch-Moshkovitz, S.2
Schwartz, S.3
Salmon-Divon, M.4
Ungar, L.5
-
172
-
-
84877750692
-
FTO-mediated formation of N6-hydroxymethyladenosine and N6-formyladenosine in mammalian RNA
-
Fu Y, Jia G, Pang X, Wang RN, Wang X, et al. 2013. FTO-mediated formation of N6-hydroxymethyladenosine and N6-formyladenosine in mammalian RNA. Nat. Commun. 4:1798
-
(2013)
Nat. Commun
, vol.4
, pp. 1798
-
-
Fu, Y.1
Jia, G.2
Pang, X.3
Wang, R.N.4
Wang, X.5
-
173
-
-
78649267733
-
Grand challenge commentary: RNA epigenetics?
-
He C. 2010. Grand challenge commentary: RNA epigenetics? Nat. Chem. Biol. 6:863-65
-
(2010)
Nat. Chem. Biol
, vol.6
, pp. 863-865
-
-
He, C.1
-
174
-
-
84255209216
-
Cellular dynamics of RNA modification
-
Yi C, Pan T. 2011. Cellular dynamics of RNA modification. Acc. Chem. Res. 44:1380-88
-
(2011)
Acc. Chem. Res
, vol.44
, pp. 1380-1388
-
-
Yi, C.1
Pan, T.2
-
175
-
-
84862649489
-
Comprehensive analysis of mRNA methylation reveals enrichment in 3 UTRs and near stop codons
-
Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR. 2012. Comprehensive analysis of mRNA methylation reveals enrichment in 3 UTRs and near stop codons. Cell 149:1635-46
-
(2012)
Cell
, vol.149
, pp. 1635-1646
-
-
Meyer, K.D.1
Saletore, Y.2
Zumbo, P.3
Elemento, O.4
Mason, C.E.5
Jaffrey, S.R.6
-
176
-
-
40449104358
-
Transient cyclical methylation of promoter DNA
-
Kangaspeska S, Stride B, Metivier R, Polycarpou-SchwarzM, Ibberson D, et al. 2008. Transient cyclical methylation of promoter DNA. Nature 452:112-15
-
(2008)
Nature
, vol.452
, pp. 112-115
-
-
Kangaspeska, S.1
Stride, B.2
Metivier, R.3
Polycarpou-Schwarz, M.4
Ibberson, D.5
-
177
-
-
40449123137
-
Cyclical DNA methylation of a transcriptionally active promoter
-
Metivier R, Gallais R, Tiffoche C, Le Peron C, Jurkowska RZ, et al. 2008. Cyclical DNA methylation of a transcriptionally active promoter. Nature 452:45-50
-
(2008)
Nature
, vol.452
, pp. 45-50
-
-
Metivier, R.1
Gallais, R.2
Tiffoche, C.3
Le Peron, C.4
Jurkowska, R.Z.5
-
178
-
-
84861968669
-
TGF-β-dependent active demethylation and expression of the p15ink4b tumor suppressor are impaired by the ZNF217/CoREST complex
-
Thillainadesan G, Chitilian JM, IsovicM, Ablack JN, Mymryk JS, et al. 2012. TGF-β-dependent active demethylation and expression of the p15ink4b tumor suppressor are impaired by the ZNF217/CoREST complex. Mol. Cell 46:636-49
-
(2012)
Mol. Cell
, vol.46
, pp. 636-649
-
-
Thillainadesan, G.1
Chitilian, J.M.2
Isovic, M.3
Ablack, J.N.4
Mymryk, J.S.5
|