메뉴 건너뛰기




Volumn 138, Issue , 2014, Pages 97-109

Soft sensor model development in multiphase/multimode processes based on Gaussian mixture regression

Author keywords

Gaussian mixture regression; Multimode process; Multiphase process; Quality prediction; Soft sensor

Indexed keywords

ALGORITHM; ARTICLE; CONTROLLED STUDY; EXPECTATION MAXIMIZATION ALGORITHM; FEASIBILITY STUDY; GAUSSIAN MIXTURE REGRESSION MODEL; INTERMETHOD COMPARISON; MATHEMATICAL COMPUTING; PREDICTION; PRIORITY JOURNAL; PROCESS DEVELOPMENT; PROCESS MONITORING; PROCESS OPTIMIZATION; QUALITY CONTROL; SENSOR; SOFT SENSOR; STATISTICAL MODEL; VALIDATION STUDY; INDUSTRY; MATHEMATICAL MODEL; MULTIMODE PROCESS; MULTIPHASE PROCESS; PARAMETERS; PARTIAL LEAST SQUARES REGRESSION; PROCESS TECHNOLOGY; SOFT SENSOR MODEL;

EID: 84905715987     PISSN: 01697439     EISSN: 18733239     Source Type: Journal    
DOI: 10.1016/j.chemolab.2014.07.013     Document Type: Article
Times cited : (116)

