메뉴 건너뛰기




Volumn 60, Issue 2, 2014, Pages 533-545

Mixture semisupervised principal component regression model and soft sensor application

Author keywords

Mixture probabilistic modeling; Probabilistic principal component regression; Semisupervised modeling; Soft sensor

Indexed keywords

HISTORICAL DATASET; INPUT AND OUTPUTS; MIXTURE PROBABILISTIC MODEL; PRINCIPAL COMPONENT REGRESSION; SEMI-SUPERVISED; SENSING PERFORMANCE; SOFT SENSORS; SUPERVISED METHODS;

EID: 84892445860     PISSN: 00011541     EISSN: 15475905     Source Type: Journal    
DOI: 10.1002/aic.14270     Document Type: Article
Times cited : (95)

References (33)
  • 1
    • 70349396621 scopus 로고    scopus 로고
    • Multivariate concentration determination using principal component regression with residual analysis
    • Keithley RB, Heien ML, Wightman RM. Multivariate concentration determination using principal component regression with residual analysis. Trends Anal Chem. 2009;28:1127-1136.
    • (2009) Trends Anal Chem. , vol.28 , pp. 1127-1136
    • Keithley, R.B.1    Heien, M.L.2    Wightman, R.M.3
  • 2
    • 78650953042 scopus 로고    scopus 로고
    • Mixture probabilistic PCR model for soft sensing of multimode processes
    • Ge ZQ, Gao FR, Song ZH. Mixture probabilistic PCR model for soft sensing of multimode processes. Chemom Intell Lab Syst. 2011;105:91-105.
    • (2011) Chemom Intell Lab Syst. , vol.105 , pp. 91-105
    • Ge, Z.Q.1    Gao, F.R.2    Song, Z.H.3
  • 3
    • 84863013231 scopus 로고    scopus 로고
    • Improved principal component regression for face recognition under illumination variations
    • Huang SM, Yang JF. Improved principal component regression for face recognition under illumination variations. IEEE Signal Process Lett. 2012;19:179-182.
    • (2012) IEEE Signal Process Lett. , vol.19 , pp. 179-182
    • Huang, S.M.1    Yang, J.F.2
  • 4
    • 84892440925 scopus 로고    scopus 로고
    • Multivariate statistical process monitors
    • Kruger U, Chen Q, Sandoz DJ. Multivariate statistical process monitors. US Patent, 2006;7:062417.
    • (2006) US Patent, , vol.7 , pp. 062417
    • Kruger, U.1    Chen, Q.2    Sandoz, D.J.3
  • 5
    • 69349083126 scopus 로고    scopus 로고
    • Complex process monitoring using modified partial least squares method of independent component regression
    • Zhang YW, Zhang Y. Complex process monitoring using modified partial least squares method of independent component regression. Chemom Intell Lab Syst. 2009;98:143-148.
    • (2009) Chemom Intell Lab Syst. , vol.98 , pp. 143-148
    • Zhang, Y.W.1    Zhang, Y.2
  • 6
    • 84868224530 scopus 로고    scopus 로고
    • Multiway Gaussian mixture model based adaptive kernel partial least squares regression method for soft sensor estimation and reliable quality prediction of nonlinear multiphase batch processes
    • Yu J. Multiway Gaussian mixture model based adaptive kernel partial least squares regression method for soft sensor estimation and reliable quality prediction of nonlinear multiphase batch processes. Ind Eng Chem Res. 2012;51:13227-13237.
    • (2012) Ind Eng Chem Res. , vol.51 , pp. 13227-13237
    • Yu, J.1
  • 7
    • 84861963447 scopus 로고    scopus 로고
    • Comparison of the performance of a reduced-order dynamic PLS soft sensor with different updating schemes for digester control
    • Galicia HJ, He QP, Wang J. Comparison of the performance of a reduced-order dynamic PLS soft sensor with different updating schemes for digester control. Control Eng Pract. 2012;20:747-760.
