-
1
-
-
84897109377
-
A Review On Multi-Label Learning Algorithms
-
Zhang ML, Zhou ZH. A Review On Multi-Label Learning Algorithms. IEEE Trans Knowl Data Eng 2014, 26:1819-1837.
-
(2014)
IEEE Trans Knowl Data Eng
, vol.26
, pp. 1819-1837
-
-
Zhang, M.L.1
Zhou, Z.H.2
-
2
-
-
84912130318
-
First International Workshop on Learning from Multi-Label Data (MLD'09)
-
Available at:
-
First International Workshop on Learning from Multi-Label Data (MLD'09). Available at: http://lpis.csd.auth.gr/workshops/mld09/mld09.pdf. (2009).
-
(2009)
-
-
-
3
-
-
84912087150
-
Second International Workshop on Learning from Multi-Label Data (MLD'10)
-
Second International Workshop on Learning from Multi-Label Data (MLD'10). http://cse.seu.edu.cn/conf/MLD10/files/MLD'10.pdf (2010).
-
(2010)
-
-
-
4
-
-
84912108721
-
Extreme Classification: Multi-Class & Multi-Label Learning with Millions of Categories
-
Available at:
-
Extreme Classification: Multi-Class & Multi-Label Learning with Millions of Categories. Available at: http://nips.cc/Conferences/2013/Program/event.php?ID=3707 (2013).
-
(2013)
-
-
-
5
-
-
84912123901
-
Special issue on learning from multi-label data
-
Special issue on learning from multi-label data. Mach Learn 2012, 88.
-
(2012)
Mach Learn
, vol.88
-
-
-
6
-
-
84912087149
-
-
LAMDA: Learning and Mining from Data. Data & Code. Available at:
-
LAMDA: Learning and Mining from Data. Data & Code. Available at: http://lamda.nju.edu.cn/Data.ashx.
-
-
-
-
7
-
-
79955702502
-
LIBSVM: a library for support vector machines
-
27:1-27:27. Available at:
-
Chang CC, Lin CJ. LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol 2, 27:1-27:27 (2011). Available at: http://www.csie.ntu.edu.tw/cjlin/libsvm.
-
(2011)
ACM Trans Intell Syst Technol
, vol.2
-
-
Chang, C.C.1
Lin, C.J.2
-
8
-
-
84912064965
-
MEKA: a multi-label extension to WEKA
-
Available at:
-
Read J. MEKA: a multi-label extension to WEKA. Available at: http://meka.sourceforge.net/. (2012).
-
(2012)
-
-
Read, J.1
-
9
-
-
80052236046
-
Mulan: a java library for multi-label learning
-
Tsoumakas G, Spyromitros-Xioufis E, Vilcek J, Vlahavas I. Mulan: a java library for multi-label learning. J Mach Learn Res 2011, 12:2411-2414.
-
(2011)
J Mach Learn Res
, vol.12
, pp. 2411-2414
-
-
Tsoumakas, G.1
Spyromitros-Xioufis, E.2
Vilcek, J.3
Vlahavas, I.4
-
10
-
-
67949108237
-
A tutorial on multi-label classification techniques
-
Berlin/Heidelberg: Springer
-
de Carvalho A, Freitas A. A tutorial on multi-label classification techniques. In: Foundations of Computational Intelligence, vol. 5, Berlin/Heidelberg: Springer; 2009, 177-195.
-
(2009)
Foundations of Computational Intelligence
, vol.5
, pp. 177-195
-
-
de Carvalho, A.1
Freitas, A.2
-
13
-
-
84861617363
-
An extensive experimental comparison of methods for multi-label learning
-
Madjarov G, Kocev D, Gjorgjevikj D, Džeroski S. An extensive experimental comparison of methods for multi-label learning. Pattern Recogn 2012, 45:3084-3104.
-
(2012)
Pattern Recogn
, vol.45
, pp. 3084-3104
-
-
Madjarov, G.1
Kocev, D.2
Gjorgjevikj, D.3
Džeroski, S.4
-
15
-
-
77953732572
-
Efficient multilabel classification algorithms for large-scale problems in the legal domain
-
Lecture Notes in Computer Science, Berlin/Heidelberg: Springer
-
Loza E, Fürnkranz J. Efficient multilabel classification algorithms for large-scale problems in the legal domain. In: Semantic Processing of Legal Texts, Lecture Notes in Computer Science, vol. 6036, Berlin/Heidelberg: Springer; 2010, 192-215.
-
(2010)
Semantic Processing of Legal Texts
, vol.6036
, pp. 192-215
-
-
Loza, E.1
Fürnkranz, J.2
-
16
-
-
84865237508
-
Statistical topic models for multi-label document classification
-
Rubin T, Chambers A, Smyth P, Steyvers M. Statistical topic models for multi-label document classification. Mach Learn 2012, 88:157-208.
-
(2012)
Mach Learn
, vol.88
, pp. 157-208
-
-
Rubin, T.1
Chambers, A.2
Smyth, P.3
Steyvers, M.4
-
18
-
-
0033905095
-
BoosTexter: a boosting-based system for text categorization
-
Schapire RE, Singer Y. BoosTexter: a boosting-based system for text categorization. Mach Learn 2000, 39:135-168.
-
(2000)
Mach Learn
, vol.39
, pp. 135-168
-
-
Schapire, R.E.1
Singer, Y.2
-
19
-
-
26944434691
-
Text classification for DAG-structured categories
-
Lecture Notes in Computer Science, chap. 36, Berlin/Heidelberg: Springer
-
Nguyen CD, Dung TA, Cao TH. Text classification for DAG-structured categories. In: Advances in Knowledge Discovery and Data Mining, Lecture Notes in Computer Science, vol. 3518, chap. 36, Berlin/Heidelberg: Springer; 2005; 1-18.
-
(2005)
Advances in Knowledge Discovery and Data Mining
, vol.3518
, pp. 1-18
-
-
Nguyen, C.D.1
Dung, T.A.2
Cao, T.H.3
-
20
-
-
44349194043
-
Enhanced information retrieval from narrative german-language clinical text documents using automated document classification
-
Göteborg, Sweden
-
Spat S, Cadonna B, Rakovac I, Gütl C, Leitner H, Stark G, Beck P. Enhanced information retrieval from narrative german-language clinical text documents using automated document classification. In: eHealth Beyond the Horizon-Get IT There, Proceedings of MIE2008, The XXIst International Congress of the European Federation for Medical Informatics, Göteborg, Sweden; 2008, 473-478.