References (38)
  • 1
    • 84892445860 scopus 로고    scopus 로고
    • Mixture semisupervised principal component regression model and soft sensor application
    • Ge Z., Huang B., Song Z. Mixture semisupervised principal component regression model and soft sensor application. Aiche J. 2014, 60:533-545.
    • (2014) Aiche J. , vol.60 , pp. 533-545
    • Ge, Z.1    Huang, B.2    Song, Z.3
  • 2
    • 84896914137 scopus 로고    scopus 로고
    • Adaptive soft sensor model using online support vector regression with time variable and discussion of appropriate parameter settings
    • Kaneko H., Funatsu K. Adaptive soft sensor model using online support vector regression with time variable and discussion of appropriate parameter settings. Procedia Comput. Sci. 2013, 22:580-589.
    • (2013) Procedia Comput. Sci. , vol.22 , pp. 580-589
    • Kaneko, H.1    Funatsu, K.2
  • 3
    • 84876727380 scopus 로고    scopus 로고
    • Development of soft-sensor using locally weighted PLS with adaptive similarity measure
    • Kim S., Okajima R., Kano M., Hasebe S. Development of soft-sensor using locally weighted PLS with adaptive similarity measure. Chemom. Intell. Lab. Syst. 2013, 124:43-49.
    • (2013) Chemom. Intell. Lab. Syst. , vol.124 , pp. 43-49
    • Kim, S.1    Okajima, R.2    Kano, M.3    Hasebe, S.4
  • 4
    • 84888306466 scopus 로고    scopus 로고
    • Design of inferential sensors in the process industry: a review of Bayesian methods
    • Khatibisepehr S., Huang B., Khare S. Design of inferential sensors in the process industry: a review of Bayesian methods. J. Process Control 2013, 23:1575-1596.
    • (2013) J. Process Control , vol.23 , pp. 1575-1596
    • Khatibisepehr, S.1    Huang, B.2    Khare, S.3
  • 5
    • 67349089877 scopus 로고    scopus 로고
    • Data-driven soft sensors in the process industry
    • Kadlec P., Gabrys B., Strandt S. Data-driven soft sensors in the process industry. Comput. Chem. Eng. 2009, 33:795-814.
    • (2009) Comput. Chem. Eng. , vol.33 , pp. 795-814
    • Kadlec, P.1    Gabrys, B.2    Strandt, S.3
  • 8
    • 58449118276 scopus 로고    scopus 로고
    • Development of a new soft sensor method using independent component analysis and partial least squares
    • Kaneko H., Arakawa M., Funatsu K. Development of a new soft sensor method using independent component analysis and partial least squares. AlChE J. 2009, 55:87-98.
    • (2009) AlChE J. , vol.55 , pp. 87-98
    • Kaneko, H.1    Arakawa, M.2    Funatsu, K.3
  • 10
    • 78650524009 scopus 로고    scopus 로고
    • A comparative study of just-in-time-learning based methods for online soft sensor modeling
    • Ge Z., Song Z. A comparative study of just-in-time-learning based methods for online soft sensor modeling. Chemom. Intell. Lab. Syst. 2010, 104:306-317.
    • (2010) Chemom. Intell. Lab. Syst. , vol.104 , pp. 306-317
    • Ge, Z.1    Song, Z.2
  • 12
    • 78751619797 scopus 로고    scopus 로고
    • Identifying static and dynamic prediction models for NOx emissions with evolving fuzzy systems
    • Lughofer E., Macián V., Guardiola C., Klement E.P. Identifying static and dynamic prediction models for NOx emissions with evolving fuzzy systems. Appl. Soft Comput. 2011, 11:2487-2500.
    • (2011) Appl. Soft Comput. , vol.11 , pp. 2487-2500
    • Lughofer, E.1    Macián, V.2    Guardiola, C.3    Klement, E.P.4
  • 13
    • 80053629374 scopus 로고    scopus 로고
    • NIR-based quantification of process parameters in polyetheracrylat (PEA) production using flexible non-linear fuzzy systems
    • Cernuda C., Lughofer E., Märzinger W., Kasberger J. NIR-based quantification of process parameters in polyetheracrylat (PEA) production using flexible non-linear fuzzy systems. Chemom. Intell. Lab. Syst. 2011, 109:22-33.
    • (2011) Chemom. Intell. Lab. Syst. , vol.109 , pp. 22-33
    • Cernuda, C.1    Lughofer, E.2    Märzinger, W.3    Kasberger, J.4
  • 18
    • 84887246157 scopus 로고    scopus 로고
    • Novelty detection and segmentation based on Gaussian mixture models: a case study in 3D robotic laser mapping
    • Núñez P., Rocha R.P., Campos M., Dias J. Novelty detection and segmentation based on Gaussian mixture models: a case study in 3D robotic laser mapping. Robot. Auton. Syst. 2013, 61:1696-1709.
    • (2013) Robot. Auton. Syst. , vol.61 , pp. 1696-1709
    • Núñez, P.1    Rocha, R.P.2    Campos, M.3    Dias, J.4
  • 19
    • 2342521341 scopus 로고    scopus 로고
    • Process monitoring using a Gaussian mixture model via principal component analysis and discriminant analysis
    • Choi S.W., Park J.H., Lee I.-B. Process monitoring using a Gaussian mixture model via principal component analysis and discriminant analysis. Comput. Chem. Eng. 2004, 28:1377-1387.
    • (2004) Comput. Chem. Eng. , vol.28 , pp. 1377-1387
    • Choi, S.W.1    Park, J.H.2    Lee, I.-B.3
  • 20
    • 47549099484 scopus 로고    scopus 로고
    • Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models
    • Yu J., Qin S.J. Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models. AlChE J. 2008, 54:1811-1829.
    • (2008) AlChE J. , vol.54 , pp. 1811-1829
    • Yu, J.1    Qin, S.J.2
  • 21
    • 84868224530 scopus 로고    scopus 로고
    • Multiway Gaussian mixture model based adaptive kernel partial least squares regression method for soft sensor estimation and reliable quality prediction of nonlinear multiphase batch processes
    • Yu J. Multiway Gaussian mixture model based adaptive kernel partial least squares regression method for soft sensor estimation and reliable quality prediction of nonlinear multiphase batch processes. Ind. Eng. Chem. Res. 2012, 51:13227-13237.
    • (2012) Ind. Eng. Chem. Res. , vol.51 , pp. 13227-13237
    • Yu, J.1
  • 22
    • 84880339799 scopus 로고    scopus 로고
    • Adaptive soft sensor for online prediction and process monitoring based on a mixture of Gaussian process models
    • Grbić R., Slišković D., Kadlec P. Adaptive soft sensor for online prediction and process monitoring based on a mixture of Gaussian process models. Comput. Chem. Eng. 2013, 58:84-97.
    • (2013) Comput. Chem. Eng. , vol.58 , pp. 84-97
    • Grbić, R.1    Slišković, D.2    Kadlec, P.3
  • 25
    • 39049160726 scopus 로고    scopus 로고
    • Breast cancer prognosis via Gaussian mixture regression
    • Electrical and Computer Engineering, 2006. CCECE'06
    • Falk T.H., Shatkay H., Chan W.-Y. Breast cancer prognosis via Gaussian mixture regression. Canadian Conference on, IEEE 2006, 987-990.
    • (2006) Canadian Conference on, IEEE , pp. 987-990
    • Falk, T.H.1    Shatkay, H.2    Chan, W.-Y.3
  • 27
    • 84879070479 scopus 로고    scopus 로고
    • Continuous tool wear prediction based on Gaussian mixture regression model
    • Wang G., Qian L., Guo Z. Continuous tool wear prediction based on Gaussian mixture regression model. Int. J. Adv. Manuf. Technol. 2013, 66:1921-1929.
    • (2013) Int. J. Adv. Manuf. Technol. , vol.66 , pp. 1921-1929
    • Wang, G.1    Qian, L.2    Guo, Z.3
  • 29
    • 34047173490 scopus 로고    scopus 로고
    • On learning, representing, and generalizing a task in a humanoid robot
    • Calinon S., Guenter F., Billard A. On learning, representing, and generalizing a task in a humanoid robot. IEEE Trans. Syst. Man Cybern. B 2007, 37:286-298.
    • (2007) IEEE Trans. Syst. Man Cybern. B , vol.37 , pp. 286-298
    • Calinon, S.1    Guenter, F.2    Billard, A.3
  • 30
    • 0032269108 scopus 로고    scopus 로고
    • How many clusters? Which clustering method? Answers via model-based cluster analysis
    • Fraley C., Raftery A.E. How many clusters? Which clustering method? Answers via model-based cluster analysis. Comput. J. 1998, 41:578-588.
    • (1998) Comput. J. , vol.41 , pp. 578-588
    • Fraley, C.1    Raftery, A.E.2
  • 36
    • 84865752987 scopus 로고    scopus 로고
    • A dynamic split-and-merge approach for evolving cluster models
    • Lughofer E. A dynamic split-and-merge approach for evolving cluster models. Evol. Syst. 2012, 3:135-151.
    • (2012) Evol. Syst. , vol.3 , pp. 135-151
    • Lughofer, E.1
  • 37
    • 0027561446 scopus 로고
    • A plant-wide industrial process control problem
    • Downs J.J., Vogel E.F. A plant-wide industrial process control problem. Comput. Chem. Eng. 1993, 17:245-255.
    • (1993) Comput. Chem. Eng. , vol.17 , pp. 245-255
    • Downs, J.J.1    Vogel, E.F.2
  • 38
    • 0037110983 scopus 로고    scopus 로고
    • A modular simulation package for fed-batch fermentation: penicillin production
    • Birol G., Ündey C., Cinar A. A modular simulation package for fed-batch fermentation: penicillin production. Comput. Chem. Eng. 2002, 26:1553-1565.
    • (2002) Comput. Chem. Eng. , vol.26 , pp. 1553-1565
    • Birol, G.1    Ündey, C.2    Cinar, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.