-
1
-
-
84892445860
-
Mixture semisupervised principal component regression model and soft sensor application
-
Ge Z., Huang B., Song Z. Mixture semisupervised principal component regression model and soft sensor application. Aiche J. 2014, 60:533-545.
-
(2014)
Aiche J.
, vol.60
, pp. 533-545
-
-
Ge, Z.1
Huang, B.2
Song, Z.3
-
2
-
-
84896914137
-
Adaptive soft sensor model using online support vector regression with time variable and discussion of appropriate parameter settings
-
Kaneko H., Funatsu K. Adaptive soft sensor model using online support vector regression with time variable and discussion of appropriate parameter settings. Procedia Comput. Sci. 2013, 22:580-589.
-
(2013)
Procedia Comput. Sci.
, vol.22
, pp. 580-589
-
-
Kaneko, H.1
Funatsu, K.2
-
3
-
-
84876727380
-
Development of soft-sensor using locally weighted PLS with adaptive similarity measure
-
Kim S., Okajima R., Kano M., Hasebe S. Development of soft-sensor using locally weighted PLS with adaptive similarity measure. Chemom. Intell. Lab. Syst. 2013, 124:43-49.
-
(2013)
Chemom. Intell. Lab. Syst.
, vol.124
, pp. 43-49
-
-
Kim, S.1
Okajima, R.2
Kano, M.3
Hasebe, S.4
-
4
-
-
84888306466
-
Design of inferential sensors in the process industry: a review of Bayesian methods
-
Khatibisepehr S., Huang B., Khare S. Design of inferential sensors in the process industry: a review of Bayesian methods. J. Process Control 2013, 23:1575-1596.
-
(2013)
J. Process Control
, vol.23
, pp. 1575-1596
-
-
Khatibisepehr, S.1
Huang, B.2
Khare, S.3
-
5
-
-
67349089877
-
Data-driven soft sensors in the process industry
-
Kadlec P., Gabrys B., Strandt S. Data-driven soft sensors in the process industry. Comput. Chem. Eng. 2009, 33:795-814.
-
(2009)
Comput. Chem. Eng.
, vol.33
, pp. 795-814
-
-
Kadlec, P.1
Gabrys, B.2
Strandt, S.3
-
8
-
-
58449118276
-
Development of a new soft sensor method using independent component analysis and partial least squares
-
Kaneko H., Arakawa M., Funatsu K. Development of a new soft sensor method using independent component analysis and partial least squares. AlChE J. 2009, 55:87-98.
-
(2009)
AlChE J.
, vol.55
, pp. 87-98
-
-
Kaneko, H.1
Arakawa, M.2
Funatsu, K.3
-
10
-
-
78650524009
-
A comparative study of just-in-time-learning based methods for online soft sensor modeling
-
Ge Z., Song Z. A comparative study of just-in-time-learning based methods for online soft sensor modeling. Chemom. Intell. Lab. Syst. 2010, 104:306-317.
-
(2010)
Chemom. Intell. Lab. Syst.
, vol.104
, pp. 306-317
-
-
Ge, Z.1
Song, Z.2
-
12
-
-
78751619797
-
Identifying static and dynamic prediction models for NOx emissions with evolving fuzzy systems
-
Lughofer E., Macián V., Guardiola C., Klement E.P. Identifying static and dynamic prediction models for NOx emissions with evolving fuzzy systems. Appl. Soft Comput. 2011, 11:2487-2500.
-
(2011)
Appl. Soft Comput.
, vol.11
, pp. 2487-2500
-
-
Lughofer, E.1
Macián, V.2
Guardiola, C.3
Klement, E.P.4
-
13
-
-
80053629374
-
NIR-based quantification of process parameters in polyetheracrylat (PEA) production using flexible non-linear fuzzy systems
-
Cernuda C., Lughofer E., Märzinger W., Kasberger J. NIR-based quantification of process parameters in polyetheracrylat (PEA) production using flexible non-linear fuzzy systems. Chemom. Intell. Lab. Syst. 2011, 109:22-33.
