메뉴 건너뛰기




Volumn 66, Issue 1, 2011, Pages 64-72

Fault diagnosis of nonlinear processes using multiscale KPCA and multiscale KPLS

Author keywords

Control; Design; Fault detection; Fault diagnosis; Multiscale modeling; Process monitoring

Indexed keywords

CONTINUOUS ANNEALING PROCESS; CONTRIBUTION PLOTS; DIFFERENT SCALE; FAULT DIAGNOSIS; KERNEL PRINCIPAL COMPONENT ANALYSIS; MULTI-SCALE MODELING; MULTISCALES; NEW APPROACHES; NONLINEAR FAULTS; NONLINEAR PROCESS; NONLINEAR PROCESS MONITORING; NONLINEAR SCALE; PROCESS VARIABLES;

EID: 78149468553     PISSN: 00092509     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ces.2010.10.008     Document Type: Article
Times cited : (178)

References (31)
  • 1
    • 0037392450 scopus 로고    scopus 로고
    • Multiscale SPC using wavelets: theoretical analysis and properties
    • Aradhye H.B., Bakshi B.R., Strauss R.A., Davis J.F. Multiscale SPC using wavelets: theoretical analysis and properties. A.I.Ch.E. J. 2003, 49(4):939-958.
    • (2003) A.I.Ch.E. J. , vol.49 , Issue.4 , pp. 939-958
    • Aradhye, H.B.1    Bakshi, B.R.2    Strauss, R.A.3    Davis, J.F.4
  • 2
    • 0032118892 scopus 로고    scopus 로고
    • Multiscale PCA with application to multivariate statistical process monitoring
    • Bakshi B.R. Multiscale PCA with application to multivariate statistical process monitoring. A.I.Ch.E. J. 1998, 44(7):1596-1610.
    • (1998) A.I.Ch.E. J. , vol.44 , Issue.7 , pp. 1596-1610
    • Bakshi, B.R.1
  • 3
    • 0036466502 scopus 로고    scopus 로고
    • Dynamic process fault monitoring based on neural network and PCA
    • Chen J.H., Liao C.M. Dynamic process fault monitoring based on neural network and PCA. J. Process Control 2002, 12:277-289.
    • (2002) J. Process Control , vol.12 , pp. 277-289
    • Chen, J.H.1    Liao, C.M.2
  • 5
    • 10244238854 scopus 로고    scopus 로고
    • Fault identification for process monitoring using kernel principal component analysis
    • Cho J.H., Lee J.M., Choi S.W., Lee D., Lee I.B. Fault identification for process monitoring using kernel principal component analysis. Chem. Eng. Sci. 2005, 60:279-288.
    • (2005) Chem. Eng. Sci. , vol.60 , pp. 279-288
    • Cho, J.H.1    Lee, J.M.2    Choi, S.W.3    Lee, D.4    Lee, I.B.5
  • 8
    • 0043015539 scopus 로고    scopus 로고
    • Nonlinear principal component analysis-based on principal curves and neural networks
    • Dong D., McAvoy T.J. Nonlinear principal component analysis-based on principal curves and neural networks. Comput. Chem. Eng. 1996, 20:65-78.
    • (1996) Comput. Chem. Eng. , vol.20 , pp. 65-78
    • Dong, D.1    McAvoy, T.J.2
  • 9
    • 19844367402 scopus 로고    scopus 로고
    • Multiscale nonlinear principal component analysis (NLPCA) and its application for chemical process monitoring
    • Geng Z.Q., Zhu Q.X. Multiscale nonlinear principal component analysis (NLPCA) and its application for chemical process monitoring. Ind. Eng. Chem. Res. 2005, 44:3585-3593.
    • (2005) Ind. Eng. Chem. Res. , vol.44 , pp. 3585-3593
    • Geng, Z.Q.1    Zhu, Q.X.2
  • 10
    • 0033611749 scopus 로고    scopus 로고
    • Non-linear principal components analysis using genetic programming
    • Hiden H.G., Willis M.J., Tham M.T., Montague G.A. Non-linear principal components analysis using genetic programming. Comput. Chem. Eng. 1999, 23:413-425.
    • (1999) Comput. Chem. Eng. , vol.23 , pp. 413-425
    • Hiden, H.G.1    Willis, M.J.2    Tham, M.T.3    Montague, G.A.4
  • 11
