-
1
-
-
0037392450
-
Multiscale SPC using wavelets: theoretical analysis and properties
-
Aradhye H.B., Bakshi B.R., Strauss R.A., Davis J.F. Multiscale SPC using wavelets: theoretical analysis and properties. A.I.Ch.E. J. 2003, 49(4):939-958.
-
(2003)
A.I.Ch.E. J.
, vol.49
, Issue.4
, pp. 939-958
-
-
Aradhye, H.B.1
Bakshi, B.R.2
Strauss, R.A.3
Davis, J.F.4
-
2
-
-
0032118892
-
Multiscale PCA with application to multivariate statistical process monitoring
-
Bakshi B.R. Multiscale PCA with application to multivariate statistical process monitoring. A.I.Ch.E. J. 1998, 44(7):1596-1610.
-
(1998)
A.I.Ch.E. J.
, vol.44
, Issue.7
, pp. 1596-1610
-
-
Bakshi, B.R.1
-
3
-
-
0036466502
-
Dynamic process fault monitoring based on neural network and PCA
-
Chen J.H., Liao C.M. Dynamic process fault monitoring based on neural network and PCA. J. Process Control 2002, 12:277-289.
-
(2002)
J. Process Control
, vol.12
, pp. 277-289
-
-
Chen, J.H.1
Liao, C.M.2
-
5
-
-
10244238854
-
Fault identification for process monitoring using kernel principal component analysis
-
Cho J.H., Lee J.M., Choi S.W., Lee D., Lee I.B. Fault identification for process monitoring using kernel principal component analysis. Chem. Eng. Sci. 2005, 60:279-288.
-
(2005)
Chem. Eng. Sci.
, vol.60
, pp. 279-288
-
-
Cho, J.H.1
Lee, J.M.2
Choi, S.W.3
Lee, D.4
Lee, I.B.5
-
6
-
-
0037469986
-
Nonlinear regression using RBFN with linear submodels
-
Choi S.W., Lee D., Park J.H., Lee I.B. Nonlinear regression using RBFN with linear submodels. Chemom. Intell. Lab. Syst. 2003, 65:191-208.
-
(2003)
Chemom. Intell. Lab. Syst.
, vol.65
, pp. 191-208
-
-
Choi, S.W.1
Lee, D.2
Park, J.H.3
Lee, I.B.4
-
7
-
-
11144331636
-
Fault detection and identification of nonlinear processes based on KPCA
-
Choi S.W., Lee C., Lee J.M., Park J.H., Lee I.-B. Fault detection and identification of nonlinear processes based on KPCA. Chemom. Intell. Lab. Syst. 2005, 75:55-67.
-
(2005)
Chemom. Intell. Lab. Syst.
, vol.75
, pp. 55-67
-
-
Choi, S.W.1
Lee, C.2
Lee, J.M.3
Park, J.H.4
Lee, I.-B.5
-
8
-
-
0043015539
-
Nonlinear principal component analysis-based on principal curves and neural networks
-
Dong D., McAvoy T.J. Nonlinear principal component analysis-based on principal curves and neural networks. Comput. Chem. Eng. 1996, 20:65-78.
-
(1996)
Comput. Chem. Eng.
, vol.20
, pp. 65-78
-
-
Dong, D.1
McAvoy, T.J.2
-
9
-
-
19844367402
-
Multiscale nonlinear principal component analysis (NLPCA) and its application for chemical process monitoring
-
Geng Z.Q., Zhu Q.X. Multiscale nonlinear principal component analysis (NLPCA) and its application for chemical process monitoring. Ind. Eng. Chem. Res. 2005, 44:3585-3593.
-
(2005)
Ind. Eng. Chem. Res.
, vol.44
, pp. 3585-3593
-
-
Geng, Z.Q.1
Zhu, Q.X.2
-
10
-
-
0033611749
-
Non-linear principal components analysis using genetic programming
-
Hiden H.G., Willis M.J., Tham M.T., Montague G.A. Non-linear principal components analysis using genetic programming. Comput. Chem. Eng. 1999, 23:413-425.
-
(1999)
Comput. Chem. Eng.
, vol.23
, pp. 413-425
-
-
Hiden, H.G.1
Willis, M.J.2
Tham, M.T.3
Montague, G.A.4
-
11
-
-
0000588327
-
Non-linear principal component analysis for process fault detection
-
Jia F., Martin E.B., Morris A.J. Non-linear principal component analysis for process fault detection. Comput. Chem. Eng. 1998, 22:S851-S854.
