-
1
-
-
70349396621
-
Multivariate concentration determination using principal component regression with residual analysis
-
Keithley RB, Heien ML, Wightman RM. Multivariate concentration determination using principal component regression with residual analysis. Trends Anal Chem. 2009;28:1127-1136.
-
(2009)
Trends Anal Chem.
, vol.28
, pp. 1127-1136
-
-
Keithley, R.B.1
Heien, M.L.2
Wightman, R.M.3
-
2
-
-
78650953042
-
Mixture probabilistic PCR model for soft sensing of multimode processes
-
Ge ZQ, Gao FR, Song ZH. Mixture probabilistic PCR model for soft sensing of multimode processes. Chemom Intell Lab Syst. 2011;105:91-105.
-
(2011)
Chemom Intell Lab Syst.
, vol.105
, pp. 91-105
-
-
Ge, Z.Q.1
Gao, F.R.2
Song, Z.H.3
-
3
-
-
84863013231
-
Improved principal component regression for face recognition under illumination variations
-
Huang SM, Yang JF. Improved principal component regression for face recognition under illumination variations. IEEE Signal Process Lett. 2012;19:179-182.
-
(2012)
IEEE Signal Process Lett.
, vol.19
, pp. 179-182
-
-
Huang, S.M.1
Yang, J.F.2
-
4
-
-
84892440925
-
Multivariate statistical process monitors
-
Kruger U, Chen Q, Sandoz DJ. Multivariate statistical process monitors. US Patent, 2006;7:062417.
-
(2006)
US Patent,
, vol.7
, pp. 062417
-
-
Kruger, U.1
Chen, Q.2
Sandoz, D.J.3
-
5
-
-
69349083126
-
Complex process monitoring using modified partial least squares method of independent component regression
-
Zhang YW, Zhang Y. Complex process monitoring using modified partial least squares method of independent component regression. Chemom Intell Lab Syst. 2009;98:143-148.
-
(2009)
Chemom Intell Lab Syst.
, vol.98
, pp. 143-148
-
-
Zhang, Y.W.1
Zhang, Y.2
-
6
-
-
84868224530
-
Multiway Gaussian mixture model based adaptive kernel partial least squares regression method for soft sensor estimation and reliable quality prediction of nonlinear multiphase batch processes
-
Yu J. Multiway Gaussian mixture model based adaptive kernel partial least squares regression method for soft sensor estimation and reliable quality prediction of nonlinear multiphase batch processes. Ind Eng Chem Res. 2012;51:13227-13237.
-
(2012)
Ind Eng Chem Res.
, vol.51
, pp. 13227-13237
-
-
Yu, J.1
-
7
-
-
84861963447
-
Comparison of the performance of a reduced-order dynamic PLS soft sensor with different updating schemes for digester control
-
Galicia HJ, He QP, Wang J. Comparison of the performance of a reduced-order dynamic PLS soft sensor with different updating schemes for digester control. Control Eng Pract. 2012;20:747-760.
-
(2012)
Control Eng Pract.
, vol.20
, pp. 747-760
-
-
Galicia, H.J.1
He, Q.P.2
Wang, J.3
-
8
-
-
84862208873
-
Localized adaptive recursive partial least squares regression for dynamic system modeling
-
Ni WD, Tan SK, Ng WJ, Brown SD. Localized adaptive recursive partial least squares regression for dynamic system modeling. Ind Eng Chem Res. 2012;51:8025-8039.
-
(2012)
Ind Eng Chem Res.
, vol.51
, pp. 8025-8039
-
-
Ni, W.D.1
Tan, S.K.2
Ng, W.J.3
Brown, S.D.4
-
9
-
-
20344389745
-
Application of a moving-window-adaptive neural network to the modeling of a full-scale anaerobic filter process
-
Lee MW, Joung JY, Lee DS, Park JM, Woo SH. Application of a moving-window-adaptive neural network to the modeling of a full-scale anaerobic filter process. Ind Eng Chem Res. 2005;44:3973-3982.
-
(2005)
Ind Eng Chem Res.
, vol.44
, pp. 3973-3982
-
-
Lee, M.W.1
Joung, J.Y.2
Lee, D.S.3
Park, J.M.4
Woo, S.H.5
-
10
-
-
57049112694
-
ANN-based soft-sensor for real-time process monitoring and control of an industrial polymerization process
-
Gonzaga JCB, Meleiro LAC, Kiang C, Filho RM. ANN-based soft-sensor for real-time process monitoring and control of an industrial polymerization process. Comput Chem Eng. 2009;33:43-49.
-
(2009)
Comput Chem Eng.