-
(2008)
eHealth Beyond the Horizon-Get IT There, Proceedings of MIE2008, The XXIst International Congress of the European Federation for Medical Informatics
, pp. 473-478
-
-
Spat, S.1
Cadonna, B.2
Rakovac, I.3
Gütl, C.4
Leitner, H.5
Stark, G.6
Beck, P.7
-
21
-
-
34248573429
-
Grouping of TRIZ inventive principles to facilitate automatic patent classification
-
Cong H, Tong LH. Grouping of TRIZ inventive principles to facilitate automatic patent classification. Expert Systems with Applications 2008, 34:788-795.
-
(2008)
Expert Systems with Applications
, vol.34
, pp. 788-795
-
-
Cong, H.1
Tong, L.H.2
-
23
-
-
35048886584
-
Automatic multi-label subject indexing in a multilingual environment
-
Lecture Notes in Computer Science
-
Lauser B, Hotho A. Automatic multi-label subject indexing in a multilingual environment. In: European Conference on Digital Libraries (ECDL), Lecture Notes in Computer Science, vol. 2769; 2003, 140-151.
-
(2003)
European Conference on Digital Libraries (ECDL)
, vol.2769
, pp. 140-151
-
-
Lauser, B.1
Hotho, A.2
-
25
-
-
79951867458
-
Automatic tag recommendation algorithms for social recommender systems
-
Song Y, Zhang L, Giles CL. Automatic tag recommendation algorithms for social recommender systems. ACM Trans Web 2011, 5:1-31.
-
(2011)
ACM Trans Web
, vol.5
, pp. 1-31
-
-
Song, Y.1
Zhang, L.2
Giles, C.L.3
-
27
-
-
77956198703
-
Medical coding classification by leveraging inter-code relationships
-
New York, NY, USA
-
Yan Y, Fung G, Dy JG, Rosales R. Medical coding classification by leveraging inter-code relationships. In: Proceedings of the 16th International Conference on Knowledge Discovery and Data Mining (KDD '10), New York, NY, USA; 2010, 193-202.
-
(2010)
Proceedings of the 16th International Conference on Knowledge Discovery and Data Mining (KDD '10)
, pp. 193-202
-
-
Yan, Y.1
Fung, G.2
Dy, J.G.3
Rosales, R.4
-
28
-
-
79951752250
-
Large scale multi-label classification via metalabeler
-
New York, NY, USA
-
Tang L, Rajan S, Narayanan VK. Large scale multi-label classification via metalabeler. In: Proceedings of the 18th International Conference on World Wide Web (WWW '09), New York, NY, USA; 2009, 211-220.
-
(2009)
Proceedings of the 18th International Conference on World Wide Web (WWW '09)
, pp. 211-220
-
-
Tang, L.1
Rajan, S.2
Narayanan, V.K.3
-
29
-
-
80053402777
-
Reader perspective emotion analysis in text through ensemble based multi-label classification framework
-
Bhowmick PK, Basu A, Mitra P. Reader perspective emotion analysis in text through ensemble based multi-label classification framework. Comput Inf Sci 2009, 2:64-74.
-
(2009)
Comput Inf Sci
, vol.2
, pp. 64-74
-
-
Bhowmick, P.K.1
Basu, A.2
Mitra, P.3
-
30
-
-
84894097561
-
Sentence level news emotion analysis in fuzzy multi-label classification framework (special issue on natural language processing and its applications)
-
Bhowmick PK, Basu A, Mitra P, Prasad A. Sentence level news emotion analysis in fuzzy multi-label classification framework (special issue on natural language processing and its applications). Res Comput Sci 2010, 46:143-154.
-
(2010)
Res Comput Sci
, vol.46
, pp. 143-154
-
-
Bhowmick, P.K.1
Basu, A.2
Mitra, P.3
Prasad, A.4
-
31
-
-
77956154409
-
Image to text translation by multi-label classification
-
Lecture Notes in Computer Science, Berlin/Heidelberg: Springer
-
Nasierding G, Kouzani A. Image to text translation by multi-label classification. In: Advanced Intelligent Computing Theories and Applications with Aspects of Artificial Intelligence, Lecture Notes in Computer Science, vol. 6216, Berlin/Heidelberg: Springer; 2010, 247-254.
-
(2010)
Advanced Intelligent Computing Theories and Applications with Aspects of Artificial Intelligence
, vol.6216
, pp. 247-254
-
-
Nasierding, G.1
Kouzani, A.2
-
32
-
-
57649109828
-
Automatic image annotation via local multi-label classification
-
New York, NY, USA
-
Wang M, Zhou X, Chua TS. Automatic image annotation via local multi-label classification. In: Proceedings of the 2008 International Conference on Content-Based Image and Video Retrieval (CIVR '08), New York, NY, USA; 2008, 17-26.
-
(2008)
Proceedings of the 2008 International Conference on Content-Based Image and Video Retrieval (CIVR '08)
, pp. 17-26
-
-
Wang, M.1
Zhou, X.2
Chua, T.S.3
-
34
-
-
79958844204
-
A transductive multi-label learning approach for video concept detection
-
Wang J, Zhao Y, Wu X, Hua XS. A transductive multi-label learning approach for video concept detection. Pattern Recogn 2010, 44:2274-2286.
-
(2010)
Pattern Recogn
, vol.44
, pp. 2274-2286
-
-
Wang, J.1
Zhao, Y.2
Wu, X.3
Hua, X.S.4
-
35
-
-
58149151266
-
TextonBoost for image understanding: multi-class object recognition and segmentation by jointly modeling texture, layout, and context
-
Shotton J, Winn J, Rother C, Criminisi A. TextonBoost for image understanding: multi-class object recognition and segmentation by jointly modeling texture, layout, and context. Int J Comput Vision 2009, 81:2-23.
-
(2009)
Int J Comput Vision
, vol.81
, pp. 2-23
-
-
Shotton, J.1
Winn, J.2
Rother, C.3
Criminisi, A.4
-
38
-
-
70350446810
-
Improving multilabel analysis of music titles: a large-scale validation of the correction approach
-
Pachet F, Roy P. Improving multilabel analysis of music titles: a large-scale validation of the correction approach. IEEE Trans Audio Speech Lang Proc 2009, 17:335-343.
-
(2009)
IEEE Trans Audio Speech Lang Proc
, vol.17
, pp. 335-343
-
-
Pachet, F.1
Roy, P.2
-
39
-
-
77952636818
-
Classification of complex information: inference of co-occurring affective states from their expressions in speech
-
Sobol-Shikler T, Robinson P. Classification of complex information: inference of co-occurring affective states from their expressions in speech. IEEE Trans Pattern Anal Mach Intell 2010, 32:1284-1297.