-
(2011)
Chemom. Intell. Lab. Syst.
, vol.109
, pp. 22-33
-
-
Cernuda, C.1
Lughofer, E.2
Märzinger, W.3
Kasberger, J.4
-
14
-
-
84878390138
-
Hybrid adaptive calibration methods and ensemble strategy for prediction of cloud point in melamine resin production
-
Cernuda C., Lughofer E., Hintenaus P., Märzinger W., Reischer T., Pawliczek M., Kasberger J. Hybrid adaptive calibration methods and ensemble strategy for prediction of cloud point in melamine resin production. Chemom. Intell. Lab. Syst. 2013, 126:60-75.
-
(2013)
Chemom. Intell. Lab. Syst.
, vol.126
, pp. 60-75
-
-
Cernuda, C.1
Lughofer, E.2
Hintenaus, P.3
Märzinger, W.4
Reischer, T.5
Pawliczek, M.6
Kasberger, J.7
-
17
-
-
84865351754
-
Fast estimation of Gaussian mixture models for image segmentation
-
Greggio N., Bernardino A., Laschi C., Dario P., Santos-Victor J. Fast estimation of Gaussian mixture models for image segmentation. Mach. Vis. Appl. 2012, 23:773-789.
-
(2012)
Mach. Vis. Appl.
, vol.23
, pp. 773-789
-
-
Greggio, N.1
Bernardino, A.2
Laschi, C.3
Dario, P.4
Santos-Victor, J.5
-
18
-
-
84887246157
-
Novelty detection and segmentation based on Gaussian mixture models: a case study in 3D robotic laser mapping
-
Núñez P., Rocha R.P., Campos M., Dias J. Novelty detection and segmentation based on Gaussian mixture models: a case study in 3D robotic laser mapping. Robot. Auton. Syst. 2013, 61:1696-1709.
-
(2013)
Robot. Auton. Syst.
, vol.61
, pp. 1696-1709
-
-
Núñez, P.1
Rocha, R.P.2
Campos, M.3
Dias, J.4
-
19
-
-
2342521341
-
Process monitoring using a Gaussian mixture model via principal component analysis and discriminant analysis
-
Choi S.W., Park J.H., Lee I.-B. Process monitoring using a Gaussian mixture model via principal component analysis and discriminant analysis. Comput. Chem. Eng. 2004, 28:1377-1387.
-
(2004)
Comput. Chem. Eng.
, vol.28
, pp. 1377-1387
-
-
Choi, S.W.1
Park, J.H.2
Lee, I.-B.3
-
20
-
-
47549099484
-
Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models
-
Yu J., Qin S.J. Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models. AlChE J. 2008, 54:1811-1829.
-
(2008)
AlChE J.
, vol.54
, pp. 1811-1829
-
-
Yu, J.1
Qin, S.J.2
-
21
-
-
84868224530
-
Multiway Gaussian mixture model based adaptive kernel partial least squares regression method for soft sensor estimation and reliable quality prediction of nonlinear multiphase batch processes
-
Yu J. Multiway Gaussian mixture model based adaptive kernel partial least squares regression method for soft sensor estimation and reliable quality prediction of nonlinear multiphase batch processes. Ind. Eng. Chem. Res. 2012, 51:13227-13237.
-
(2012)
Ind. Eng. Chem. Res.
, vol.51
, pp. 13227-13237
-
-
Yu, J.1
-
22
-
-
84880339799
-
Adaptive soft sensor for online prediction and process monitoring based on a mixture of Gaussian process models
-
Grbić R., Slišković D., Kadlec P. Adaptive soft sensor for online prediction and process monitoring based on a mixture of Gaussian process models. Comput. Chem. Eng. 2013, 58:84-97.
-
(2013)
Comput. Chem. Eng.