, vol.33
, pp. 43-49
-
-
Gonzaga, J.C.B.1
Meleiro, L.A.C.2
Kiang, C.3
Filho, R.M.4
-
11
-
-
77955920442
-
Hybrid artificial neural network based on BP-PLSR and its application in development of soft sensors
-
Yan XF. Hybrid artificial neural network based on BP-PLSR and its application in development of soft sensors. Chemom Intell Lab Syst. 2010;103:152-159.
-
(2010)
Chemom Intell Lab Syst.
, vol.103
, pp. 152-159
-
-
Yan, X.F.1
-
12
-
-
81155155532
-
Multi-sensor based prediction of metal deposition in pulsed gas metal arc welding using various soft computing models
-
Bhattacharya S, Pal K, Pal SK. Multi-sensor based prediction of metal deposition in pulsed gas metal arc welding using various soft computing models. Appl Soft Comput. 2012;12:498-505.
-
(2012)
Appl Soft Comput.
, vol.12
, pp. 498-505
-
-
Bhattacharya, S.1
Pal, K.2
Pal, S.K.3
-
13
-
-
40249115017
-
Nonlinear monitoring and prediction model in an industrial environmental process
-
Yoo CK. Nonlinear monitoring and prediction model in an industrial environmental process. J Chem Eng Jpn. 2008;41:32-42.
-
(2008)
J Chem Eng Jpn.
, vol.41
, pp. 32-42
-
-
Yoo, C.K.1
-
14
-
-
67650083264
-
Soft chemical analyzer development using adaptive least-squares support vector regression with selective pruning and variable moving window size
-
Liu Y, Hu NP, Wang HQ, Li P. Soft chemical analyzer development using adaptive least-squares support vector regression with selective pruning and variable moving window size. Ind Eng Chem Res. 2009;48:5731-5741.
-
(2009)
Ind Eng Chem Res.
, vol.48
, pp. 5731-5741
-
-
Liu, Y.1
Hu, N.P.2
Wang, H.Q.3
Li, P.4
-
15
-
-
77956406437
-
Nonlinear soft sensor development based on relevance vector machine
-
Ge ZQ, Song ZH. Nonlinear soft sensor development based on relevance vector machine. Ind Eng Chem Res. 2010;49:8685-8693.
-
(2010)
Ind Eng Chem Res.
, vol.49
, pp. 8685-8693
-
-
Ge, Z.Q.1
Song, Z.H.2
-
16
-
-
80052838846
-
Development of soft sensor models based on time difference of process variables with accounting for nonlinear relationship
-
Kaneko H, Funatsu K. Development of soft sensor models based on time difference of process variables with accounting for nonlinear relationship. Ind Eng Chem Res. 2011;50:10643-10651.
-
(2011)
Ind Eng Chem Res.
, vol.50
, pp. 10643-10651
-
-
Kaneko, H.1
Funatsu, K.2
-
17
-
-
84864805251
-
Online quality prediction of nonlinear and non-Gaussian chemical processes with shifting dynamics using finite mixture model based Gaussian process regression approach
-
Yu J. Online quality prediction of nonlinear and non-Gaussian chemical processes with shifting dynamics using finite mixture model based Gaussian process regression approach. Chem Eng Sci. 2012;82:22-30.
-
(2012)
Chem Eng Sci.
, vol.82
, pp. 22-30
-
-
Yu, J.1
-
18
-
-
84861825793
-
Kernel based regression and genetic algorithms for estimating cutting conditions of surface roughness in end milling machining process
-
Wibowo A, Desa MI. Kernel based regression and genetic algorithms for estimating cutting conditions of surface roughness in end milling machining process. Exp Syst Appl. 2012;39:11634-11641.
-
(2012)
Exp Syst Appl.
, vol.39
, pp. 11634-11641
-
-
Wibowo, A.1
Desa, M.I.2
-
19
-
-
57249097849
-
Dealing with irregular data in soft sensor: Bayesian method and comparative study
-
Khatibisepehr S, Huang B. Dealing with irregular data in soft sensor: Bayesian method and comparative study. Ind Eng Chem Res. 2008;47:8713-8723.
-
(2008)
Ind Eng Chem Res.
, vol.47
, pp. 8713-8723
-
-
Khatibisepehr, S.1
Huang, B.2
-
20
-
-
83355163227
-
Multiple model based LPV soft sensor development with irregular/missing process output measurement
-
Jin X, Wang SY, Huang B, Forbes F. Multiple model based LPV soft sensor development with irregular/missing process output measurement. Control Eng Pract. 2012;20:165-172.
-
(2012)
Control Eng Pract.
, vol.20
, pp. 165-172
-
-
Jin, X.1
Wang, S.Y.2
Huang, B.3
Forbes, F.4
-
21
-
-
84859392648
-
A Bayesian inference based two-stage support vector regression framework for soft sensor development in batch bioprocesses
-
Yu J. A Bayesian inference based two-stage support vector regression framework for soft sensor development in batch bioprocesses. Comput Chem Eng. 2012;41:134-144.