-
(2010)
IEEE Trans Pattern Anal Mach Intell
, vol.32
, pp. 1284-1297
-
-
Sobol-Shikler, T.1
Robinson, P.2
-
41
-
-
84865223440
-
Synergy of multi-label hierarchical ensembles, data fusion, and cost-sensitive methods for gene functional inference
-
Cesa-Bianchi N, Re M, Valentini G. Synergy of multi-label hierarchical ensembles, data fusion, and cost-sensitive methods for gene functional inference. Mach Learn 2012, 88:209-241.
-
(2012)
Mach Learn
, vol.88
, pp. 209-241
-
-
Cesa-Bianchi, N.1
Re, M.2
Valentini, G.3
-
42
-
-
79952857163
-
Hierarchical cost-sensitive algorithms for genome-wide gene function prediction
-
Cesa-Bianchi N, Valentini G. Hierarchical cost-sensitive algorithms for genome-wide gene function prediction. J Mach Learn Res 2010, 8:14-29.
-
(2010)
J Mach Learn Res
, vol.8
, pp. 14-29
-
-
Cesa-Bianchi, N.1
Valentini, G.2
-
46
-
-
33748366796
-
Multilabel neural networks with applications to functional genomics and text categorization
-
Zhang ML, Zhou ZH. Multilabel neural networks with applications to functional genomics and text categorization. IEEE Trans Knowl Data Eng 2006, 18:1338-1351.
-
(2006)
IEEE Trans Knowl Data Eng
, vol.18
, pp. 1338-1351
-
-
Zhang, M.L.1
Zhou, Z.H.2
-
47
-
-
51849091084
-
Multi-label hierarchical classification of protein functions with artificial immune systems
-
Lecture Notes in Bioinformatics
-
Alves RT, Delgado MR, Freitas AA. Multi-label hierarchical classification of protein functions with artificial immune systems. In: Proceedings of the Brazilian Symposium in Bioinformatics (BSB-2008), Lecture Notes in Bioinformatics, vol. 5167; 2008, 1-12.
-
(2008)
Proceedings of the Brazilian Symposium in Bioinformatics (BSB-2008)
, vol.5167
, pp. 1-12
-
-
Alves, R.T.1
Delgado, M.R.2
Freitas, A.A.3
-
48
-
-
78549287454
-
Knowledge discovery with artificial immune systems for hierarchical multi-label classification of protein functions
-
Barcelona, Spain
-
Alves RT, Delgado MR, Freitas AA. Knowledge discovery with artificial immune systems for hierarchical multi-label classification of protein functions. In: IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Barcelona, Spain; 2010, 1-8.
-
(2010)
IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)
, pp. 1-8
-
-
Alves, R.T.1
Delgado, M.R.2
Freitas, A.A.3
-
50
-
-
77956692717
-
A hierarchical multi-label classification ant colony algorithm for protein function prediction
-
Otero F, Freitas A, Johnson C. A hierarchical multi-label classification ant colony algorithm for protein function prediction. Memetic Comput 2010, 2:165-181.
-
(2010)
Memetic Comput
, vol.2
, pp. 165-181
-
-
Otero, F.1
Freitas, A.2
Johnson, C.3
-
51
-
-
50049084711
-
A framework for predicting proteins 3D structures
-
Washington, DC, USA
-
Duwairi R, Kassawneh A. A framework for predicting proteins 3D structures. In: IEEE/ACS International Conference on Computer Systems and Applications (AICCSA '08), Washington, DC, USA; 2008, 37-44.
-
(2008)
IEEE/ACS International Conference on Computer Systems and Applications (AICCSA '08)
, pp. 37-44
-
-
Duwairi, R.1
Kassawneh, A.2
-
52
-
-
79953316878
-
iLoc-Euk: a multi-label classifier for predicting the subcellular localization of singleplex and multiplex eukaryotic proteins
-
Chou KC, Wu ZC, Xiao X. iLoc-Euk: a multi-label classifier for predicting the subcellular localization of singleplex and multiplex eukaryotic proteins. PLoS ONE 2011, 6.
-
(2011)
PLoS ONE
, vol.6
-
-
Chou, K.C.1
Wu, Z.C.2
Xiao, X.3
-
53
-
-
33845310880
-
The study of drug-reaction relationships using global optimization techniques
-
Mammadov MA, Rubinov AM, Yearwood J. The study of drug-reaction relationships using global optimization techniques. Optim Method Softw 2007, 22:99-126.
-
(2007)
Optim Method Softw
, vol.22
, pp. 99-126
-
-
Mammadov, M.A.1
Rubinov, A.M.2
Yearwood, J.3
-
54
-
-
84912127051
-
Identification of the dual action antihypertensive drugs using TFS-based support vector machines
-
Kawai K, Takahashi Y. Identification of the dual action antihypertensive drugs using TFS-based support vector machines. Chem-Bio Inf J 2009, 4:44-51.
-
(2009)
Chem-Bio Inf J
, vol.4
, pp. 44-51
-
-
Kawai, K.1
Takahashi, Y.2
-
56
-
-
70350663106
-
Relational learning via latent social dimensions
-
New York, NY, USA
-
Tang L, Liu H. Relational learning via latent social dimensions. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD '09), New York, NY, USA; 2009, 817-826.
-
(2009)
Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD '09)
, pp. 817-826
-
-
Tang, L.1
Liu, H.2
-
57
-
-
74549120273
-
Scalable learning of collective behavior based on sparse social dimensions
-
New York, NY, USA
-
Tang L, Liu H. Scalable learning of collective behavior based on sparse social dimensions. In: Proceedings of the 18th ACM Conference on Information and Knowledge Management (CIKM '09), New York, NY, USA; 2009, 1107-1116.
-
(2009)
Proceedings of the 18th ACM Conference on Information and Knowledge Management (CIKM '09)
, pp. 1107-1116
-
-
Tang, L.1
Liu, H.2
-
58
-
-
84858060487
-
Multi-relational matrix factorization using Bayesian personalized ranking for social network data
-
New York, NY, USA
-
Krohn-Grimberghe A, Drumond L, Freudenthaler C, Schmidt-Thieme L. Multi-relational matrix factorization using Bayesian personalized ranking for social network data. In: Proceedings of the Fifth ACM International Conference on Web Search and Data Mining (WSDM '12), New York, NY, USA; 2012, 173-182.
