메뉴 건너뛰기




Volumn 60, Issue 1, 2014, Pages 136-147

External analysis-based regression model for robust soft sensing of multimode chemical processes

Author keywords

External analysis; Multimode chemical processes; Performance monitoring; Quality estimation; Robust soft sensor

Indexed keywords

CHEMICAL PROCESS; EXTERNAL ANALYSIS; PERFORMANCE MONITORING; QUALITY ESTIMATION; SOFT SENSORS;

EID: 84889685311     PISSN: 00011541     EISSN: 15475905     Source Type: Journal    
DOI: 10.1002/aic.14253     Document Type: Article
Times cited : (24)

References (39)
  • 1
    • 0017972806 scopus 로고
    • Inferential control of processes-1: steady state analysis and design
    • Joseph B, Brosilow CB. Inferential control of processes-1: steady state analysis and design. AIChE J. 1978;124:485-508.
    • (1978) AIChE J. , vol.124 , pp. 485-508
    • Joseph, B.1    Brosilow, C.B.2
  • 3
    • 35548968908 scopus 로고    scopus 로고
    • Data-based process monitoring, process control and quality improvement: recent developments and applications in steel industry
    • Kano M, Nakagawa Y. Data-based process monitoring, process control and quality improvement: recent developments and applications in steel industry. Comput Chem Eng. 2008;32:12-24.
    • (2008) Comput Chem Eng. , vol.32 , pp. 12-24
    • Kano, M.1    Nakagawa, Y.2
  • 4
    • 67349089877 scopus 로고    scopus 로고
    • Data-driven soft sensors in the process industry
    • Kadlec P, Gabrys B, Strandt S. Data-driven soft sensors in the process industry. Comput Chem Eng. 2009;33:795-814.
    • (2009) Comput Chem Eng. , vol.33 , pp. 795-814
    • Kadlec, P.1    Gabrys, B.2    Strandt, S.3
  • 5
    • 0035442469 scopus 로고    scopus 로고
    • Extended PLS approach for enhanced condition monitoring of industrial processes
    • Kruger U, Chen Q, Sandoz DJ, McFarlane RC. Extended PLS approach for enhanced condition monitoring of industrial processes. AIChE J. 2001;47:2076-2091.
    • (2001) AIChE J. , vol.47 , pp. 2076-2091
    • Kruger, U.1    Chen, Q.2    Sandoz, D.J.3    McFarlane, R.C.4
  • 6
    • 0038198780 scopus 로고    scopus 로고
    • Recursive partial least squares algorithms for monitoring complex industrial processes
    • Wang X, Kruger U, Lennox B. Recursive partial least squares algorithms for monitoring complex industrial processes. Control Eng Pract. 2003;11:613-632.
    • (2003) Control Eng Pract. , vol.11 , pp. 613-632
    • Wang, X.1    Kruger, U.2    Lennox, B.3
  • 7
    • 27844491086 scopus 로고    scopus 로고
    • Introduction of a nonlinearity measure for principal component models
    • Kruger U, Antory D, Hahn J, Irwin GW, McCullough G. Introduction of a nonlinearity measure for principal component models. Comput Chem Eng. 2005;29:2355-2362.
    • (2005) Comput Chem Eng. , vol.29 , pp. 2355-2362
    • Kruger, U.1    Antory, D.2    Hahn, J.3    Irwin, G.W.4    McCullough, G.5
  • 8
    • 78650953042 scopus 로고    scopus 로고
    • Mixture probabilistic PCR model for soft sensing of multimode processes
    • Ge ZQ, Gao FR, Song ZH. Mixture probabilistic PCR model for soft sensing of multimode processes. Chemometr Intell Lab Syst. 2011;105:91-105.
    • (2011) Chemometr Intell Lab Syst. , vol.105 , pp. 91-105
    • Ge, Z.Q.1    Gao, F.R.2    Song, Z.H.3
  • 9
    • 84868224530 scopus 로고    scopus 로고
    • Multiway Gaussian mixture model based adaptive kernel partial least squares regression method for soft sensor estimation and reliable quality prediction of nonlinear multiphase batch processes
    • Yu J. Multiway Gaussian mixture model based adaptive kernel partial least squares regression method for soft sensor estimation and reliable quality prediction of nonlinear multiphase batch processes. Ind Eng Chem Res. 2012;51:13227-13237.
    • (2012) Ind Eng Chem Res. , vol.51 , pp. 13227-13237
    • Yu, J.1
  • 10
    • 84861963447 scopus 로고    scopus 로고
    • Comparison of the performance of a reduced-order dynamic PLS soft sensor with different updating schemes for digester control