    • (2012) Control Eng Pract. , vol.20 , pp. 747-760
    • Galicia, H.J.1    He, Q.P.2    Wang, J.3
  • 8
    • 84862208873 scopus 로고    scopus 로고
    • Localized adaptive recursive partial least squares regression for dynamic system modeling
    • Ni WD, Tan SK, Ng WJ, Brown SD. Localized adaptive recursive partial least squares regression for dynamic system modeling. Ind Eng Chem Res. 2012;51:8025-8039.
    • (2012) Ind Eng Chem Res. , vol.51 , pp. 8025-8039
    • Ni, W.D.1    Tan, S.K.2    Ng, W.J.3    Brown, S.D.4
  • 9
    • 20344389745 scopus 로고    scopus 로고
    • Application of a moving-window-adaptive neural network to the modeling of a full-scale anaerobic filter process
    • Lee MW, Joung JY, Lee DS, Park JM, Woo SH. Application of a moving-window-adaptive neural network to the modeling of a full-scale anaerobic filter process. Ind Eng Chem Res. 2005;44:3973-3982.
    • (2005) Ind Eng Chem Res. , vol.44 , pp. 3973-3982
    • Lee, M.W.1    Joung, J.Y.2    Lee, D.S.3    Park, J.M.4    Woo, S.H.5
  • 10
    • 57049112694 scopus 로고    scopus 로고
    • ANN-based soft-sensor for real-time process monitoring and control of an industrial polymerization process
    • Gonzaga JCB, Meleiro LAC, Kiang C, Filho RM. ANN-based soft-sensor for real-time process monitoring and control of an industrial polymerization process. Comput Chem Eng. 2009;33:43-49.
    • (2009) Comput Chem Eng. , vol.33 , pp. 43-49
    • Gonzaga, J.C.B.1    Meleiro, L.A.C.2    Kiang, C.3    Filho, R.M.4
  • 11
    • 77955920442 scopus 로고    scopus 로고
    • Hybrid artificial neural network based on BP-PLSR and its application in development of soft sensors
    • Yan XF. Hybrid artificial neural network based on BP-PLSR and its application in development of soft sensors. Chemom Intell Lab Syst. 2010;103:152-159.
    • (2010) Chemom Intell Lab Syst. , vol.103 , pp. 152-159
    • Yan, X.F.1
  • 12
    • 81155155532 scopus 로고    scopus 로고
    • Multi-sensor based prediction of metal deposition in pulsed gas metal arc welding using various soft computing models
    • Bhattacharya S, Pal K, Pal SK. Multi-sensor based prediction of metal deposition in pulsed gas metal arc welding using various soft computing models. Appl Soft Comput. 2012;12:498-505.
    • (2012) Appl Soft Comput. , vol.12 , pp. 498-505
    • Bhattacharya, S.1    Pal, K.2    Pal, S.K.3
  • 13
    • 40249115017 scopus 로고    scopus 로고
    • Nonlinear monitoring and prediction model in an industrial environmental process
    • Yoo CK. Nonlinear monitoring and prediction model in an industrial environmental process. J Chem Eng Jpn. 2008;41:32-42.
    • (2008) J Chem Eng Jpn. , vol.41 , pp. 32-42
    • Yoo, C.K.1
  • 14
    • 67650083264 scopus 로고    scopus 로고
    • Soft chemical analyzer development using adaptive least-squares support vector regression with selective pruning and variable moving window size
    • Liu Y, Hu NP, Wang HQ, Li P. Soft chemical analyzer development using adaptive least-squares support vector regression with selective pruning and variable moving window size. Ind Eng Chem Res. 2009;48:5731-5741.
    • (2009) Ind Eng Chem Res. , vol.48 , pp. 5731-5741
    • Liu, Y.1    Hu, N.P.2    Wang, H.Q.3    Li, P.4
  • 15
    • 77956406437 scopus 로고    scopus 로고
    • Nonlinear soft sensor development based on relevance vector machine
    • Ge ZQ, Song ZH. Nonlinear soft sensor development based on relevance vector machine. Ind Eng Chem Res. 2010;49:8685-8693.