-
(2012)
Proceedings of the Fifth ACM International Conference on Web Search and Data Mining (WSDM '12)
, pp. 173-182
-
-
Krohn-Grimberghe, A.1
Drumond, L.2
Freudenthaler, C.3
Schmidt-Thieme, L.4
-
60
-
-
67349227408
-
Automatic detection of learning styles for an e-learning system
-
Özpolat E, Akar GB. Automatic detection of learning styles for an e-learning system. Comput Educ 2009, 53:355-367.
-
(2009)
Comput Educ
, vol.53
, pp. 355-367
-
-
Özpolat, E.1
Akar, G.B.2
-
61
-
-
84859209611
-
A model for multi-label classification and ranking of learning objects
-
López VF, de la Prieta F, Ogihara M, Wong DD. A model for multi-label classification and ranking of learning objects. Expert Syst Appl 2012, 39:8878-8884.
-
(2012)
Expert Syst Appl
, vol.39
, pp. 8878-8884
-
-
López, V.F.1
de la Prieta, F.2
Ogihara, M.3
Wong, D.D.4
-
62
-
-
33745794076
-
Ensemble pruning via semi-definite programming
-
Zhang Y, Burer S, Street WN, Bennett K, Parrado-hern E. Ensemble pruning via semi-definite programming. J Mach Learn Res 2006, 7:1315-1338.
-
(2006)
J Mach Learn Res
, vol.7
, pp. 1315-1338
-
-
Zhang, Y.1
Burer, S.2
Street, W.N.3
Bennett, K.4
Parrado-hern, E.5
-
63
-
-
84878305264
-
Symptom selection for multi-label data of inquiry diagnosis in traditional Chinese medicine
-
Shao H, Li G, Liu G, Wang Y. Symptom selection for multi-label data of inquiry diagnosis in traditional Chinese medicine. Sci China Ser F-Info Sci 2010, 1:1-13.
-
(2010)
Sci China Ser F-Info Sci
, vol.1
, pp. 1-13
-
-
Shao, H.1
Li, G.2
Liu, G.3
Wang, Y.4
-
64
-
-
84866039840
-
Pattern classification of dermoscopy images: a perceptually uniform model
-
Abbas Q, Celebi M, Serrano C, García IF, Ma G. Pattern classification of dermoscopy images: a perceptually uniform model. Pattern Recogn 2013, 46:86-97.
-
(2013)
Pattern Recogn
, vol.46
, pp. 86-97
-
-
Abbas, Q.1
Celebi, M.2
Serrano, C.3
García, I.F.4
Ma, G.5
-
66
-
-
65449124511
-
A study on threshold selection for multi-label classification
-
Technical Report, National Taiwan University
-
Fan RE, Lin CJ. A study on threshold selection for multi-label classification. Technical Report, National Taiwan University; 2007.
-
(2007)
-
-
Fan, R.E.1
Lin, C.J.2
-
68
-
-
33749663109
-
Selection strategies for multi-label text categorization
-
Lecture Notes in Computer Science
-
Montejo-Ráez A, Ureña López L. Selection strategies for multi-label text categorization.In: Advances in Natural Language Processing, Lecture Notes in Computer Science, vol. 4139; 2006, 585-592.
-
(2006)
Advances in Natural Language Processing
, vol.4139
, pp. 585-592
-
-
Montejo-Ráez, A.1
Ureña López, L.2
-
70
-
-
79955550286
-
Multi-dimensional classification with Bayesian networks
-
Bielza C, Li G, Larrañaga P. Multi-dimensional classification with Bayesian networks. Int J Approx Reasoning 2011, 52:705-727.
-
(2011)
Int J Approx Reasoning
, vol.52
, pp. 705-727
-
-
Bielza, C.1
Li, G.2
Larrañaga, P.3
-
71
-
-
67649387956
-
Multi-output regression on the output manifold
-
Liu G, Lin Z, Yu Y. Multi-output regression on the output manifold. Pattern Recogn 2009, 42:2737-2743.
-
(2009)
Pattern Recogn
, vol.42
, pp. 2737-2743
-
-
Liu, G.1
Lin, Z.2
Yu, Y.3
-
73
-
-
78049326859
-
Regret analysis for performance metrics in multi-label classification: the case of hamming and subset zero-one loss
-
Lecture Notes in Computer Science, Berlin/Heidelberg: Springer
-
Dembczyński K, Waegeman W, Cheng W, Hüllermeier E. Regret analysis for performance metrics in multi-label classification: the case of hamming and subset zero-one loss. In: Machine Learning and Knowledge Discovery in Databases, Lecture Notes in Computer Science, vol. 6321. Berlin/Heidelberg: Springer; 2010, 280-295.
-
(2010)
Machine Learning and Knowledge Discovery in Databases
, vol.6321
, pp. 280-295
-
-
Dembczyński, K.1
Waegeman, W.2
Cheng, W.3
Hüllermeier, E.4
-
74
-
-
0033281701
-
Improved boosting algorithms using confidence-rated predictions
-
Schapire RE, Singer Y. Improved boosting algorithms using confidence-rated predictions. Mach Learn 1999, 37:297-336.
-
(1999)
Mach Learn
, vol.37
, pp. 297-336
-
-
Schapire, R.E.1
Singer, Y.2
-
76
-
-
0142228873
-
A family of additive online algorithms for category ranking
-
Crammer K, Singer Y. A family of additive online algorithms for category ranking. J Mach Learn Res 2003, 3:1025-1058.
-
(2003)
J Mach Learn Res
, vol.3
, pp. 1025-1058
-
-
Crammer, K.1
Singer, Y.2
-
77
-
-
84862825073
-
Multi-label classification with label constraints
-
Technical Report, TUD-KE-2008-04, Knowledge Engineering Group, TU Darmstadt; Available at:
-
Park SH, Fürnkranz J. Multi-label classification with label constraints. Technical Report, TUD-KE-2008-04, Knowledge Engineering Group, TU Darmstadt; 2008. Available at: http://www.ke.tu-darmstadt.de/publications/reports/tud-ke-2008-04.pdf.
-
(2008)
-
-
Park, S.H.1
Fürnkranz, J.2
-
78
-
-
84912087148
-
-
Scalable multi-label classification. PhD Thesis, University of Waikato
-
Read J. Scalable multi-label classification. PhD Thesis, University of Waikato, 2010.
-
(2010)
-
-
Read, J.1
-
79
-
-
29644434908
-
Incremental algorithms for hierarchical classification
-
Bianchi NC, Gentile C, Zaniboni L. Incremental algorithms for hierarchical classification. J Mach Learn Res 2006, 7:31-54.
