메뉴 건너뛰기




Volumn 20, Issue 4, 2012, Pages 371-378

Development of correlation-based pattern recognition algorithm and adaptive soft-sensor design

Author keywords

Just In Time modeling; Pattern recognition; Principal component analysis; Process observation and parameter estimation; Soft sensor

Indexed keywords

ADAPTIVE SOFT-SENSOR; IN-PROCESS; INDIVIDUAL DIFFERENCES; JUST IN TIME; JUST-IN-TIME MODELING; PATTERN RECOGNITION ALGORITHMS; PATTERN RECOGNITION METHOD; PRINCIPAL COMPONENTS; PRODUCT QUALITY; SOFT SENSORS;

EID: 84857190023     PISSN: 09670661     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.conengprac.2010.11.013     Document Type: Article
Times cited : (37)

References (28)
  • 1
    • 0033365911 scopus 로고    scopus 로고
    • Subspace identification based inferential control applied to a continuous pulp digester
    • Amirthalingam R., Lee J. Subspace identification based inferential control applied to a continuous pulp digester. Journal of Process Control 1999, 9(5):397-406.
    • (1999) Journal of Process Control , vol.9 , Issue.5 , pp. 397-406
    • Amirthalingam, R.1    Lee, J.2
  • 4
    • 84857195062 scopus 로고    scopus 로고
    • Lazy learners at work: The lazy learning toolbox. In EUFIT'99, Aachen, Germany, September 13-16.
    • Bontempi, G., Birattari, M., & Bersini, H. (1999b). Lazy learners at work: The lazy learning toolbox. In EUFIT'99, Aachen, Germany, September 13-16.
    • (1999)
    • Bontempi, G.1    Birattari, M.2    Bersini, H.3
  • 5
    • 2942558590 scopus 로고    scopus 로고
    • A new data-based methodology for nonlinear process modeling
    • Cheng C., Chiu M.S. A new data-based methodology for nonlinear process modeling. Chemical Engineering Science 2004, 59(13):2801-2810.
    • (2004) Chemical Engineering Science , vol.59 , Issue.13 , pp. 2801-2810
    • Cheng, C.1    Chiu, M.S.2
  • 6
    • 27444433806 scopus 로고    scopus 로고
    • Soft-sensor development for fed-batch bioreactors using support vector regression
    • Desai K., Badhe Y., Tambe S.S., Kulkarni R.D. Soft-sensor development for fed-batch bioreactors using support vector regression. Biochemical Engineering Journal 2006, 27(3):225-239.
    • (2006) Biochemical Engineering Journal , vol.27 , Issue.3 , pp. 225-239
    • Desai, K.1    Badhe, Y.2    Tambe, S.S.3    Kulkarni, R.D.4
  • 7
    • 68049143320 scopus 로고    scopus 로고
    • Soft-sensor development using Correlation-based Just-In-Time modeling
    • Fujiwara K., Kano M., Hasebe S. Soft-sensor development using Correlation-based Just-In-Time modeling. AIChE Journal 2009, 55(7):1754-1765.
    • (2009) AIChE Journal , vol.55 , Issue.7 , pp. 1754-1765
    • Fujiwara, K.1    Kano, M.2    Hasebe, S.3
  • 8
    • 0018503842 scopus 로고
    • Control procedures for residuals associated with principal component analysis
    • Jackson J.E., Mudholkar G.S. Control procedures for residuals associated with principal component analysis. Technometrics 1979, 21(3):341-349.
    • (1979) Technometrics , vol.21 , Issue.3 , pp. 341-349
    • Jackson, J.E.1    Mudholkar, G.S.2
  • 9
    • 33947266512 scopus 로고    scopus 로고
    • Development of a soft sensor for a batch distillation column using support vector regression techniques
    • Jain P., Rahman I., Kulkarni B.D. Development of a soft sensor for a batch distillation column using support vector regression techniques. Chemical Engineering Research and Design 2007, 85(A2):283-287.
    • (2007) Chemical Engineering Research and Design , vol.85 , Issue.A2 , pp. 283-287
    • Jain, P.1    Rahman, I.2    Kulkarni, B.D.3
  • 10
    • 0003531778 scopus 로고    scopus 로고
    • Abnormal situation analysis using pattern recognition techniques and historical data
    • InAIChE annual meeting, Dallas, TX, October 31-November 5.
    • Johannesmeyer, M., & Seborg, D. E. (1999). Abnormal situation analysis using pattern recognition techniques and historical data. InAIChE annual meeting, Dallas, TX, October 31-November 5.
    • (1999)
    • Johannesmeyer, M.1    Seborg, D.E.2
  • 12
    • 0036628052 scopus 로고    scopus 로고
    • Statistical process monitoring based on dissimilarity of process data
    • Kano M., Hasebe S., Hashimoto I., Ohno H. Statistical process monitoring based on dissimilarity of process data. AIChE Journal 2002, 48(6):1231-1240.
    • (2002) AIChE Journal , vol.48 , Issue.6 , pp. 1231-1240
    • Kano, M.1    Hasebe, S.2    Hashimoto, I.3    Ohno, H.4
  • 13
    • 58749107569 scopus 로고    scopus 로고
    • Two-stage subspace identification for softsensor design and disturbance estimation
    • Kano M., Lee S., Hasebe S. Two-stage subspace identification for softsensor design and disturbance estimation. Journal of Process Control 2009, 19(2):179-186.
    • (2009) Journal of Process Control , vol.19 , Issue.2 , pp. 179-186
    • Kano, M.1    Lee, S.2    Hasebe, S.3
  • 14
    • 0033874839 scopus 로고    scopus 로고
    • Inferential control system of distillation compositions using dynamic partial least squares regression
    • Kano M., Miyazaki K., Hasebe S., Hashimoto I. Inferential control system of distillation compositions using dynamic partial least squares regression. Journal of Process Control 2000, 10(2-3):157-166.