    • 0000588327 scopus 로고    scopus 로고
    • Non-linear principal component analysis for process fault detection
    • Jia F., Martin E.B., Morris A.J. Non-linear principal component analysis for process fault detection. Comput. Chem. Eng. 1998, 22:S851-S854.
    • (1998) Comput. Chem. Eng. , vol.22
    • Jia, F.1    Martin, E.B.2    Morris, A.J.3
  • 12
    • 0026113980 scopus 로고
    • Non-linear principal component analysis using autoassociative neural networks
    • Kramer M.A. Non-linear principal component analysis using autoassociative neural networks. AIChE J. 1991, 37:233-243.
    • (1991) AIChE J. , vol.37 , pp. 233-243
    • Kramer, M.A.1
  • 13
    • 2342512223 scopus 로고    scopus 로고
    • Modeling and monitoring of batch processes using principal component analysis (PCA) assisted generalized regression neural networks (GRNN)
    • Kulkarni S.G., Chaudhary A.K., Nandi S., Tambe S.S., Kulkarni B.D. Modeling and monitoring of batch processes using principal component analysis (PCA) assisted generalized regression neural networks (GRNN). Biochem. Eng. J. 2004, 18:193-210.
    • (2004) Biochem. Eng. J. , vol.18 , pp. 193-210
    • Kulkarni, S.G.1    Chaudhary, A.K.2    Nandi, S.3    Tambe, S.S.4    Kulkarni, B.D.5
  • 14
    • 9744237208 scopus 로고    scopus 로고
    • Multiple-fault diagnosis of the Tennessee Eastman process based on system decomposition and dynamic PLS
    • Lee G., Han C.H., Yoon E.S. Multiple-fault diagnosis of the Tennessee Eastman process based on system decomposition and dynamic PLS. Ind. Eng. Chem. Res. 2004, 43:8037-8048.
    • (2004) Ind. Eng. Chem. Res. , vol.43 , pp. 8037-8048
    • Lee, G.1    Han, C.H.2    Yoon, E.S.3
  • 15
    • 1342285571 scopus 로고    scopus 로고
    • Statistical process monitoring with independent component analysis
    • Lee J.M., Yoo C.K., Lee I.B. Statistical process monitoring with independent component analysis. J. Process Control 2004, 14:467-485.
    • (2004) J. Process Control , vol.14 , pp. 467-485
    • Lee, J.M.1    Yoo, C.K.2    Lee, I.B.3
  • 16
    • 0029267381 scopus 로고
    • Statistical process control of multivariate processes
    • MacGregor J.F., Kourti T. Statistical process control of multivariate processes. Control Eng. Pract. 1995, 3:403-414.
    • (1995) Control Eng. Pract. , vol.3 , pp. 403-414
    • MacGregor, J.F.1    Kourti, T.2
  • 18
    • 0037106519 scopus 로고    scopus 로고
    • Multivariate process monitoring and fault diagnosis by multi-scale PCA
    • Misra M., Yue H.H., Qin S.J., Ling C. Multivariate process monitoring and fault diagnosis by multi-scale PCA. Comput. Chem. Eng. 2002, 26(9):1281-1293.
    • (2002) Comput. Chem. Eng. , vol.26 , Issue.9 , pp. 1281-1293
    • Misra, M.1    Yue, H.H.2    Qin, S.J.3    Ling, C.4
  • 19
    • 0029252734 scopus 로고
    • Multivariate spc charts for monitoring batch processes
    • Nomikos P., MacGregor J.F. Multivariate spc charts for monitoring batch processes. Technometrics 1995, 37(1):41-59.
    • (1995) Technometrics , vol.37 , Issue.1 , pp. 41-59
    • Nomikos, P.1    MacGregor, J.F.2
  • 20
    • 0242354134 scopus 로고    scopus 로고
    • Statistical process monitoring: basics and beyond
    • Qin S.J. Statistical process monitoring: basics and beyond. J. Chemom. 2003, 17:480-502.
    • (2003) J. Chemom. , vol.17 , pp. 480-502
    • Qin, S.J.1
  • 21
    • 84984286248 scopus 로고
    • A PLS kernel algorithm for data sets with many variables and fewer objects. Part 1: theory and algorithm