-
(2006)
J Mach Learn Res
, vol.7
, pp. 31-54
-
-
Bianchi, N.C.1
Gentile, C.2
Zaniboni, L.3
-
81
-
-
65449122438
-
Classification with partial labels
-
New York, NY, USA
-
Nguyen N, Caruana R. Classification with partial labels. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD '08), New York, NY, USA; 2008, 551-559.
-
(2008)
Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD '08)
, pp. 551-559
-
-
Nguyen, N.1
Caruana, R.2
-
82
-
-
77957910163
-
Multiple instance learning with multiple objective genetic programming for web mining
-
Zafra A, Gibaja E, Ventura S. Multiple instance learning with multiple objective genetic programming for web mining. Appl Soft Comput 2011, 11:93-102.
-
(2011)
Appl Soft Comput
, vol.11
, pp. 93-102
-
-
Zafra, A.1
Gibaja, E.2
Ventura, S.3
-
84
-
-
84873337014
-
Preferential text classification: learning algorithms and evaluation measures
-
Aiolli F, Cardin R, Sebastiani F, Sperduti A. Preferential text classification: learning algorithms and evaluation measures. Inf Retr 2009, 12:559-580.
-
(2009)
Inf Retr
, vol.12
, pp. 559-580
-
-
Aiolli, F.1
Cardin, R.2
Sebastiani, F.3
Sperduti, A.4
-
87
-
-
77957848369
-
Combine multi-valued attribute decomposition with multi-label learning
-
Li H, Guo YJ, Wu M, Li P, Xiang Y. Combine multi-valued attribute decomposition with multi-label learning. Expert Syst Appl 2010, 37:8721-8728.
-
(2010)
Expert Syst Appl
, vol.37
, pp. 8721-8728
-
-
Li, H.1
Guo, Y.J.2
Wu, M.3
Li, P.4
Xiang, Y.5
-
89
-
-
84876811202
-
RCV1: a new benchmark collection for text categorization research
-
Lewis DD, Yang Y, Rose TG, Li F. RCV1: a new benchmark collection for text categorization research. J Mach Learn Res 2005, 5:361-397.
-
(2005)
J Mach Learn Res
, vol.5
, pp. 361-397
-
-
Lewis, D.D.1
Yang, Y.2
Rose, T.G.3
Li, F.4
-
90
-
-
3042597440
-
Learning multi-label scene classification
-
Boutell M, Luo J, Shen X, Brown C. Learning multi-label scene classification. Pattern Recogn 2004, 37:1757-1771.
-
(2004)
Pattern Recogn
, vol.37
, pp. 1757-1771
-
-
Boutell, M.1
Luo, J.2
Shen, X.3
Brown, C.4
-
92
-
-
78649492473
-
Optimization method based extreme learning machine for classification
-
Huang GB, Ding X, Zhou H. Optimization method based extreme learning machine for classification. Neurocomputing 2010, 74:155-163.
-
(2010)
Neurocomputing
, vol.74
, pp. 155-163
-
-
Huang, G.B.1
Ding, X.2
Zhou, H.3
-
93
-
-
79959667141
-
iLoc-Virus: a multi-label learning classifier for identifying the subcellular localization of virus proteins with both single and multiple sites
-
Xiao X, Wu ZC, Chou KC. iLoc-Virus: a multi-label learning classifier for identifying the subcellular localization of virus proteins with both single and multiple sites. J Theor Biol 2011, 284:42-51.
-
(2011)
J Theor Biol
, vol.284
, pp. 42-51
-
-
Xiao, X.1
Wu, Z.C.2
Chou, K.C.3
-
94
-
-
52949141834
-
Decision trees for hierarchical multi-label classification
-
Vens C, Struyf J, Schietgat L, Džeroski S, Blockeel H. Decision trees for hierarchical multi-label classification. Mach Learn 2008, 73:185-214.
-
(2008)
Mach Learn
, vol.73
, pp. 185-214
-
-
Vens, C.1
Struyf, J.2
Schietgat, L.3
Džeroski, S.4
Blockeel, H.5
-
95
-
-
0031633979
-
Improved boosting algorithms using confidence-rated predictions
-
New York, NY, USA
-
Schapire RE, Singer Y. Improved boosting algorithms using confidence-rated predictions. In: Proceedings of the Eleventh Annual Conference on Computational Learning Theory (COLT' 98), New York, NY, USA; 1998, 80-91.
-
(1998)
Proceedings of the Eleventh Annual Conference on Computational Learning Theory (COLT' 98)
, pp. 80-91
-
-
Schapire, R.E.1
Singer, Y.2
-
96
-
-
57049092565
-
Semantic annotation and retrieval of music and sound effects
-
Turnbull D, Barrington L, Torres D, Lanckriet G. Semantic annotation and retrieval of music and sound effects. IEEE Trans Audio Speech Lang Proc 2008, 16:467-476.
-
(2008)
IEEE Trans Audio Speech Lang Proc
, vol.16
, pp. 467-476
-
-
Turnbull, D.1
Barrington, L.2
Torres, D.3
Lanckriet, G.4
-
97
-
-
83155175374
-
Classifier chains for multi-label classification
-
Read J, Pfahringer B, Holmes G, Frank E. Classifier chains for multi-label classification. Mach Learn 2011, 85:1-27.
-
(2011)
Mach Learn
, vol.85
, pp. 1-27
-
-
Read, J.1
Pfahringer, B.2
Holmes, G.3
Frank, E.4
-
99
-
-
84912095375
-
Combining classifiers for improved multilabel image classification
-
Bled, Slovenia
-
Antenreiter M, Ortner R, Auer P. Combining classifiers for improved multilabel image classification. In: Proceedings of the 1st Workshop on Learning from Multilabel Data (MLD) Held in Conjunction with ECML/PKDD, Bled, Slovenia; 2009, 16-27.
-
(2009)
Proceedings of the 1st Workshop on Learning from Multilabel Data (MLD) Held in Conjunction with ECML/PKDD
, pp. 16-27
-
-
Antenreiter, M.1
Ortner, R.2
Auer, P.3
-
100
-
-
77955908068
-
Correlation-based pruning of stacked binary relevance models for multi-label learning
-
Bled, Slovenia
-
Tsoumakas G, Dimou A, Spyromitros E, Mezaris V, Kompatsiaris I, Vlahavas I. Correlation-based pruning of stacked binary relevance models for multi-label learning. In: Proceedings of the 1st International Workshop on Learning from Multi-Label Data (MLD'09), Bled, Slovenia; 2009, 101-116.