    • Galicia HJ, He QP, Wang J. Comparison of the performance of a reduced-order dynamic PLS soft sensor with different updating schemes for digester control. Control Eng Pract. 2012;20:747-760.
    • (2012) Control Eng Pract. , vol.20 , pp. 747-760
    • Galicia, H.J.1    He, Q.P.2    Wang, J.3
  • 11
    • 57049112694 scopus 로고    scopus 로고
    • ANN-based soft-sensor for real-time process monitoring and control of an industrial polymerization process
    • Gonzaga JCB, Meleiro LAC, Kiang C, Filho RM. ANN-based soft-sensor for real-time process monitoring and control of an industrial polymerization process. Comput Chem Eng. 2009;33:43-49.
    • (2009) Comput Chem Eng. , vol.33 , pp. 43-49
    • Gonzaga, J.C.B.1    Meleiro, L.A.C.2    Kiang, C.3    Filho, R.M.4
  • 12
    • 77955920442 scopus 로고    scopus 로고
    • Hybrid artificial neural network based on BP-PLSR and its application in development of soft sensors
    • Yan XF. Hybrid artificial neural network based on BP-PLSR and its application in development of soft sensors. Chemometr Intell Lab Syst. 2010;103:152-159.
    • (2010) Chemometr Intell Lab Syst. , vol.103 , pp. 152-159
    • Yan, X.F.1
  • 13
    • 81155155532 scopus 로고    scopus 로고
    • Multi-sensor based prediction of metal deposition in pulsed gas metal arc welding using various soft computing models
    • Bhattacharya S, Pal K, Pal SK. Multi-sensor based prediction of metal deposition in pulsed gas metal arc welding using various soft computing models. Appl Soft Comput. 2012;12:498-505.
    • (2012) Appl Soft Comput. , vol.12 , pp. 498-505
    • Bhattacharya, S.1    Pal, K.2    Pal, S.K.3
  • 14
    • 84860386352 scopus 로고    scopus 로고
    • Dual composition control and soft estimation for a pilot distillation column using a neurogenetic design
    • De Canete JF, del Saz-Orozco P, Gonzalez S, Garcia-Moral I. Dual composition control and soft estimation for a pilot distillation column using a neurogenetic design. Comput Chem Eng. 2012;40:157-170.
    • (2012) Comput Chem Eng. , vol.40 , pp. 157-170
    • De Canete, J.F.1    del Saz-Orozco, P.2    Gonzalez, S.3    Garcia-Moral, I.4
  • 15
    • 67650083264 scopus 로고    scopus 로고
    • Soft chemical analyzer development using adaptive least-squares support vector regression with selective pruning and variable moving window size
    • Liu Y, Hu NP, Wang HQ, Li P. Soft chemical analyzer development using adaptive least-squares support vector regression with selective pruning and variable moving window size. Ind Eng Chem Res. 2009;48:5731-5741.
    • (2009) Ind Eng Chem Res. , vol.48 , pp. 5731-5741
    • Liu, Y.1    Hu, N.P.2    Wang, H.Q.3    Li, P.4
  • 16
    • 77956406437 scopus 로고    scopus 로고
    • Nonlinear soft sensor development based on relevance vector machine
    • Ge ZQ, Song ZH. Nonlinear soft sensor development based on relevance vector machine. Ind Eng Chem Res. 2010;49:8685-8693.
    • (2010) Ind Eng Chem Res. , vol.49 , pp. 8685-8693
    • Ge, Z.Q.1    Song, Z.H.2
  • 17
    • 83355163227 scopus 로고    scopus 로고
    • Multiple model based LPV soft sensor development with irregular/missing process output measurement
    • Jin X, Wang SY, Huang B, Forbes F. Multiple model based LPV soft sensor development with irregular/missing process output measurement. Control Eng Pract. 2012;20:165-172.
    • (2012) Control Eng Pract. , vol.20 , pp. 165-172
    • Jin, X.1    Wang, S.Y.2    Huang, B.3    Forbes, F.4
  • 18
    • 84859392648 scopus 로고    scopus 로고
    • A Bayesian inference based two-stage support vector regression framework for soft sensor development in batch bioprocesses
    • Yu J. A Bayesian inference based two-stage support vector regression framework for soft sensor development in batch bioprocesses. Comput Chem Eng. 2012;41:134-144.
    • (2012) Comput Chem Eng. , vol.41 , pp. 134-144
    • Yu, J.1
  • 19
    • 84874624320 scopus 로고    scopus 로고