-
(1998)
Comput. Chem. Eng.
, vol.22
-
-
Jia, F.1
Martin, E.B.2
Morris, A.J.3
-
12
-
-
0026113980
-
Non-linear principal component analysis using autoassociative neural networks
-
Kramer M.A. Non-linear principal component analysis using autoassociative neural networks. AIChE J. 1991, 37:233-243.
-
(1991)
AIChE J.
, vol.37
, pp. 233-243
-
-
Kramer, M.A.1
-
13
-
-
2342512223
-
Modeling and monitoring of batch processes using principal component analysis (PCA) assisted generalized regression neural networks (GRNN)
-
Kulkarni S.G., Chaudhary A.K., Nandi S., Tambe S.S., Kulkarni B.D. Modeling and monitoring of batch processes using principal component analysis (PCA) assisted generalized regression neural networks (GRNN). Biochem. Eng. J. 2004, 18:193-210.
-
(2004)
Biochem. Eng. J.
, vol.18
, pp. 193-210
-
-
Kulkarni, S.G.1
Chaudhary, A.K.2
Nandi, S.3
Tambe, S.S.4
Kulkarni, B.D.5
-
14
-
-
9744237208
-
Multiple-fault diagnosis of the Tennessee Eastman process based on system decomposition and dynamic PLS
-
Lee G., Han C.H., Yoon E.S. Multiple-fault diagnosis of the Tennessee Eastman process based on system decomposition and dynamic PLS. Ind. Eng. Chem. Res. 2004, 43:8037-8048.
-
(2004)
Ind. Eng. Chem. Res.
, vol.43
, pp. 8037-8048
-
-
Lee, G.1
Han, C.H.2
Yoon, E.S.3
-
15
-
-
1342285571
-
Statistical process monitoring with independent component analysis
-
Lee J.M., Yoo C.K., Lee I.B. Statistical process monitoring with independent component analysis. J. Process Control 2004, 14:467-485.
-
(2004)
J. Process Control
, vol.14
, pp. 467-485
-
-
Lee, J.M.1
Yoo, C.K.2
Lee, I.B.3
-
16
-
-
0029267381
-
Statistical process control of multivariate processes
-
MacGregor J.F., Kourti T. Statistical process control of multivariate processes. Control Eng. Pract. 1995, 3:403-414.
-
(1995)
Control Eng. Pract.
, vol.3
, pp. 403-414
-
-
MacGregor, J.F.1
Kourti, T.2
-
17
-
-
84898970836
-
KPCA and de-noising in feature spaces
-
Mika S., Schölkopf B., Smola A.J., Mjuller K.R., Scholz M., Rjatsch G. KPCA and de-noising in feature spaces. Adv. Neural Inf. Process. Syst. 1999, 11:536-542.
-
(1999)
Adv. Neural Inf. Process. Syst.
, vol.11
, pp. 536-542
-
-
Mika, S.1
Schölkopf, B.2
Smola, A.J.3
Mjuller, K.R.4
Scholz, M.5
Rjatsch, G.6
-
18
-
-
0037106519
-
Multivariate process monitoring and fault diagnosis by multi-scale PCA
-
Misra M., Yue H.H., Qin S.J., Ling C. Multivariate process monitoring and fault diagnosis by multi-scale PCA. Comput. Chem. Eng. 2002, 26(9):1281-1293.
-
(2002)
Comput. Chem. Eng.
, vol.26
, Issue.9
, pp. 1281-1293
-
-
Misra, M.1
Yue, H.H.2
Qin, S.J.3
Ling, C.4
-
19
-
-
0029252734
-
Multivariate spc charts for monitoring batch processes
-
Nomikos P., MacGregor J.F. Multivariate spc charts for monitoring batch processes. Technometrics 1995, 37(1):41-59.
-
(1995)
Technometrics
, vol.37
, Issue.1
, pp. 41-59
-
-
Nomikos, P.1
MacGregor, J.F.2
-
20
-
-
0242354134
-
Statistical process monitoring: basics and beyond
-
Qin S.J. Statistical process monitoring: basics and beyond. J. Chemom. 2003, 17:480-502.
-
(2003)
J. Chemom.
, vol.17
, pp. 480-502
-
-
Qin, S.J.1
-
21
-
-
84984286248
-
A PLS kernel algorithm for data sets with many variables and fewer objects. Part 1: theory and algorithm
-
Rännar S., Lindgren F., Geladi P., Wold S. A PLS kernel algorithm for data sets with many variables and fewer objects. Part 1: theory and algorithm. J. Chemom. 1994, 8:111-125.
