메뉴 건너뛰기




Volumn 60, Issue 1, 2014, Pages 160-169

Database monitoring index for adaptive soft sensors and the application to industrial process

Author keywords

Adaptive model; Database; Degradation; Monitoring; Process control; Soft sensor

Indexed keywords

ADAPTIVE MODELING; ADAPTIVE SOFT-SENSOR; ANALYSIS OF SIMULATIONS; INDUSTRIAL PROCESSS; PREDICTIVE ACCURACY; PREDICTIVE PERFORMANCE; PROCESS CHARACTERISTICS; SOFT SENSORS;

EID: 84889677253     PISSN: 00011541     EISSN: 15475905     Source Type: Journal    
DOI: 10.1002/aic.14260     Document Type: Article
Times cited : (41)

References (31)
  • 1
    • 67349089877 scopus 로고    scopus 로고
    • Data-driven soft sensors in the process industry
    • Kadlec P, Gabrys B, Strandt S. Data-driven soft sensors in the process industry. Comput Chem Eng. 2009;33:795-814.
    • (2009) Comput Chem Eng. , vol.33 , pp. 795-814
    • Kadlec, P.1    Gabrys, B.2    Strandt, S.3
  • 2
    • 58449118276 scopus 로고    scopus 로고
    • Development of a new soft sensor method using independent component analysis and partial least squares
    • Kaneko H, Arakawa M, Funatsu K. Development of a new soft sensor method using independent component analysis and partial least squares. AIChE J. 2009;55:87-98.
    • (2009) AIChE J. , vol.55 , pp. 87-98
    • Kaneko, H.1    Arakawa, M.2    Funatsu, K.3
  • 3
    • 79954599740 scopus 로고    scopus 로고
    • Local learning-based adaptive soft sensor for catalyst activation prediction
    • Kadlec P, Gabrys B. Local learning-based adaptive soft sensor for catalyst activation prediction. AIChE J. 2010;57:1288-1301.
    • (2010) AIChE J. , vol.57 , pp. 1288-1301
    • Kadlec, P.1    Gabrys, B.2
  • 4
    • 0032044750 scopus 로고    scopus 로고
    • Recursive PLS algorithms for adaptive data modeling
    • Qin SJ. Recursive PLS algorithms for adaptive data modeling. Comput Chem Eng. 1998;22:503-514.
    • (1998) Comput Chem Eng. , vol.22 , pp. 503-514
    • Qin, S.J.1
  • 5
    • 2942558590 scopus 로고    scopus 로고
    • A new data-based methodology for nonlinear process modeling
    • Cheng C, Chiu MS. A new data-based methodology for nonlinear process modeling. Chem Eng Sci. 2004;59:2801-2810.
    • (2004) Chem Eng Sci. , vol.59 , pp. 2801-2810
    • Cheng, C.1    Chiu, M.S.2
  • 6
    • 68049143320 scopus 로고    scopus 로고
    • Soft-sensor development using correlation-based just-in-time modeling
    • Fujiwara K, Kano M, Hasebe S, Takinami A. Soft-sensor development using correlation-based just-in-time modeling. AIChE J. 2009;55:1754-1765.
    • (2009) AIChE J. , vol.55 , pp. 1754-1765
    • Fujiwara, K.1    Kano, M.2    Hasebe, S.3    Takinami, A.4
  • 7
    • 0036639869 scopus 로고    scopus 로고
    • Scalable techniques from onparametric statistics for real time robot learning
    • Schaal S, Atkeson CG, Vijayakumar S. Scalable techniques from onparametric statistics for real time robot learning. Appl Intell. 2002;17:49-60.
    • (2002) Appl Intell. , vol.17 , pp. 49-60
    • Schaal, S.1    Atkeson, C.G.2    Vijayakumar, S.3
  • 8
    • 79959784751 scopus 로고    scopus 로고
    • Maintenance-free soft sensor models with time difference of process variables
    • Kaneko H, Funatsu K. Maintenance-free soft sensor models with time difference of process variables. Chemom Intell Lab Syst. 2011;107:312-317.
    • (2011) Chemom Intell Lab Syst. , vol.107 , pp. 312-317
    • Kaneko, H.1    Funatsu, K.2
  • 9
    • 80055094175 scopus 로고    scopus 로고
    • A soft sensor method based on values predicted from multiple intervals of time difference for improvement and estimation of prediction accuracy
    • Kaneko H, Funatsu K. A soft sensor method based on values predicted from multiple intervals of time difference for improvement and estimation of prediction accuracy. Chemom Intell Lab Syst. 2011;109:197-206.
    • (2011) Chemom Intell Lab Syst. , vol.109 , pp. 197-206
    • Kaneko, H.1    Funatsu, K.2
  • 10
    • 80052838846 scopus 로고    scopus 로고
    • Development of soft sensor models based on time difference of process variables with accounting for nonlinear relationship
