메뉴 건너뛰기




Volumn 70, Issue 7-9, 2007, Pages 1276-1288

Resampling methods for parameter-free and robust feature selection with mutual information

Author keywords

Feature selection; Mutual information; Permutation test

Indexed keywords

FEATURE EXTRACTION; PARAMETER ESTIMATION; PARAMETER EXTRACTION; SAMPLING;

EID: 33847674996     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2006.11.019     Document Type: Article
Times cited : (118)

References (35)
  • 1
    • 25444472879 scopus 로고    scopus 로고
    • Confirmation of human protein interaction data by human expression data
    • Andreas Hahn P.T., Rahnenfhrer J., and Lengauer T. Confirmation of human protein interaction data by human expression data. BMC Bioinformatics 6 (2005) 112
    • (2005) BMC Bioinformatics , vol.6 , pp. 112
    • Andreas Hahn, P.T.1    Rahnenfhrer, J.2    Lengauer, T.3
  • 2
    • 0028468293 scopus 로고
    • Using the mutual information for selecting features in supervised neural net learning
    • Battiti R. Using the mutual information for selecting features in supervised neural net learning. IEEE Trans. Neural Networks 5 (1994) 537-550
    • (1994) IEEE Trans. Neural Networks , vol.5 , pp. 537-550
    • Battiti, R.1
  • 4
    • 0345328110 scopus 로고    scopus 로고
    • On the kernel widths in radial-basis function networks
    • Benoudjit N., and Verleysen M. On the kernel widths in radial-basis function networks. Neural Process. Lett. 18 (2003) 139-154
    • (2003) Neural Process. Lett. , vol.18 , pp. 139-154
    • Benoudjit, N.1    Verleysen, M.2
  • 7
    • 33646038259 scopus 로고    scopus 로고
    • Exploration of statistical dependence between illness parameters using the entropy correlation coefficient
    • Craddock R., Taylor R., Broderick G., Whistler T., Klimas N., and Unger E. Exploration of statistical dependence between illness parameters using the entropy correlation coefficient. Pharmacogenomics 7 3 (2006) 421-428
    • (2006) Pharmacogenomics , vol.7 , Issue.3 , pp. 421-428
    • Craddock, R.1    Taylor, R.2    Broderick, G.3    Whistler, T.4    Klimas, N.5    Unger, E.6
  • 8
    • 14844363918 scopus 로고    scopus 로고
    • Tests for serial independence and linearity based on correlation integrals
    • Diks C., and Manzan S. Tests for serial independence and linearity based on correlation integrals. Studies Nonlinear Dyn. Econometrics 6 2 (2002) Article 2
    • (2002) Studies Nonlinear Dyn. Econometrics , vol.6 , Issue.2
    • Diks, C.1    Manzan, S.2
  • 9
    • 36348985845 scopus 로고    scopus 로고
    • Speeding up the wrapper feature subset selection in regression by mutual information relevance and redundancy analysis
    • Athens, Greece
    • Dijck G.V., and Hulle M.M.V. Speeding up the wrapper feature subset selection in regression by mutual information relevance and redundancy analysis. ICANN 2006: International Conference in Aritificial Neural Networks. Athens, Greece (September 2006)
    • (2006) ICANN 2006: International Conference in Aritificial Neural Networks
    • Dijck, G.V.1    Hulle, M.M.V.2
  • 10
    • 33645690579 scopus 로고    scopus 로고
    • Fast binary feature selection with conditional mutual information
    • Fleuret F. Fast binary feature selection with conditional mutual information. J. Mach. Learn. Res. 5 (2004) 1531-1555
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 1531-1555
    • Fleuret, F.1
  • 12
    • 1842641832 scopus 로고    scopus 로고
    • Using a permutation test for attribute selection in decision trees
    • Morgan Kaufmann, San Francisco, CA
    • Frank E., and Witten I.H. Using a permutation test for attribute selection in decision trees. Proceedings 15th International Conference on Machine Learning. Morgan Kaufmann, San Francisco, CA (1998) 152-160
    • (1998) Proceedings 15th International Conference on Machine Learning , pp. 152-160
    • Frank, E.1    Witten, I.H.2
  • 13
    • 0002432565 scopus 로고
    • Multivariate adaptive regression splines (with discussion)
    • Friedman J. Multivariate adaptive regression splines (with discussion). Ann. Stat. 9 1 (1991) 1-141
    • (1991) Ann. Stat. , vol.9 , Issue.1 , pp. 1-141
    • Friedman, J.1
  • 14
    • 3543109140 scopus 로고    scopus 로고
    • A feature selection newton method for support vector machine classification
    • Fung G.M., and Mangasarian O. A feature selection newton method for support vector machine classification. Comput. Optim. Appl. 28 2 (2004) 185-202
    • (2004) Comput. Optim. Appl. , vol.28 , Issue.2 , pp. 185-202
    • Fung, G.M.1    Mangasarian, O.2
  • 16
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Guyon I., and Elisseeff A. An introduction to variable and feature selection. J. Mach. Learn. Res. 3 (2003) 1157-1182
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 18