    • (2010) Ind Eng Chem Res. , vol.49 , pp. 8685-8693
    • Ge, Z.Q.1    Song, Z.H.2
  • 16
    • 80052838846 scopus 로고    scopus 로고
    • Development of soft sensor models based on time difference of process variables with accounting for nonlinear relationship
    • Kaneko H, Funatsu K. Development of soft sensor models based on time difference of process variables with accounting for nonlinear relationship. Ind Eng Chem Res. 2011;50:10643-10651.
    • (2011) Ind Eng Chem Res. , vol.50 , pp. 10643-10651
    • Kaneko, H.1    Funatsu, K.2
  • 17
    • 84864805251 scopus 로고    scopus 로고
    • Online quality prediction of nonlinear and non-Gaussian chemical processes with shifting dynamics using finite mixture model based Gaussian process regression approach
    • Yu J. Online quality prediction of nonlinear and non-Gaussian chemical processes with shifting dynamics using finite mixture model based Gaussian process regression approach. Chem Eng Sci. 2012;82:22-30.
    • (2012) Chem Eng Sci. , vol.82 , pp. 22-30
    • Yu, J.1
  • 18
    • 84861825793 scopus 로고    scopus 로고
    • Kernel based regression and genetic algorithms for estimating cutting conditions of surface roughness in end milling machining process
    • Wibowo A, Desa MI. Kernel based regression and genetic algorithms for estimating cutting conditions of surface roughness in end milling machining process. Exp Syst Appl. 2012;39:11634-11641.
    • (2012) Exp Syst Appl. , vol.39 , pp. 11634-11641
    • Wibowo, A.1    Desa, M.I.2
  • 19
    • 57249097849 scopus 로고    scopus 로고
    • Dealing with irregular data in soft sensor: Bayesian method and comparative study
    • Khatibisepehr S, Huang B. Dealing with irregular data in soft sensor: Bayesian method and comparative study. Ind Eng Chem Res. 2008;47:8713-8723.
    • (2008) Ind Eng Chem Res. , vol.47 , pp. 8713-8723
    • Khatibisepehr, S.1    Huang, B.2
  • 20
    • 83355163227 scopus 로고    scopus 로고
    • Multiple model based LPV soft sensor development with irregular/missing process output measurement
    • Jin X, Wang SY, Huang B, Forbes F. Multiple model based LPV soft sensor development with irregular/missing process output measurement. Control Eng Pract. 2012;20:165-172.
    • (2012) Control Eng Pract. , vol.20 , pp. 165-172
    • Jin, X.1    Wang, S.Y.2    Huang, B.3    Forbes, F.4
  • 21
    • 84859392648 scopus 로고    scopus 로고
    • A Bayesian inference based two-stage support vector regression framework for soft sensor development in batch bioprocesses
    • Yu J. A Bayesian inference based two-stage support vector regression framework for soft sensor development in batch bioprocesses. Comput Chem Eng. 2012;41:134-144.
    • (2012) Comput Chem Eng. , vol.41 , pp. 134-144
    • Yu, J.1
  • 22
    • 84870438932 scopus 로고    scopus 로고
    • A Bayesian approach to design of adaptive multi-model inferential sensors with application in oil sand industry
    • Khatibisepehr S, Huang B, Xu FW, Espejo A. A Bayesian approach to design of adaptive multi-model inferential sensors with application in oil sand industry. J Process Control. 2012;22:1913-1929.
    • (2012) J Process Control. , vol.22 , pp. 1913-1929
    • Khatibisepehr, S.1    Huang, B.2    Xu, F.W.3    Espejo, A.4
  • 23
    • 79960245463 scopus 로고    scopus 로고
    • Semisupervised Bayesian method for soft sensor modeling with unlabeled data samples
    • Ge ZQ, Song ZH. Semisupervised Bayesian method for soft sensor modeling with unlabeled data samples. AIChE J. 2011;57:2109-2119.