-
(2009)
Proceedings of the 1st International Workshop on Learning from Multi-Label Data (MLD'09)
, pp. 101-116
-
-
Tsoumakas, G.1
Dimou, A.2
Spyromitros, E.3
Mezaris, V.4
Kompatsiaris, I.5
Vlahavas, I.6
-
101
-
-
80054948724
-
Incorporating label dependency into the binary relevance framework for multi-label classification
-
Cherman EA, Metz J, Monard MC. Incorporating label dependency into the binary relevance framework for multi-label classification. Expert Syst Appl 2012, 39:1647-1655.
-
(2012)
Expert Syst Appl
, vol.39
, pp. 1647-1655
-
-
Cherman, E.A.1
Metz, J.2
Monard, M.C.3
-
102
-
-
52949143827
-
Label ranking by learning pairwise preferences
-
Hüllermeier E, Fürnkranz J, Cheng W, Brinker K. Label ranking by learning pairwise preferences. Artif Intell 2008, 172:1897-1916.
-
(2008)
Artif Intell
, vol.172
, pp. 1897-1916
-
-
Hüllermeier, E.1
Fürnkranz, J.2
Cheng, W.3
Brinker, K.4
-
104
-
-
52949105710
-
Multilabel classification via calibrated label ranking
-
Fürnkranz J, Hüllermeier E, Lozamenca E, Brinke K. Multilabel classification via calibrated label ranking. Mach Learn 2008, 73:133-153.
-
(2008)
Mach Learn
, vol.73
, pp. 133-153
-
-
Fürnkranz, J.1
Hüllermeier, E.2
Lozamenca, E.3
Brinke, K.4
-
105
-
-
77649237436
-
Efficient voting prediction for pairwise multilabel classification
-
Loza E, Park SH, Fürnkranz J. Efficient voting prediction for pairwise multilabel classification. Neurocomputing 2010, 73:1164-1176.
-
(2010)
Neurocomputing
, vol.73
, pp. 1164-1176
-
-
Loza, E.1
Park, S.H.2
Fürnkranz, J.3
-
106
-
-
79959921825
-
Dual layer voting method for efficient multi-label classification
-
Lecture Notes in Computer Science
-
Madjarov G, Gjorgjevikj D, Džeroski S. Dual layer voting method for efficient multi-label classification. In: Proceedings of the 5th Iberian Conference on Pattern Recognition and Image Analysis, Lecture Notes in Computer Science, vol. 6669; 2011, 232-239.
-
(2011)
Proceedings of the 5th Iberian Conference on Pattern Recognition and Image Analysis
, vol.6669
, pp. 232-239
-
-
Madjarov, G.1
Gjorgjevikj, D.2
Džeroski, S.3
-
110
-
-
79957460742
-
Cost-sensitive multi-label learning for audio tag annotation and retrieval
-
Lo H, Wang J, Wang H, Lin S. Cost-sensitive multi-label learning for audio tag annotation and retrieval. IEEE Trans Multimedia 2011, 13:518-529.
-
(2011)
IEEE Trans Multimedia
, vol.13
, pp. 518-529
-
-
Lo, H.1
Wang, J.2
Wang, H.3
Lin, S.4
-
111
-
-
84904195795
-
Ensemble methods for multi-label classification
-
Rokach L, Schclar A, Itach E. Ensemble methods for multi-label classification. Expert Syst Appl 2014, 41:7507-7523.
-
(2014)
Expert Syst Appl
, vol.41
, pp. 7507-7523
-
-
Rokach, L.1
Schclar, A.2
Itach, E.3
-
112
-
-
38049132551
-
Ensembles of multi-objective decision trees
-
Berlin/Heidelberg: Springer
-
Kocev D, Vens C, Struyf J, Džeroski S. Ensembles of multi-objective decision trees. In: Proceedings of the 18th European Conference on Machine Learning (ECML '07), Berlin/Heidelberg: Springer; 2007, 624-631.
-
(2007)
Proceedings of the 18th European Conference on Machine Learning (ECML '07)
, pp. 624-631
-
-
Kocev, D.1
Vens, C.2
Struyf, J.3
Džeroski, S.4
-
113
-
-
79951748569
-
A triple-random ensemble classification method for mining multi-label data
-
Washington, DC, USA
-
Nasierding G, Kouzani AZ, Tsoumakas G. A triple-random ensemble classification method for mining multi-label data. In: Proceedings of the 2010 IEEE International Conference on Data Mining Workshops (ICDMW '10), Washington, DC, USA; 2010, 49-56.
-
(2010)
Proceedings of the 2010 IEEE International Conference on Data Mining Workshops (ICDMW '10)
, pp. 49-56
-
-
Nasierding, G.1
Kouzani, A.Z.2
Tsoumakas, G.3
-
114
-
-
46149105706
-
Induction from multi-label examples in information retrieval systems: a case study
-
Sarinnapakorn K, Kubat M. Induction from multi-label examples in information retrieval systems: a case study. Appl Artif Intell 2008, 22:407-432.
-
(2008)
Appl Artif Intell
, vol.22
, pp. 407-432
-
-
Sarinnapakorn, K.1
Kubat, M.2
-
115
-
-
77958544287
-
Constructing a fast algorithm for multi-label classification with support vector data description
-
Xu J. Constructing a fast algorithm for multi-label classification with support vector data description. In: Proceedings of the IEEE International Conference on Granular Computing (GrC); 2010, 817-821.
-
(2010)
Proceedings of the IEEE International Conference on Granular Computing (GrC)
, pp. 817-821
-
-
Xu, J.1
-
117
-
-
4544369306
-
An unbiased method for constructing multilabel classification trees
-
Noh HG, Song MS, Park SH. An unbiased method for constructing multilabel classification trees. Comput Stat Data Anal 2004, 47:149-164.
-
(2004)
Comput Stat Data Anal
, vol.47
, pp. 149-164
-
-
Noh, H.G.1
Song, M.S.2
Park, S.H.3
-
118
-
-
0002343269
-
Top-down induction of clustering trees
-
San Francisco, CA, USA
-
Blockeel H, Raedt LD, Ramon J. Top-down induction of clustering trees. In: Proceedings of the Fifteenth International Conference on Machine Learning (ICML '98), San Francisco, CA, USA; 1998, 55-63.
-
(1998)
Proceedings of the Fifteenth International Conference on Machine Learning (ICML '98)
, pp. 55-63
-
-
Blockeel, H.1
Raedt, L.D.2
Ramon, J.3
-
120
-
-
84855909023
-
An efficient multi-label support vector machine with a zero label
-
Xu J. An efficient multi-label support vector machine with a zero label. Expert Syst Appl 2012, 39:4796-4804.
