-
1
-
-
67349089877
-
Data-driven soft sensors in the process industry
-
Kadlec P, Gabrys B, Strandt S. Data-driven soft sensors in the process industry. Comput Chem Eng. 2009;33:795-814.
-
(2009)
Comput Chem Eng.
, vol.33
, pp. 795-814
-
-
Kadlec, P.1
Gabrys, B.2
Strandt, S.3
-
2
-
-
58449118276
-
Development of a new soft sensor method using independent component analysis and partial least squares
-
Kaneko H, Arakawa M, Funatsu K. Development of a new soft sensor method using independent component analysis and partial least squares. AIChE J. 2009;55:87-98.
-
(2009)
AIChE J.
, vol.55
, pp. 87-98
-
-
Kaneko, H.1
Arakawa, M.2
Funatsu, K.3
-
3
-
-
79954599740
-
Local learning-based adaptive soft sensor for catalyst activation prediction
-
Kadlec P, Gabrys B. Local learning-based adaptive soft sensor for catalyst activation prediction. AIChE J. 2010;57:1288-1301.
-
(2010)
AIChE J.
, vol.57
, pp. 1288-1301
-
-
Kadlec, P.1
Gabrys, B.2
-
4
-
-
0032044750
-
Recursive PLS algorithms for adaptive data modeling
-
Qin SJ. Recursive PLS algorithms for adaptive data modeling. Comput Chem Eng. 1998;22:503-514.
-
(1998)
Comput Chem Eng.
, vol.22
, pp. 503-514
-
-
Qin, S.J.1
-
5
-
-
2942558590
-
A new data-based methodology for nonlinear process modeling
-
Cheng C, Chiu MS. A new data-based methodology for nonlinear process modeling. Chem Eng Sci. 2004;59:2801-2810.
-
(2004)
Chem Eng Sci.
, vol.59
, pp. 2801-2810
-
-
Cheng, C.1
Chiu, M.S.2
-
6
-
-
68049143320
-
Soft-sensor development using correlation-based just-in-time modeling
-
Fujiwara K, Kano M, Hasebe S, Takinami A. Soft-sensor development using correlation-based just-in-time modeling. AIChE J. 2009;55:1754-1765.
-
(2009)
AIChE J.
, vol.55
, pp. 1754-1765
-
-
Fujiwara, K.1
Kano, M.2
Hasebe, S.3
Takinami, A.4
-
7
-
-
0036639869
-
Scalable techniques from onparametric statistics for real time robot learning
-
Schaal S, Atkeson CG, Vijayakumar S. Scalable techniques from onparametric statistics for real time robot learning. Appl Intell. 2002;17:49-60.
-
(2002)
Appl Intell.
, vol.17
, pp. 49-60
-
-
Schaal, S.1
Atkeson, C.G.2
Vijayakumar, S.3
-
8
-
-
79959784751
-
Maintenance-free soft sensor models with time difference of process variables
-
Kaneko H, Funatsu K. Maintenance-free soft sensor models with time difference of process variables. Chemom Intell Lab Syst. 2011;107:312-317.
-
(2011)
Chemom Intell Lab Syst.
, vol.107
, pp. 312-317
-
-
Kaneko, H.1
Funatsu, K.2
-
9
-
-
80055094175
-
A soft sensor method based on values predicted from multiple intervals of time difference for improvement and estimation of prediction accuracy
-
Kaneko H, Funatsu K. A soft sensor method based on values predicted from multiple intervals of time difference for improvement and estimation of prediction accuracy. Chemom Intell Lab Syst. 2011;109:197-206.
-
(2011)
Chemom Intell Lab Syst.
, vol.109
, pp. 197-206
-
-
Kaneko, H.1
Funatsu, K.2
-
10
-
-
80052838846
-
Development of soft sensor models based on time difference of process variables with accounting for nonlinear relationship
-
Kaneko H, Funatsu K. Development of soft sensor models based on time difference of process variables with accounting for nonlinear relationship. Ind Eng Chem Res. 2011;50:10643-10651.
-
(2011)
Ind Eng Chem Res.
, vol.50
, pp. 10643-10651
-
-
Kaneko, H.1
Funatsu, K.2
-
11
-
-
78649468188
-
Review of adaptation mechanisms for data-driven soft sensors
-
Kadlec P, Grbic R, Gabrys B. Review of adaptation mechanisms for data-driven soft sensors. Comput Chem Eng. 2011;35:1-24.