    • (2000) Journal of Process Control , vol.10 , Issue.2-3 , pp. 157-166
    • Kano, M.1    Miyazaki, K.2    Hasebe, S.3    Hashimoto, I.4
  • 15
    • 0034661131 scopus 로고    scopus 로고
    • Comparison of statistical process monitoring methods: Application to the eastman challenge problem
    • Kano M., Nagao K., Ohno H., Hasebe S., Hashimoto I., Strauss R., et al. Comparison of statistical process monitoring methods: Application to the eastman challenge problem. Computers & Chemical Engineering 2000, 24(2-7):175-181.
    • (2000) Computers & Chemical Engineering , vol.24 , Issue.2-7 , pp. 175-181
    • Kano, M.1    Nagao, K.2    Ohno, H.3    Hasebe, S.4    Hashimoto, I.5    Strauss, R.6
  • 16
    • 35548968908 scopus 로고    scopus 로고
    • Data-based process monitoring, process control, and quality improvement. recent developments and applications in steel industry
    • Kano M., Nakagawa Y. Data-based process monitoring, process control, and quality improvement. recent developments and applications in steel industry. Computers & Chemical Engineering 2008, 32(1-2):12-24.
    • (2008) Computers & Chemical Engineering , vol.32 , Issue.1-2 , pp. 12-24
    • Kano, M.1    Nakagawa, Y.2
  • 17
    • 77956444702 scopus 로고    scopus 로고
    • The state of the art in chemical process control in Japan: Good practice and questionnaire survey
    • Kano M., Ogawa M. The state of the art in chemical process control in Japan: Good practice and questionnaire survey. Journal of Process Control 2010, 20(9):969-982.
    • (2010) Journal of Process Control , vol.20 , Issue.9 , pp. 969-982
    • Kano, M.1    Ogawa, M.2
  • 18
    • 0035882158 scopus 로고    scopus 로고
    • A new multivariate statistical process monitoring method using principal component analysis
    • Kano M., Ohno H., Hasebe S., Hashimoto I. A new multivariate statistical process monitoring method using principal component analysis. Computers & Chemical Engineering 2001, 25(7-8):1103-1113.
    • (2001) Computers & Chemical Engineering , vol.25 , Issue.7-8 , pp. 1103-1113
    • Kano, M.1    Ohno, H.2    Hasebe, S.3    Hashimoto, I.4
  • 19
    • 57249097849 scopus 로고    scopus 로고
    • Dealing with irregular data in soft sensors: Bayesian method and comparative study
    • Khatibisepehr S., Huang B. Dealing with irregular data in soft sensors: Bayesian method and comparative study. Industrial & Engineering Chemistry Research 2008, 47(22):8713-8723.
    • (2008) Industrial & Engineering Chemistry Research , vol.47 , Issue.22 , pp. 8713-8723
    • Khatibisepehr, S.1    Huang, B.2
  • 23
    • 0026360534 scopus 로고
    • Estimation of distillation compositions from multiple temperature measurements using partial-least-squares regression
    • Mejdell T., Skogestad S. Estimation of distillation compositions from multiple temperature measurements using partial-least-squares regression. Industrial & Engineering Chemistry Research 1991, 30(12):2543-2555.
    • (1991) Industrial & Engineering Chemistry Research , vol.30 , Issue.12 , pp. 2543-2555
    • Mejdell, T.1    Skogestad, S.2
  • 24
    • 0028483476 scopus 로고
    • Monitoring batch processes using multiway principal component analysis
    • Nomikos P., MacGregor J.F. Monitoring batch processes using multiway principal component analysis. AIChE Journal 1994, 40(8):1361-1375.
    • (1994) AIChE Journal , vol.40 , Issue.8 , pp. 1361-1375
    • Nomikos, P.1    MacGregor, J.F.2
  • 25
    • 0032044750 scopus 로고    scopus 로고
    • Recursive PLS algorithms for adaptive data modeling
    • Qin S.J. Recursive PLS algorithms for adaptive data modeling. Computers & Chemical Engineering 1998, 22(4-5):503-514.
    • (1998) Computers & Chemical Engineering , vol.22 , Issue.4-5 , pp. 503-514
    • Qin, S.J.1
  • 26
    • 0034551618 scopus 로고    scopus 로고
    • Neural networks for the identification and control of blast furnace hot metal quality
    • Radhakrishnan V., Mohamed A. Neural networks for the identification and control of blast furnace hot metal quality. Journal of Process Control 2000, 10(6):509-524.
    • (2000) Journal of Process Control , vol.10 , Issue.6 , pp. 509-524
    • Radhakrishnan, V.1    Mohamed, A.2
  • 27
    • 0030127409 scopus 로고
    • Statistical process monitoring and disturbance diagnosis in multivariable continuous processes
    • Raich A., Cinar A. Statistical process monitoring and disturbance diagnosis in multivariable continuous processes. AIChE Journal 1994, 42(4):995-1009.
    • (1994) AIChE Journal , vol.42 , Issue.4 , pp. 995-1009
    • Raich, A.1    Cinar, A.2
  • 28
    • 79951722848 scopus 로고    scopus 로고
    • Optimum quality design system for steel products through locally-weighted regression model
    • in press, doi:
    • Shigemori, H., Kawamura, S., Kano, M., & Hasebe, S. Optimum quality design system for steel products through locally-weighted regression model. Journal of Process Control, in press, doi:. http://10.1016/j.jprocont.2010.06.022.
    • Journal of Process Control
    • Shigemori, H.1    Kawamura, S.2    Kano, M.3    Hasebe, S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.