-
(2012)
Expert Syst Appl
, vol.39
, pp. 4796-4804
-
-
Xu, J.1
-
121
-
-
45149090105
-
Parallel and sequential support vectormachines for multi-label classification
-
Wang L, Chang M, Feng J. Parallel and sequential support vectormachines for multi-label classification. Int J Inf Technol 2005, 11:11-18.
-
(2005)
Int J Inf Technol
, vol.11
, pp. 11-18
-
-
Wang, L.1
Chang, M.2
Feng, J.3
-
123
-
-
77949276849
-
A fast multi-label classification algorithm based on double label support vector machine
-
Washington, DC, USA
-
Li J, Xu J. A fast multi-label classification algorithm based on double label support vector machine. In: Proceedings of the 2009 International Conference on Computational Intelligence and Security (CIS '09), Washington, DC, USA; 2009, 30-35.
-
(2009)
Proceedings of the 2009 International Conference on Computational Intelligence and Security (CIS '09)
, pp. 30-35
-
-
Li, J.1
Xu, J.2
-
125
-
-
68949141664
-
Combining instance-based learning and logistic regression for multilabel classification
-
Cheng W, Hüllermeier E. Combining instance-based learning and logistic regression for multilabel classification. Mach Learn 2009, 76:211-225.
-
(2009)
Mach Learn
, vol.76
, pp. 211-225
-
-
Cheng, W.1
Hüllermeier, E.2
-
126
-
-
55349142147
-
An empirical study of lazy multilabel classification algorithms
-
Berlin, Heidelberg
-
Spyromitros E, Tsoumakas G, Vlahavas I. An empirical study of lazy multilabel classification algorithms. In: SETN '08: Proceedings of the 5th Hellenic Conference on Artificial Intelligence, Berlin, Heidelberg; 2008, 401-406.
-
(2008)
SETN '08: Proceedings of the 5th Hellenic Conference on Artificial Intelligence
, pp. 401-406
-
-
Spyromitros, E.1
Tsoumakas, G.2
Vlahavas, I.3
-
128
-
-
38049079472
-
Case-based multilabel ranking
-
San Francisco, CA, USA
-
Brinker K, Hüllermeier E. Case-based multilabel ranking. In: Proceedings of the 20th International Joint Conference on Artificial Intelligence (IJCAI'07), San Francisco, CA, USA; 2007, 702-707.
-
(2007)
Proceedings of the 20th International Joint Conference on Artificial Intelligence (IJCAI'07)
, pp. 702-707
-
-
Brinker, K.1
Hüllermeier, E.2
-
130
-
-
77954867886
-
Evidential multi-label classification approach to learning from data with imprecise labels
-
Lecture Notes in Computer Science, Berlin/Heidelberg: Springer
-
Younes Z, Abdallah F, Denoeux T. Evidential multi-label classification approach to learning from data with imprecise labels. In: Computational Intelligence for Knowledge-Based Systems Design, Lecture Notes in Computer Science, vol. 6178, Berlin/Heidelberg: Springer; 2010, 119-128.
-
(2010)
Computational Intelligence for Knowledge-Based Systems Design
, vol.6178
, pp. 119-128
-
-
Younes, Z.1
Abdallah, F.2
Denoeux, T.3
-
131
-
-
80255123384
-
FSKNN: multi-label text categorization based on fuzzy similarity and k nearest neighbors
-
Jiang JY, Tsai SC, Lee SJ. FSKNN: multi-label text categorization based on fuzzy similarity and k nearest neighbors. Expert Syst Appl 2012, 39:2813-2821.
-
(2012)
Expert Syst Appl
, vol.39
, pp. 2813-2821
-
-
Jiang, J.Y.1
Tsai, S.C.2
Lee, S.J.3
-
132
-
-
78651307316
-
Mr.KNN: soft relevance for multi-label classification
-
New York, NY, USA
-
Lin X, Chen XW. Mr.KNN: soft relevance for multi-label classification. In: Proceedings of the 19th ACM International Conference on Information and Knowledge Management (CIKM '10), New York, NY, USA; 2010, 349-358.
-
(2010)
Proceedings of the 19th ACM International Conference on Information and Knowledge Management (CIKM '10)
, pp. 349-358
-
-
Lin, X.1
Chen, X.W.2
-
133
-
-
62649132781
-
Ml-rbf: RBF neural networks for multi-label learning
-
Zhang ML. Ml-rbf: RBF neural networks for multi-label learning. Neural Proc Lett 2009, 29:61-74.
-
(2009)
Neural Proc Lett
, vol.29
, pp. 61-74
-
-
Zhang, M.L.1
-
134
-
-
79960320262
-
Multi-label text categorization using a probabilistic neural network
-
Ciarelli PM, Oliveira E, Badue C, Souza AF. Multi-label text categorization using a probabilistic neural network. Int J Comput Inf Syst Ind Manage Appl 2009, 1:133-144.
-
(2009)
Int J Comput Inf Syst Ind Manage Appl
, vol.1
, pp. 133-144
-
-
Ciarelli, P.M.1
Oliveira, E.2
Badue, C.3
Souza, A.F.4
-
135
-
-
78651249964
-
An enhanced probabilistic neural network approach applied to text classification
-
Lecture Notes in Computer Science, chap. 78. Berlin/Heidelberg: Springer
-
Ciarelli P, Oliveira E. An enhanced probabilistic neural network approach applied to text classification. In: Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, Lecture Notes in Computer Science, vol. 5856, chap. 78. Berlin/Heidelberg: Springer; 2009, 661-668.
-
(2009)
Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications
, vol.5856
, pp. 661-668
-
-
Ciarelli, P.1
Oliveira, E.2
-
136
-
-
70349847753
-
ART-based neural networks for multi-label classification. In: Advances in Intelligent Data Analysis VIII
-
Lecture Notes in Computer Science. Berlin/Heidelberg: Springer
-
Sapozhnikova E. ART-based neural networks for multi-label classification. In: Advances in Intelligent Data Analysis VIII, Lecture Notes in Computer Science, vol. 5772, Berlin/Heidelberg: Springer; 2009, 167-177.
-
(2009)
, vol.5772
, pp. 167-177
-
-
Sapozhnikova, E.1
-
137
-
-
0003223784
-
Multi-label text classification with a mixture model trained by EM
-
McCallum AK. Multi-label text classification with a mixture model trained by EM. In: AAAI 99 Workshop on Text Learning; 1999.
-
(1999)
AAAI 99 Workshop on Text Learning
-
-
McCallum, A.K.1
-
138
-
-
35048842358
-
Extended parametric mixture model for robust multi-labeled text categorization
-
Lecture Notes in Computer Science
-
Kaneda Y, Ueda N, Saito K. Extended parametric mixture model for robust multi-labeled text categorization. In: Knowledge-Based Intelligent Information and Engineering Systems, Lecture Notes in Computer Science, vol. 3214; 2004, 616-623.