-
(2011)
Comput Chem Eng.
, vol.35
, pp. 1-24
-
-
Kadlec, P.1
Grbic, R.2
Gabrys, B.3
-
12
-
-
84868224530
-
Multiway gaussian mixture model based adaptive kernel partial least squares regression method for soft sensor estimation and reliable quality prediction of nonlinear multiphase batch processes
-
Yu J. Multiway gaussian mixture model based adaptive kernel partial least squares regression method for soft sensor estimation and reliable quality prediction of nonlinear multiphase batch processes. Ind Eng Chem Res. 2012;51:13227-13237.
-
(2012)
Ind Eng Chem Res.
, vol.51
, pp. 13227-13237
-
-
Yu, J.1
-
13
-
-
84859392648
-
A Bayesian inference based two-stage support vector regression framework for soft sensor development in batch bioprocesses
-
Yu J. A Bayesian inference based two-stage support vector regression framework for soft sensor development in batch bioprocesses. Comput Chem Eng. 2012;41:134-144.
-
(2012)
Comput Chem Eng.
, vol.41
, pp. 134-144
-
-
Yu, J.1
-
14
-
-
84861955990
-
Development of a model selection method based on reliability of a soft sensor model
-
Okada T, Kaneko H, Funatsu K. Development of a model selection method based on reliability of a soft sensor model, Songklanakarin J Sci Technol. 2012;34:217-222.
-
(2012)
Songklanakarin J Sci Technol.
, vol.34
, pp. 217-222
-
-
Okada, T.1
Kaneko, H.2
Funatsu, K.3
-
15
-
-
84872918863
-
Classification of the degradation of soft sensor models and discussion on adaptive models
-
Kaneko H, Funatsu K. Classification of the degradation of soft sensor models and discussion on adaptive models. AIChE J. 2013;52:1322-1334.
-
(2013)
AIChE J.
, vol.52
, pp. 1322-1334
-
-
Kaneko, H.1
Funatsu, K.2
-
16
-
-
35549007986
-
Partitioned model-based IMC design using JITL modeling technique
-
Kalmukale AG, Chiu MS, Wang QG. Partitioned model-based IMC design using JITL modeling technique. J Process Control. 2007;17:757-769.
-
(2007)
J Process Control.
, vol.17
, pp. 757-769
-
-
Kalmukale, A.G.1
Chiu, M.S.2
Wang, Q.G.3
-
17
-
-
67349237491
-
Adaptive generalized predictive control based on JITL technique
-
Kansha Y, Chiu MS. Adaptive generalized predictive control based on JITL technique. J Process Control. 2009;17:1067-1072.
-
(2009)
J Process Control.
, vol.17
, pp. 1067-1072
-
-
Kansha, Y.1
Chiu, M.S.2
-
18
-
-
84889672056
-
Development of a New Index to Monitor Database for Soft Sensors
-
Kaneko H, Funatsu K. Development of a New Index to Monitor Database for Soft Sensors. J Comput-Aided Chem. 2013;14:11-22.
-
(2013)
J Comput-Aided Chem.
, vol.14
, pp. 11-22
-
-
Kaneko, H.1
Funatsu, K.2
-
19
-
-
84864805251
-
Online quality prediction of nonlinear and non-Gaussian chemical processes with shifting dynamics using finite mixture model based Gaussian process regression approach
-
Yu J. Online quality prediction of nonlinear and non-Gaussian chemical processes with shifting dynamics using finite mixture model based Gaussian process regression approach. Chem Eng Sci. 2012;82:22-30.
-
(2012)
Chem Eng Sci.
, vol.82
, pp. 22-30
-
-
Yu, J.1
-
20
-
-
84874515333
-
A Bayesian model averaging based multi-kernel Gaussian process regression framework for nonlinear state estimation and quality prediction of multiphase batch processes with transient dynamics and uncertainty
-
Yu J, Chen K, Rashid MM. A Bayesian model averaging based multi-kernel Gaussian process regression framework for nonlinear state estimation and quality prediction of multiphase batch processes with transient dynamics and uncertainty. Chem Eng Sci. 2013;93:96-109.