    • (2011) AIChE J. , vol.57 , pp. 2109-2119
    • Ge, Z.Q.1    Song, Z.H.2
  • 24
    • 50649095932 scopus 로고    scopus 로고
    • Online monitoring of nonlinear multiple mode processes based on adaptive local model approach
    • Ge ZQ, Song ZH. Online monitoring of nonlinear multiple mode processes based on adaptive local model approach. Control Eng Pract. 2008;16:1427-1437.
    • (2008) Control Eng Pract. , vol.16 , pp. 1427-1437
    • Ge, Z.Q.1    Song, Z.H.2
  • 25
    • 49249127452 scopus 로고    scopus 로고
    • Robust online monitoring for multimode processes based on nonlinear external analysis
    • Ge ZQ, Yang CJ, Song ZH, Wang HQ. Robust online monitoring for multimode processes based on nonlinear external analysis. Ind Eng Chem Res. 2008;47:4775-4783.
    • (2008) Ind Eng Chem Res. , vol.47 , pp. 4775-4783
    • Ge, Z.Q.1    Yang, C.J.2    Song, Z.H.3    Wang, H.Q.4
  • 26
    • 47549099484 scopus 로고    scopus 로고
    • Multimode process monitoring with Bayesian inference based finite Gaussian mixture models
    • Yu J, Qin SJ. Multimode process monitoring with Bayesian inference based finite Gaussian mixture models. AIChE J. 2008;54:1811-1829.
    • (2008) AIChE J. , vol.54 , pp. 1811-1829
    • Yu, J.1    Qin, S.J.2
  • 27
    • 72249099895 scopus 로고    scopus 로고
    • Multimode process monitoring based on Bayesian method
    • Ge ZQ, Song ZH. Multimode process monitoring based on Bayesian method. J Chemom. 2009;23:636-650.
    • (2009) J Chemom. , vol.23 , pp. 636-650
    • Ge, Z.Q.1    Song, Z.H.2
  • 28
    • 78650358993 scopus 로고    scopus 로고
    • Mixture Bayesian regularization method of PPCA for multimode process monitoring
    • Ge ZQ, Song ZH. Mixture Bayesian regularization method of PPCA for multimode process monitoring. AIChE J. 2010;56:2838-2849.
    • (2010) AIChE J. , vol.56 , pp. 2838-2849
    • Ge, Z.Q.1    Song, Z.H.2
  • 29
    • 84876305649 scopus 로고    scopus 로고
    • Modeling and performance monitoring of multivariate multimodal processes
    • Feital T, Kruger U, Dutra J, Pinto JC, Lima EL. Modeling and performance monitoring of multivariate multimodal processes. AIChE J. 2013;59:1557-1569.
    • (2013) AIChE J. , vol.59 , pp. 1557-1569
    • Feital, T.1    Kruger, U.2    Dutra, J.3    Pinto, J.C.4    Lima, E.L.5
  • 30
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm
    • Dempster AP, Laird NM, Rubin DB. Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc Ser B. 1977;39:1-39.
    • (1977) J R Stat Soc Ser B. , vol.39 , pp. 1-39
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 31
    • 33749566317 scopus 로고    scopus 로고
    • Supervised probabilistic principal component analysis. In: 12th ACM International Conference on Knowledge Discovery and Data Mining
    • Yu SP, Yu K, Tresp V, Kriege HP, Wu MR. Supervised probabilistic principal component analysis. In: 12th ACM International Conference on Knowledge Discovery and Data Mining. 2006:464-473.
    • (2006) , pp. 464-473
    • Yu, S.P.1    Yu, K.2    Tresp, V.3    Kriege, H.P.4    Wu, M.R.5
  • 32
    • 11144284581 scopus 로고    scopus 로고
    • Soft sensors for product quality monitoring in debutanizer distillation column
    • Fortuna L, Graziani S, Xibilia MG. Soft sensors for product quality monitoring in debutanizer distillation column. Control Eng Pract. 2005;13:499-508.
    • (2005) Control Eng Pract. , vol.13 , pp. 499-508
    • Fortuna, L.1    Graziani, S.2    Xibilia, M.G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.