    • 0036791938 scopus 로고    scopus 로고
    • Generalized relevance learning vector quantization
    • Hammer B., and Villmann T. Generalized relevance learning vector quantization. Neural Networks 15 10 (2002) 1059-1068
    • (2002) Neural Networks , vol.15 , Issue.10 , pp. 1059-1068
    • Hammer, B.1    Villmann, T.2
  • 19
    • 0035369829 scopus 로고    scopus 로고
    • Blind source separation using renyiś mutual information
    • Hild K., Erdogmus D., and Principe J. Blind source separation using renyiś mutual information. IEEE Signal Process. Lett. 8 6 (2001) 174-176
    • (2001) IEEE Signal Process. Lett. , vol.8 , Issue.6 , pp. 174-176
    • Hild, K.1    Erdogmus, D.2    Principe, J.3
  • 20
    • 0141571239 scopus 로고    scopus 로고
    • Covariation of amino acid positions in HIV-1 protease
    • Hoffman N., Schiffer C., and Swanstrom R. Covariation of amino acid positions in HIV-1 protease. Virology 314 2 (2003) 536-548
    • (2003) Virology , vol.314 , Issue.2 , pp. 536-548
    • Hoffman, N.1    Schiffer, C.2    Swanstrom, R.3
  • 21
    • 25444465885 scopus 로고    scopus 로고
    • Species-specific analysis of protein sequence motifs using mutual information
    • Hummel J., Keshvari N., Weckwerth W., and Selbig J. Species-specific analysis of protein sequence motifs using mutual information. BMC Bioinformatics 6 (2005) 164
    • (2005) BMC Bioinformatics , vol.6 , pp. 164
    • Hummel, J.1    Keshvari, N.2    Weckwerth, W.3    Selbig, J.4
  • 23
    • 0036933407 scopus 로고    scopus 로고
    • Input feature selection by mutual information based on parzen window
    • Kwak N., and Choi C.-H. Input feature selection by mutual information based on parzen window. IEEE Trans. Pattern Anal. Mach. Intell. 24 12 (2002) 1667-1671
    • (2002) IEEE Trans. Pattern Anal. Mach. Intell. , vol.24 , Issue.12 , pp. 1667-1671
    • Kwak, N.1    Choi, C.-H.2
  • 24
    • 0036127473 scopus 로고    scopus 로고
    • Input feature selection for classification problems
    • Kwak N., and Choi C.-H. Input feature selection for classification problems. IEEE Trans. Neural Networks 13 1 (2002) 143-159
    • (2002) IEEE Trans. Neural Networks , vol.13 , Issue.1 , pp. 143-159
    • Kwak, N.1    Choi, C.-H.2
  • 26
    • 18644386390 scopus 로고    scopus 로고
    • Fast permutation tests that maximize power under conventional Monte Carlo sampling for pairwise and multiple comparisons
    • Opdyke J. Fast permutation tests that maximize power under conventional Monte Carlo sampling for pairwise and multiple comparisons. J. Mod. Appl. Stat. Methods 2 1 (2003) 27-49
    • (2003) J. Mod. Appl. Stat. Methods , vol.2 , Issue.1 , pp. 27-49
    • Opdyke, J.1
  • 27
    • 16644383303 scopus 로고    scopus 로고
    • Neural population code for fine perceptual decisions in area MT
    • Purushothaman G., and Bradley D.C. Neural population code for fine perceptual decisions in area MT. Nat. Neurosci. 8 1 (2005) 99-106
    • (2005) Nat. Neurosci. , vol.8 , Issue.1 , pp. 99-106
    • Purushothaman, G.1    Bradley, D.C.2
  • 28
    • 22944454584 scopus 로고    scopus 로고
    • P. Radivojac, Z. Obradovic, K. Dunker, S. Vucetic, Feature selection filters based on the permutation test, in: J.-F. Boulicaut, F. Esposito, F. Giannotti, D. Pedreschi (Eds.), Machine Learning: ECML 2004, 15th European Conference on Machine Learning, Pisa, Italy, September 20-24, 2004, Lecture Notes in Computer Science, vol. 3201, Springer, Berlin, 2004, pp. 334-346.
  • 31
    • 32944462016 scopus 로고    scopus 로고
    • Mutual information for the selection of relevant variables in spectrometric nonlinear modelling
    • Rossi F., Lendasse A., François D., Wertz V., and Verleysen M. Mutual information for the selection of relevant variables in spectrometric nonlinear modelling. Chemometrics Intelligent Lab. Syst. 2 80 (2006) 215-226
    • (2006) Chemometrics Intelligent Lab. Syst. , vol.2 , Issue.80 , pp. 215-226
    • Rossi, F.1    Lendasse, A.2    François, D.3    Wertz, V.4    Verleysen, M.5
  • 34
    • 0036721934 scopus 로고    scopus 로고
    • Feature selection with neural networks
    • Verikas A., and Bacauskiene M. Feature selection with neural networks. Pattern Recognition Lett. 23 13 (September 2002) 1323-1335
    • (2002) Pattern Recognition Lett. , vol.23 , Issue.13 , pp. 1323-1335
    • Verikas, A.1    Bacauskiene, M.2
  • 35
    • 1842450622 scopus 로고    scopus 로고
    • Gene clustering based on clusterwide mutual information.
    • Zhou X., Wang X., Dougherty E., and Suh D.R.E. Gene clustering based on clusterwide mutual information. J. Comput. Biol. 11 1 (2004) 147-161
    • (2004) J. Comput. Biol. , vol.11 , Issue.1 , pp. 147-161
    • Zhou, X.1    Wang, X.2    Dougherty, E.3    Suh, D.R.E.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.