    • Kaneko H, Funatsu K. Development of soft sensor models based on time difference of process variables with accounting for nonlinear relationship. Ind Eng Chem Res. 2011;50:10643-10651.
    • (2011) Ind Eng Chem Res. , vol.50 , pp. 10643-10651
    • Kaneko, H.1    Funatsu, K.2
  • 11
    • 78649468188 scopus 로고    scopus 로고
    • Review of adaptation mechanisms for data-driven soft sensors
    • Kadlec P, Grbic R, Gabrys B. Review of adaptation mechanisms for data-driven soft sensors. Comput Chem Eng. 2011;35:1-24.
    • (2011) Comput Chem Eng. , vol.35 , pp. 1-24
    • Kadlec, P.1    Grbic, R.2    Gabrys, B.3
  • 12
    • 84868224530 scopus 로고    scopus 로고
    • Multiway gaussian mixture model based adaptive kernel partial least squares regression method for soft sensor estimation and reliable quality prediction of nonlinear multiphase batch processes
    • Yu J. Multiway gaussian mixture model based adaptive kernel partial least squares regression method for soft sensor estimation and reliable quality prediction of nonlinear multiphase batch processes. Ind Eng Chem Res. 2012;51:13227-13237.
    • (2012) Ind Eng Chem Res. , vol.51 , pp. 13227-13237
    • Yu, J.1
  • 13
    • 84859392648 scopus 로고    scopus 로고
    • A Bayesian inference based two-stage support vector regression framework for soft sensor development in batch bioprocesses
    • Yu J. A Bayesian inference based two-stage support vector regression framework for soft sensor development in batch bioprocesses. Comput Chem Eng. 2012;41:134-144.
    • (2012) Comput Chem Eng. , vol.41 , pp. 134-144
    • Yu, J.1
  • 14
    • 84861955990 scopus 로고    scopus 로고
    • Development of a model selection method based on reliability of a soft sensor model
    • Okada T, Kaneko H, Funatsu K. Development of a model selection method based on reliability of a soft sensor model, Songklanakarin J Sci Technol. 2012;34:217-222.
    • (2012) Songklanakarin J Sci Technol. , vol.34 , pp. 217-222
    • Okada, T.1    Kaneko, H.2    Funatsu, K.3
  • 15
    • 84872918863 scopus 로고    scopus 로고
    • Classification of the degradation of soft sensor models and discussion on adaptive models
    • Kaneko H, Funatsu K. Classification of the degradation of soft sensor models and discussion on adaptive models. AIChE J. 2013;52:1322-1334.
    • (2013) AIChE J. , vol.52 , pp. 1322-1334
    • Kaneko, H.1    Funatsu, K.2
  • 16
    • 35549007986 scopus 로고    scopus 로고
    • Partitioned model-based IMC design using JITL modeling technique
    • Kalmukale AG, Chiu MS, Wang QG. Partitioned model-based IMC design using JITL modeling technique. J Process Control. 2007;17:757-769.
    • (2007) J Process Control. , vol.17 , pp. 757-769
    • Kalmukale, A.G.1    Chiu, M.S.2    Wang, Q.G.3
  • 17
    • 67349237491 scopus 로고    scopus 로고
    • Adaptive generalized predictive control based on JITL technique
    • Kansha Y, Chiu MS. Adaptive generalized predictive control based on JITL technique. J Process Control. 2009;17:1067-1072.
    • (2009) J Process Control. , vol.17 , pp. 1067-1072
    • Kansha, Y.1    Chiu, M.S.2
  • 18
    • 84889672056 scopus 로고    scopus 로고
    • Development of a New Index to Monitor Database for Soft Sensors
    • Kaneko H, Funatsu K. Development of a New Index to Monitor Database for Soft Sensors. J Comput-Aided Chem. 2013;14:11-22.
    • (2013) J Comput-Aided Chem. , vol.14 , pp. 11-22
    • Kaneko, H.1    Funatsu, K.2
  • 19
    • 84864805251 scopus 로고    scopus 로고
    • Online quality prediction of nonlinear and non-Gaussian chemical processes with shifting dynamics using finite mixture model based Gaussian process regression approach
    • Yu J. Online quality prediction of nonlinear and non-Gaussian chemical processes with shifting dynamics using finite mixture model based Gaussian process regression approach. Chem Eng Sci. 2012;82:22-30.
    • (2012) Chem Eng Sci. , vol.82 , pp. 22-30
    • Yu, J.1
  • 20
    • 84874515333 scopus 로고    scopus 로고
    • A Bayesian model averaging based multi-kernel Gaussian process regression framework for nonlinear state estimation and quality prediction of multiphase batch processes with transient dynamics and uncertainty