-
(2012)
Comput Chem Eng.
, vol.41
, pp. 134-144
-
-
Yu, J.1
-
22
-
-
84870438932
-
A Bayesian approach to design of adaptive multi-model inferential sensors with application in oil sand industry
-
Khatibisepehr S, Huang B, Xu FW, Espejo A. A Bayesian approach to design of adaptive multi-model inferential sensors with application in oil sand industry. J Process Control. 2012;22:1913-1929.
-
(2012)
J Process Control.
, vol.22
, pp. 1913-1929
-
-
Khatibisepehr, S.1
Huang, B.2
Xu, F.W.3
Espejo, A.4
-
23
-
-
79960245463
-
Semisupervised Bayesian method for soft sensor modeling with unlabeled data samples
-
Ge ZQ, Song ZH. Semisupervised Bayesian method for soft sensor modeling with unlabeled data samples. AIChE J. 2011;57:2109-2119.
-
(2011)
AIChE J.
, vol.57
, pp. 2109-2119
-
-
Ge, Z.Q.1
Song, Z.H.2
-
24
-
-
50649095932
-
Online monitoring of nonlinear multiple mode processes based on adaptive local model approach
-
Ge ZQ, Song ZH. Online monitoring of nonlinear multiple mode processes based on adaptive local model approach. Control Eng Pract. 2008;16:1427-1437.
-
(2008)
Control Eng Pract.
, vol.16
, pp. 1427-1437
-
-
Ge, Z.Q.1
Song, Z.H.2
-
25
-
-
49249127452
-
Robust online monitoring for multimode processes based on nonlinear external analysis
-
Ge ZQ, Yang CJ, Song ZH, Wang HQ. Robust online monitoring for multimode processes based on nonlinear external analysis. Ind Eng Chem Res. 2008;47:4775-4783.
-
(2008)
Ind Eng Chem Res.
, vol.47
, pp. 4775-4783
-
-
Ge, Z.Q.1
Yang, C.J.2
Song, Z.H.3
Wang, H.Q.4
-
26
-
-
47549099484
-
Multimode process monitoring with Bayesian inference based finite Gaussian mixture models
-
Yu J, Qin SJ. Multimode process monitoring with Bayesian inference based finite Gaussian mixture models. AIChE J. 2008;54:1811-1829.
-
(2008)
AIChE J.
, vol.54
, pp. 1811-1829
-
-
Yu, J.1
Qin, S.J.2
-
27
-
-
72249099895
-
Multimode process monitoring based on Bayesian method
-
Ge ZQ, Song ZH. Multimode process monitoring based on Bayesian method. J Chemom. 2009;23:636-650.
-
(2009)
J Chemom.
, vol.23
, pp. 636-650
-
-
Ge, Z.Q.1
Song, Z.H.2
-
28
-
-
78650358993
-
Mixture Bayesian regularization method of PPCA for multimode process monitoring
-
Ge ZQ, Song ZH. Mixture Bayesian regularization method of PPCA for multimode process monitoring. AIChE J. 2010;56:2838-2849.
-
(2010)
AIChE J.
, vol.56
, pp. 2838-2849
-
-
Ge, Z.Q.1
Song, Z.H.2
-
29
-
-
84876305649
-
Modeling and performance monitoring of multivariate multimodal processes
-
Feital T, Kruger U, Dutra J, Pinto JC, Lima EL. Modeling and performance monitoring of multivariate multimodal processes. AIChE J. 2013;59:1557-1569.
-
(2013)
AIChE J.
, vol.59
, pp. 1557-1569
-
-
Feital, T.1
Kruger, U.2
Dutra, J.3
Pinto, J.C.4
Lima, E.L.5
-
31
-
-
33749566317
-
-
Supervised probabilistic principal component analysis. In: 12th ACM International Conference on Knowledge Discovery and Data Mining
-
Yu SP, Yu K, Tresp V, Kriege HP, Wu MR. Supervised probabilistic principal component analysis. In: 12th ACM International Conference on Knowledge Discovery and Data Mining. 2006:464-473.
-
(2006)
, pp. 464-473
-
-
Yu, S.P.1
Yu, K.2
Tresp, V.3
Kriege, H.P.4
Wu, M.R.5
-
32
-
-
11144284581
-
Soft sensors for product quality monitoring in debutanizer distillation column
-
Fortuna L, Graziani S, Xibilia MG. Soft sensors for product quality monitoring in debutanizer distillation column. Control Eng Pract. 2005;13:499-508.
-
(2005)
Control Eng Pract.
, vol.13
, pp. 499-508
-
-
Fortuna, L.1
Graziani, S.2
Xibilia, M.G.3
|