, vol.58
, pp. 84-97
-
-
Grbić, R.1
Slišković, D.2
Kadlec, P.3
-
25
-
-
39049160726
-
Breast cancer prognosis via Gaussian mixture regression
-
Electrical and Computer Engineering, 2006. CCECE'06
-
Falk T.H., Shatkay H., Chan W.-Y. Breast cancer prognosis via Gaussian mixture regression. Canadian Conference on, IEEE 2006, 987-990.
-
(2006)
Canadian Conference on, IEEE
, pp. 987-990
-
-
Falk, T.H.1
Shatkay, H.2
Chan, W.-Y.3
-
26
-
-
79952492138
-
Latent Gaussian mixture regression for human pose estimation
-
Springer
-
Tian Y., Sigal L., Badino H., De la Torre F., Liu Y. Latent Gaussian mixture regression for human pose estimation. Computer Vision-ACCV 2010 2011, 679-690. Springer.
-
(2011)
Computer Vision-ACCV 2010
, pp. 679-690
-
-
Tian, Y.1
Sigal, L.2
Badino, H.3
De la Torre, F.4
Liu, Y.5
-
27
-
-
84879070479
-
Continuous tool wear prediction based on Gaussian mixture regression model
-
Wang G., Qian L., Guo Z. Continuous tool wear prediction based on Gaussian mixture regression model. Int. J. Adv. Manuf. Technol. 2013, 66:1921-1929.
-
(2013)
Int. J. Adv. Manuf. Technol.
, vol.66
, pp. 1921-1929
-
-
Wang, G.1
Qian, L.2
Guo, Z.3
-
28
-
-
78651492935
-
Incremental local online Gaussian mixture regression for imitation learning of multiple tasks
-
Cederborg T., Li M., Baranes A., Oudeyer P.-Y. Incremental local online Gaussian mixture regression for imitation learning of multiple tasks. Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on, IEEE 2010, 267-274.
-
(2010)
Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on, IEEE
, pp. 267-274
-
-
Cederborg, T.1
Li, M.2
Baranes, A.3
Oudeyer, P.-Y.4
-
29
-
-
34047173490
-
On learning, representing, and generalizing a task in a humanoid robot
-
Calinon S., Guenter F., Billard A. On learning, representing, and generalizing a task in a humanoid robot. IEEE Trans. Syst. Man Cybern. B 2007, 37:286-298.
-
(2007)
IEEE Trans. Syst. Man Cybern. B
, vol.37
, pp. 286-298
-
-
Calinon, S.1
Guenter, F.2
Billard, A.3
-
30
-
-
0032269108
-
How many clusters? Which clustering method? Answers via model-based cluster analysis
-
Fraley C., Raftery A.E. How many clusters? Which clustering method? Answers via model-based cluster analysis. Comput. J. 1998, 41:578-588.
-
(1998)
Comput. J.
, vol.41
, pp. 578-588
-
-
Fraley, C.1
Raftery, A.E.2
-
36
-
-
84865752987
-
A dynamic split-and-merge approach for evolving cluster models
-
Lughofer E. A dynamic split-and-merge approach for evolving cluster models. Evol. Syst. 2012, 3:135-151.
-
(2012)
Evol. Syst.
, vol.3
, pp. 135-151
-
-
Lughofer, E.1
-
37
-
-
0027561446
-
A plant-wide industrial process control problem
-
Downs J.J., Vogel E.F. A plant-wide industrial process control problem. Comput. Chem. Eng. 1993, 17:245-255.
-
(1993)
Comput. Chem. Eng.
, vol.17
, pp. 245-255
-
-
Downs, J.J.1
Vogel, E.F.2
-
38
-
-
0037110983
-
A modular simulation package for fed-batch fermentation: penicillin production
-
Birol G., Ündey C., Cinar A. A modular simulation package for fed-batch fermentation: penicillin production. Comput. Chem. Eng. 2002, 26:1553-1565.
-
(2002)
Comput. Chem. Eng.
, vol.26
, pp. 1553-1565
-
-
Birol, G.1
Ündey, C.2
Cinar, A.3
|