-
(2013)
Chem Eng Sci.
, vol.93
, pp. 96-109
-
-
Yu, J.1
Chen, K.2
Rashid, M.M.3
-
21
-
-
47549099484
-
Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models
-
Yu J, Qin SJ. Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models. AIChE J. 2008;54:1811-1829.
-
(2008)
AIChE J.
, vol.54
, pp. 1811-1829
-
-
Yu, J.1
Qin, S.J.2
-
22
-
-
84862799924
-
A particle filter driven dynamic Gaussian mixture model approach for complex process monitoring and fault diagnosis
-
Yu J. A particle filter driven dynamic Gaussian mixture model approach for complex process monitoring and fault diagnosis. J Process Control. 2012;22:778-788.
-
(2012)
J Process Control.
, vol.22
, pp. 778-788
-
-
Yu, J.1
-
23
-
-
84875001041
-
Review of recent research on data-based process monitoring
-
Ge Z, Song Z, Gao F. Review of recent research on data-based process monitoring. Ind Eng Chem Res. 2013;52:3543-3562.
-
(2013)
Ind Eng Chem Res.
, vol.52
, pp. 3543-3562
-
-
Ge, Z.1
Song, Z.2
Gao, F.3
-
24
-
-
84861191986
-
A new dissimilarity method integrating multidimensional mutual information and independent component analysis for non-Gaussian dynamic process monitoring
-
Rashid MM, Yu J. A new dissimilarity method integrating multidimensional mutual information and independent component analysis for non-Gaussian dynamic process monitoring. Chemom Intell Lab Syst. 2012;115:44-58.
-
(2012)
Chemom Intell Lab Syst.
, vol.115
, pp. 44-58
-
-
Rashid, M.M.1
Yu, J.2
-
25
-
-
84865495534
-
Nonlinear and non-Gaussian dynamic batch process monitoring using a new multiway kernel independent component analysis and multidimensional mutual information based dissimilarity method
-
Rashid MM, Yu J. Nonlinear and non-Gaussian dynamic batch process monitoring using a new multiway kernel independent component analysis and multidimensional mutual information based dissimilarity method. Ind Eng Chem Res. 2012;51:10910-10920.
-
(2012)
Ind Eng Chem Res.
, vol.51
, pp. 10910-10920
-
-
Rashid, M.M.1
Yu, J.2
-
26
-
-
42149090634
-
Structure-activity landscape index: Identifying and quantifying activity cliffs
-
Guha R, Drie JHV. Structure-activity landscape index: Identifying and quantifying activity cliffs. J Chem Inf Model. 2008;48:646-658.
-
(2008)
J Chem Inf Model.
, vol.48
, pp. 646-658
-
-
Guha, R.1
Drie, J.H.V.2
-
27
-
-
84859134381
-
Methods for SAR visualization
-
Stumpfe D, Bajorath J. Methods for SAR visualization, RSC Adv. 2012;2:369-378.
-
(2012)
RSC Adv.
, vol.2
, pp. 369-378
-
-
Stumpfe, D.1
Bajorath, J.2
-
28
-
-
72149085992
-
An accumulative error based adaptive design of experiments for offline metamodeling
-
Li G, Aute V, Azarm S. An accumulative error based adaptive design of experiments for offline metamodeling. Struct Multidiscip Optim. 2010;40:137-155.
-
(2010)
Struct Multidiscip Optim.
, vol.40
, pp. 137-155
-
-
Li, G.1
Aute, V.2
Azarm, S.3
-
30
-
-
0141765796
-
Accurate on-line support vector regression
-
Ma J, Theliler J, Perkins S. Accurate on-line support vector regression. Neural Comput. 2003;15:2683-2703.
-
(2003)
Neural Comput.
, vol.15
, pp. 2683-2703
-
-
Ma, J.1
Theliler, J.2
Perkins, S.3
-
31
-
-
84872920533
-
Virtual sensing technology in process industries: Trends and challenges revealed by recent industrial applications
-
Kano M, Fujiwara K. Virtual sensing technology in process industries: Trends and challenges revealed by recent industrial applications. J Chem Eng Jpn. 2013;46:1-17.
-
(2013)
J Chem Eng Jpn.
, vol.46
, pp. 1-17
-
-
Kano, M.1
Fujiwara, K.2
|