    • Rännar S., Lindgren F., Geladi P., Wold S. A PLS kernel algorithm for data sets with many variables and fewer objects. Part 1: theory and algorithm. J. Chemom. 1994, 8:111-125.
    • (1994) J. Chemom. , vol.8 , pp. 111-125
    • Rännar, S.1    Lindgren, F.2    Geladi, P.3    Wold, S.4
  • 22
    • 0001452843 scopus 로고    scopus 로고
    • A multi-view nonlinear active shape model using KPCA. In: Proceedings of BMVC, Nottingham, UK
    • Romdhani S., Gong S., Psarrou A., 1999. A multi-view nonlinear active shape model using KPCA. In: Proceedings of BMVC, Nottingham, UK, pp. 483-492.
    • (1999) , pp. 483-492
    • Romdhani, S.1    Gong, S.2    Psarrou, A.3
  • 23
    • 0037624001 scopus 로고    scopus 로고
    • Kernel partial least squares for nonlinear regression and discrimination
    • Rosipal R. Kernel partial least squares for nonlinear regression and discrimination. Neural Network World 2003, 13:291-300.
    • (2003) Neural Network World , vol.13 , pp. 291-300
    • Rosipal, R.1
  • 25
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • Schölkopf B., Smola A.J., Mjuller K. Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 1998, 10:1299-1399.
    • (1998) Neural Comput. , vol.10 , pp. 1299-1399
    • Schölkopf, B.1    Smola, A.J.2    Mjuller, K.3
  • 26
    • 0029322882 scopus 로고
    • Reducing data dimensionality through optimizing neural networks inputs
    • Tan S., Mavrovouniotis M.L. Reducing data dimensionality through optimizing neural networks inputs. AIChE J. 1995, 41:1471-1480.
    • (1995) AIChE J. , vol.41 , pp. 1471-1480
    • Tan, S.1    Mavrovouniotis, M.L.2
  • 27
    • 0033652903 scopus 로고    scopus 로고
    • Wavelet-PLS regression models for both exploratory data analysis and process monitoring
    • Teppola P., Minkkinen P. Wavelet-PLS regression models for both exploratory data analysis and process monitoring. J. Chemom. 2000, 14:383-399.
    • (2000) J. Chemom. , vol.14 , pp. 383-399
    • Teppola, P.1    Minkkinen, P.2
  • 28
    • 0034642825 scopus 로고    scopus 로고
    • Local odeling with radial basis function networks
    • Walczak B., Massart D.L. Local odeling with radial basis function networks. Chemom. Intell. Lab. Syst. 2000, 50:179-198.
    • (2000) Chemom. Intell. Lab. Syst. , vol.50 , pp. 179-198
    • Walczak, B.1    Massart, D.L.2
  • 29
    • 8544283059 scopus 로고    scopus 로고
    • Principal-component analysis of multiscale data for process monitoring and fault diagnosis
    • Yoon S., MacGregor J.F. Principal-component analysis of multiscale data for process monitoring and fault diagnosis. AIChE J. 2004, 50(11):2891-2903.
    • (2004) AIChE J. , vol.50 , Issue.11 , pp. 2891-2903
    • Yoon, S.1    MacGregor, J.F.2
  • 30
    • 36348941124 scopus 로고    scopus 로고
    • Fault detection of nonlinear processes using multiway kernel independent analysis
    • Zhang Y., Qin S.J. Fault detection of nonlinear processes using multiway kernel independent analysis. Ind. Eng. Chem. Res. 2007, 46:7780-7787.
    • (2007) Ind. Eng. Chem. Res. , vol.46 , pp. 7780-7787
    • Zhang, Y.1    Qin, S.J.2
  • 31
    • 57049177632 scopus 로고    scopus 로고
    • Improved nonlinear fault detection technology and statistical analysis
    • Zhang Y., Qin S.J. Improved nonlinear fault detection technology and statistical analysis. AIChE J. 2008, 54(12):3207-3220.
    • (2008) AIChE J. , vol.54 , Issue.12 , pp. 3207-3220
    • Zhang, Y.1    Qin, S.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.