    • Development and industrial application of soft sensor with on-line Bayesian model updating strategy
    • Deng J, Xie L, Chen L, Khatibisepehr S, Huang B, Xu F, Espejo A. Development and industrial application of soft sensor with on-line Bayesian model updating strategy. J Process Control. 2012;23:317-325.
    • (2012) J Process Control. , vol.23 , pp. 317-325
    • Deng, J.1    Xie, L.2    Chen, L.3    Khatibisepehr, S.4    Huang, B.5    Xu, F.6    Espejo, A.7
  • 20
    • 77956444702 scopus 로고    scopus 로고
    • The state of the art in chemical process control in Japan: Good practice and questionnaire survey
    • Kano M, Ogawa M. The state of the art in chemical process control in Japan: Good practice and questionnaire survey. J Process Control. 2010;20:969-982.
    • (2010) J Process Control. , vol.20 , pp. 969-982
    • Kano, M.1    Ogawa, M.2
  • 21
    • 0032044750 scopus 로고    scopus 로고
    • Recursive PLS algorithms for adaptive data monitoring
    • Qin SJ. Recursive PLS algorithms for adaptive data monitoring. Comput Chem Eng. 1998;22:503-514.
    • (1998) Comput Chem Eng. , vol.22 , pp. 503-514
    • Qin, S.J.1
  • 22
    • 22944436794 scopus 로고    scopus 로고
    • Process monitoring approach using fast moving window PCA
    • Wang X, Kruger U, Irwin GW. Process monitoring approach using fast moving window PCA. Ind Eng Chem Res. 2005;44:5691-5702.
    • (2005) Ind Eng Chem Res. , vol.44 , pp. 5691-5702
    • Wang, X.1    Kruger, U.2    Irwin, G.W.3
  • 23
    • 31544440191 scopus 로고    scopus 로고
    • Robust recursive principal component analysis modeling for adaptive monitoring
    • Jin HD, Lee YH, Lee G, Han CH. Robust recursive principal component analysis modeling for adaptive monitoring. Ind Eng Chem Res. 2006;45:696-703.
    • (2006) Ind Eng Chem Res. , vol.45 , pp. 696-703
    • Jin, H.D.1    Lee, Y.H.2    Lee, G.3    Han, C.H.4
  • 24
    • 0032686509 scopus 로고    scopus 로고
    • Real-time monitoring for a process with multiple operating modes
    • Hwang DH, Han C. Real-time monitoring for a process with multiple operating modes. Control Eng Pract. 1999;7:891-902.
    • (1999) Control Eng Pract. , vol.7 , pp. 891-902
    • Hwang, D.H.1    Han, C.2
  • 25
    • 33645389475 scopus 로고    scopus 로고
    • Evaluation of a pattern matching method for the Tennessee Eastman challenge process
    • Singhai A, Seborg DE. Evaluation of a pattern matching method for the Tennessee Eastman challenge process. J Process Control. 2006;16:601-613.
    • (2006) J Process Control. , vol.16 , pp. 601-613
    • Singhai, A.1    Seborg, D.E.2
  • 26
    • 34147222905 scopus 로고    scopus 로고
    • On-line soft sensor for polyethylene process with multiple production grades
    • Liu JL. On-line soft sensor for polyethylene process with multiple production grades. Control Eng Pract. 2007;15:769-778.
    • (2007) Control Eng Pract. , vol.15 , pp. 769-778
    • Liu, J.L.1
  • 27
    • 50649095932 scopus 로고    scopus 로고
    • Online monitoring of nonlinear multiple mode processes based on adaptive local model approach
    • Ge ZQ, Song ZH. Online monitoring of nonlinear multiple mode processes based on adaptive local model approach. Control Eng Pract. 2008;16:1427-1437.
    • (2008) Control Eng Pract. , vol.16 , pp. 1427-1437
    • Ge, Z.Q.1    Song, Z.H.2
  • 28
    • 78650524009 scopus 로고    scopus 로고
    • A comparative study of Just-In-Time-Learning based methods for online soft sensor modeling
    • Ge ZQ, Song ZH. A comparative study of Just-In-Time-Learning based methods for online soft sensor modeling. Chemometr Intell Lab Syst. 2010;104:306-317.
    • (2010) Chemometr Intell Lab Syst. , vol.104 , pp. 306-317
    • Ge, Z.Q.1    Song, Z.H.2
  • 29
    • 77951091017 scopus 로고    scopus 로고
    • Development of correlation-based clustering method and its application to software sensing
    • Fujiwara K, Kano M, Hasebe S. Development of correlation-based clustering method and its application to software sensing. Chemometr Intell Lab Syst. 2010;101:130-138.