-
(1994)
J. Chemom.
, vol.8
, pp. 111-125
-
-
Rännar, S.1
Lindgren, F.2
Geladi, P.3
Wold, S.4
-
22
-
-
0001452843
-
-
A multi-view nonlinear active shape model using KPCA. In: Proceedings of BMVC, Nottingham, UK
-
Romdhani S., Gong S., Psarrou A., 1999. A multi-view nonlinear active shape model using KPCA. In: Proceedings of BMVC, Nottingham, UK, pp. 483-492.
-
(1999)
, pp. 483-492
-
-
Romdhani, S.1
Gong, S.2
Psarrou, A.3
-
23
-
-
0037624001
-
Kernel partial least squares for nonlinear regression and discrimination
-
Rosipal R. Kernel partial least squares for nonlinear regression and discrimination. Neural Network World 2003, 13:291-300.
-
(2003)
Neural Network World
, vol.13
, pp. 291-300
-
-
Rosipal, R.1
-
24
-
-
0031272926
-
Comparing support vector machines with Gaussian kernels to radial basis function classifiers
-
Schölkopf B., Sung K.K., Burges C.J.C., Girosi F., Niyogi P., Poggio T., Vapnik V. Comparing support vector machines with Gaussian kernels to radial basis function classifiers. IEEE Trans. Signal Process 1997, 45:2758-2765.
-
(1997)
IEEE Trans. Signal Process
, vol.45
, pp. 2758-2765
-
-
Schölkopf, B.1
Sung, K.K.2
Burges, C.J.C.3
Girosi, F.4
Niyogi, P.5
Poggio, T.6
Vapnik, V.7
-
25
-
-
0347243182
-
Nonlinear component analysis as a kernel eigenvalue problem
-
Schölkopf B., Smola A.J., Mjuller K. Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 1998, 10:1299-1399.
-
(1998)
Neural Comput.
, vol.10
, pp. 1299-1399
-
-
Schölkopf, B.1
Smola, A.J.2
Mjuller, K.3
-
26
-
-
0029322882
-
Reducing data dimensionality through optimizing neural networks inputs
-
Tan S., Mavrovouniotis M.L. Reducing data dimensionality through optimizing neural networks inputs. AIChE J. 1995, 41:1471-1480.
-
(1995)
AIChE J.
, vol.41
, pp. 1471-1480
-
-
Tan, S.1
Mavrovouniotis, M.L.2
-
27
-
-
0033652903
-
Wavelet-PLS regression models for both exploratory data analysis and process monitoring
-
Teppola P., Minkkinen P. Wavelet-PLS regression models for both exploratory data analysis and process monitoring. J. Chemom. 2000, 14:383-399.
-
(2000)
J. Chemom.
, vol.14
, pp. 383-399
-
-
Teppola, P.1
Minkkinen, P.2
-
28
-
-
0034642825
-
Local odeling with radial basis function networks
-
Walczak B., Massart D.L. Local odeling with radial basis function networks. Chemom. Intell. Lab. Syst. 2000, 50:179-198.
-
(2000)
Chemom. Intell. Lab. Syst.
, vol.50
, pp. 179-198
-
-
Walczak, B.1
Massart, D.L.2
-
29
-
-
8544283059
-
Principal-component analysis of multiscale data for process monitoring and fault diagnosis
-
Yoon S., MacGregor J.F. Principal-component analysis of multiscale data for process monitoring and fault diagnosis. AIChE J. 2004, 50(11):2891-2903.
-
(2004)
AIChE J.
, vol.50
, Issue.11
, pp. 2891-2903
-
-
Yoon, S.1
MacGregor, J.F.2
-
30
-
-
36348941124
-
Fault detection of nonlinear processes using multiway kernel independent analysis
-
Zhang Y., Qin S.J. Fault detection of nonlinear processes using multiway kernel independent analysis. Ind. Eng. Chem. Res. 2007, 46:7780-7787.
-
(2007)
Ind. Eng. Chem. Res.
, vol.46
, pp. 7780-7787
-
-
Zhang, Y.1
Qin, S.J.2
-
31
-
-
57049177632
-
Improved nonlinear fault detection technology and statistical analysis
-
Zhang Y., Qin S.J. Improved nonlinear fault detection technology and statistical analysis. AIChE J. 2008, 54(12):3207-3220.
-
(2008)
AIChE J.
, vol.54
, Issue.12
, pp. 3207-3220
-
-
Zhang, Y.1
Qin, S.J.2
|