    • Yu J, Chen K, Rashid MM. A Bayesian model averaging based multi-kernel Gaussian process regression framework for nonlinear state estimation and quality prediction of multiphase batch processes with transient dynamics and uncertainty. Chem Eng Sci. 2013;93:96-109.
    • (2013) Chem Eng Sci. , vol.93 , pp. 96-109
    • Yu, J.1    Chen, K.2    Rashid, M.M.3
  • 21
    • 47549099484 scopus 로고    scopus 로고
    • Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models
    • Yu J, Qin SJ. Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models. AIChE J. 2008;54:1811-1829.
    • (2008) AIChE J. , vol.54 , pp. 1811-1829
    • Yu, J.1    Qin, S.J.2
  • 22
    • 84862799924 scopus 로고    scopus 로고
    • A particle filter driven dynamic Gaussian mixture model approach for complex process monitoring and fault diagnosis
    • Yu J. A particle filter driven dynamic Gaussian mixture model approach for complex process monitoring and fault diagnosis. J Process Control. 2012;22:778-788.
    • (2012) J Process Control. , vol.22 , pp. 778-788
    • Yu, J.1
  • 23
    • 84875001041 scopus 로고    scopus 로고
    • Review of recent research on data-based process monitoring
    • Ge Z, Song Z, Gao F. Review of recent research on data-based process monitoring. Ind Eng Chem Res. 2013;52:3543-3562.
    • (2013) Ind Eng Chem Res. , vol.52 , pp. 3543-3562
    • Ge, Z.1    Song, Z.2    Gao, F.3
  • 24
    • 84861191986 scopus 로고    scopus 로고
    • A new dissimilarity method integrating multidimensional mutual information and independent component analysis for non-Gaussian dynamic process monitoring
    • Rashid MM, Yu J. A new dissimilarity method integrating multidimensional mutual information and independent component analysis for non-Gaussian dynamic process monitoring. Chemom Intell Lab Syst. 2012;115:44-58.
    • (2012) Chemom Intell Lab Syst. , vol.115 , pp. 44-58
    • Rashid, M.M.1    Yu, J.2
  • 25
    • 84865495534 scopus 로고    scopus 로고
    • Nonlinear and non-Gaussian dynamic batch process monitoring using a new multiway kernel independent component analysis and multidimensional mutual information based dissimilarity method
    • Rashid MM, Yu J. Nonlinear and non-Gaussian dynamic batch process monitoring using a new multiway kernel independent component analysis and multidimensional mutual information based dissimilarity method. Ind Eng Chem Res. 2012;51:10910-10920.
    • (2012) Ind Eng Chem Res. , vol.51 , pp. 10910-10920
    • Rashid, M.M.1    Yu, J.2
  • 26
    • 42149090634 scopus 로고    scopus 로고
    • Structure-activity landscape index: Identifying and quantifying activity cliffs
    • Guha R, Drie JHV. Structure-activity landscape index: Identifying and quantifying activity cliffs. J Chem Inf Model. 2008;48:646-658.
    • (2008) J Chem Inf Model. , vol.48 , pp. 646-658
    • Guha, R.1    Drie, J.H.V.2
  • 27
    • 84859134381 scopus 로고    scopus 로고
    • Methods for SAR visualization
    • Stumpfe D, Bajorath J. Methods for SAR visualization, RSC Adv. 2012;2:369-378.
    • (2012) RSC Adv. , vol.2 , pp. 369-378
    • Stumpfe, D.1    Bajorath, J.2
  • 28
    • 72149085992 scopus 로고    scopus 로고
    • An accumulative error based adaptive design of experiments for offline metamodeling
    • Li G, Aute V, Azarm S. An accumulative error based adaptive design of experiments for offline metamodeling. Struct Multidiscip Optim. 2010;40:137-155.
    • (2010) Struct Multidiscip Optim. , vol.40 , pp. 137-155
    • Li, G.1    Aute, V.2    Azarm, S.3
  • 30
    • 0141765796 scopus 로고    scopus 로고
    • Accurate on-line support vector regression
    • Ma J, Theliler J, Perkins S. Accurate on-line support vector regression. Neural Comput. 2003;15:2683-2703.
    • (2003) Neural Comput. , vol.15 , pp. 2683-2703
    • Ma, J.1    Theliler, J.2    Perkins, S.3
  • 31
    • 84872920533 scopus 로고    scopus 로고
    • Virtual sensing technology in process industries: Trends and challenges revealed by recent industrial applications
    • Kano M, Fujiwara K. Virtual sensing technology in process industries: Trends and challenges revealed by recent industrial applications. J Chem Eng Jpn. 2013;46:1-17.
    • (2013) J Chem Eng Jpn. , vol.46 , pp. 1-17
    • Kano, M.1    Fujiwara, K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.