    • (2010) Chemometr Intell Lab Syst. , vol.101 , pp. 130-138
    • Fujiwara, K.1    Kano, M.2    Hasebe, S.3
  • 30
    • 79954599740 scopus 로고    scopus 로고
    • Local learning-based adaptive soft sensor for catalyst activation prediction
    • Kadlec P, Gabrys B. Local learning-based adaptive soft sensor for catalyst activation prediction. AIChE J. 2011;57:1288-1301.
    • (2011) AIChE J. , vol.57 , pp. 1288-1301
    • Kadlec, P.1    Gabrys, B.2
  • 31
    • 1942468131 scopus 로고    scopus 로고
    • Evolution of multivariate statistical process control: application of independent component analysis and external analysis
    • Kano M, Hasebe S, Hashimoto I, Ohno H. Evolution of multivariate statistical process control: application of independent component analysis and external analysis. Comput Chem Eng. 2004;28:1157-1166.
    • (2004) Comput Chem Eng. , vol.28 , pp. 1157-1166
    • Kano, M.1    Hasebe, S.2    Hashimoto, I.3    Ohno, H.4
  • 32
    • 49249127452 scopus 로고    scopus 로고
    • Robust online monitoring for multimode processes based on nonlinear external analysis
    • Ge ZQ, Yang CJ, Song ZH, Wang HQ. Robust online monitoring for multimode processes based on nonlinear external analysis. Ind Eng Chem Res. 2008;47:4775-4783.
    • (2008) Ind Eng Chem Res. , vol.47 , pp. 4775-4783
    • Ge, Z.Q.1    Yang, C.J.2    Song, Z.H.3    Wang, H.Q.4
  • 33
    • 0942266514 scopus 로고    scopus 로고
    • Support vector domain description
    • Tax DMJ, Duin RPW. Support vector domain description. Mach Learn. 2004;54:45-66.
    • (2004) Mach Learn. , vol.54 , pp. 45-66
    • Tax, D.M.J.1    Duin, R.P.W.2
  • 34
    • 0027561446 scopus 로고
    • A plant-wide industrial process control problem
    • Downs JJ, Vogel EF. A plant-wide industrial process control problem. Comput Chem Eng. 1993;17:245-255.
    • (1993) Comput Chem Eng. , vol.17 , pp. 245-255
    • Downs, J.J.1    Vogel, E.F.2
  • 35
    • 27144456830 scopus 로고    scopus 로고
    • Fault diagnosis by qualitative trend analysis of the principal components
    • Maurya MR, Rengaswamy R, Venkatasubramanian V. Fault diagnosis by qualitative trend analysis of the principal components. Chem Eng Res Des. 2005;83:1122-1132.
    • (2005) Chem Eng Res Des. , vol.83 , pp. 1122-1132
    • Maurya, M.R.1    Rengaswamy, R.2    Venkatasubramanian, V.3
  • 36
    • 63249084878 scopus 로고    scopus 로고
    • Improved kernel PCA-based monitoring approach for nonlinear processes
    • Ge ZQ, Yang CJ, Song ZH. Improved kernel PCA-based monitoring approach for nonlinear processes. Chem Eng Sci. 2009;64:2245-2255.
    • (2009) Chem Eng Sci. , vol.64 , pp. 2245-2255
    • Ge, Z.Q.1    Yang, C.J.2    Song, Z.H.3
  • 37
    • 71849088402 scopus 로고    scopus 로고
    • Sensor fault identification and isolation for multivariate non-Gaussian processes
    • Ge ZQ, Xie L, Kruger U, Lamont L, Song ZH, Wang SQ. Sensor fault identification and isolation for multivariate non-Gaussian processes. J Process Control. 2009;19:1707-1715.
    • (2009) J Process Control. , vol.19 , pp. 1707-1715
    • Ge, Z.Q.1    Xie, L.2    Kruger, U.3    Lamont, L.4    Song, Z.H.5    Wang, S.Q.6
  • 38
    • 77957599856 scopus 로고    scopus 로고
    • Total projection to latent structures for process monitoring
    • Zhou DH, Li G, Qin SJ. Total projection to latent structures for process monitoring. AIChE J. 2010;56:168-178.
    • (2010) AIChE J. , vol.56 , pp. 168-178
    • Zhou, D.H.1    Li, G.2    Qin, S.J.3
  • 39
    • 84866069902 scopus 로고    scopus 로고
    • A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process
    • Yin S, Ding SX, Haghani A, Hao HY, Zhang P. A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process. J Process Control. 2012;22:1567-1581.
    • (2012) J Process Control. , vol.22 , pp. 1567-1581
    • Yin, S.1    Ding, S.X.2    Haghani, A.3    Hao, H.Y.4    Zhang, P.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.