-
(2004)
Knowledge-Based Intelligent Information and Engineering Systems
, vol.3214
, pp. 616-623
-
-
Kaneda, Y.1
Ueda, N.2
Saito, K.3
-
139
-
-
67049114695
-
A generative probabilistic model for multi-label classification
-
Washington, DC, USA
-
Wang H, Huang M, Zhu X. A generative probabilistic model for multi-label classification. In: ICDM '08: Proceedings of the 2008 Eighth IEEE International Conference on Data Mining, Washington, DC, USA; 2008, 628-637.
-
(2008)
ICDM '08: Proceedings of the 2008 Eighth IEEE International Conference on Data Mining
, pp. 628-637
-
-
Wang, H.1
Huang, M.2
Zhu, X.3
-
141
-
-
19544382863
-
MMAC: a new multi-class, multi-label associative classification approach
-
Thabtah FA, Cowling P, Peng Y, Rastogi R, Morik K, Bramer M, Wu X. MMAC: a new multi-class, multi-label associative classification approach. In: Proceedings of the Fourth IEEE International Conference on Data Mining, ICDM 2004; 2004, 217-224.
-
(2004)
Proceedings of the Fourth IEEE International Conference on Data Mining, ICDM 2004
, pp. 217-224
-
-
Thabtah, F.A.1
Cowling, P.2
Peng, Y.3
Rastogi, R.4
Morik, K.5
Bramer, M.6
Wu, X.7
-
142
-
-
34047263437
-
A greedy classification algorithm based on association rule
-
Thabtah FA, Cowling PI. A greedy classification algorithm based on association rule. Appl Soft Comput 2007, 7:1102-1111.
-
(2007)
Appl Soft Comput
, vol.7
, pp. 1102-1111
-
-
Thabtah, F.A.1
Cowling, P.I.2
-
143
-
-
36049012235
-
A tree-projection-based algorithm for multi-label recurrent-item associative-classification rule generation
-
Rak R, Kurgan L, Reformat M. A tree-projection-based algorithm for multi-label recurrent-item associative-classification rule generation. Data Knowl Eng 2008, 64:171-197.
-
(2008)
Data Knowl Eng
, vol.64
, pp. 171-197
-
-
Rak, R.1
Kurgan, L.2
Reformat, M.3
-
144
-
-
38049177740
-
Multi-label lazy associative classification
-
Warsaw, Poland
-
Veloso A, Meira W Jr, Gonçalves MA, Zaki MJ. Multi-label lazy associative classification. In: Proceedings of the 11th European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD), Warsaw, Poland; 2007, 605-612.
-
(2007)
Proceedings of the 11th European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD)
, pp. 605-612
-
-
Veloso, A.1
Meira Jr, W.2
Gonçalves, M.A.3
Zaki, M.J.4
-
145
-
-
84875086969
-
A grammar-guided genetic programming algorithm for multi-label classification
-
Lecture Notes in Computer Science
-
Cano A, Zafra A, Galindo ELG, Ventura S. A grammar-guided genetic programming algorithm for multi-label classification. In: 16th European Conference, EuroGP, Lecture Notes in Computer Science, vol. 7831; 2013, 217-228.
-
(2013)
16th European Conference, EuroGP
, vol.7831
, pp. 217-228
-
-
Cano, A.1
Zafra, A.2
Galindo, E.L.G.3
Ventura, S.4
-
146
-
-
77954578177
-
Evolving multi-label classification rules with gene expression programming: a preliminary study
-
Lecture Notes in Computer Science
-
Ávila J, Gibaja E, Ventura S. Evolving multi-label classification rules with gene expression programming: a preliminary study. In: Hybrid Artificial Intelligence Systems (HAIS), Lecture Notes in Computer Science, vol. 6077; 2010, 9-16.
-
(2010)
Hybrid Artificial Intelligence Systems (HAIS)
, vol.6077
, pp. 9-16
-
-
Ávila, J.1
Gibaja, E.2
Ventura, S.3
-
147
-
-
79951839130
-
A gene expression programming algorithm for multi-label classification
-
Ávila JL, Gibaja EL, Zafra A, Ventura S. A gene expression programming algorithm for multi-label classification. J Mult-Valued Log S 2011, 17:183-206.
-
(2011)
J Mult-Valued Log S
, vol.17
, pp. 183-206
-
-
Ávila, J.L.1
Gibaja, E.L.2
Zafra, A.3
Ventura, S.4
-
149
-
-
84880244988
-
Multi-objective multi-label classification
-
Anaheim, CA, USA
-
Shi C, Kong X, Yu P, Wang B. Multi-objective multi-label classification. In: Proceedings of the SIAM International Conference on Data Mining, Anaheim, CA, USA; 2012, 355-366.
-
(2012)
Proceedings of the SIAM International Conference on Data Mining
, pp. 355-366
-
-
Shi, C.1
Kong, X.2
Yu, P.3
Wang, B.4
-
152
-
-
85018089791
-
An improved boosting algorithm and its application to text categorization
-
New York, NY, USA
-
Sebastiani F, Sperduti A, Valdambrini N. An improved boosting algorithm and its application to text categorization. In: Proceedings of the Ninth International Conference on Information and Knowledge Management (CIKM '00), New York, NY, USA; 2000, 78-85.
-
(2000)
Proceedings of the Ninth International Conference on Information and Knowledge Management (CIKM '00)
, pp. 78-85
-
-
Sebastiani, F.1
Sperduti, A.2
Valdambrini, N.3
-
153
-
-
33644485800
-
Discretizing continuous attributes in adaboost for text categorization
-
Lecture Notes in Computer Science, Berlin/Heidelberg: Springer
-
Nardiello P, Sebastiani F, Sperduti A. Discretizing continuous attributes in adaboost for text categorization. In: Advances in Information Retrieval, Lecture Notes in Computer Science, vol. 2633, Berlin/Heidelberg: Springer; 2003, 320-334.
-
(2003)
Advances in Information Retrieval
, vol.2633
, pp. 320-334
-
-
Nardiello, P.1
Sebastiani, F.2
Sperduti, A.3
-
155
-
-
0036945966
-
Boosting simple decision trees with Bayesian learning for text categorization
-
Shanghai, China
-
Diao L, Hu K, Lu Y, Shi C. Boosting simple decision trees with Bayesian learning for text categorization. In: Proceedings of the 4th World Congress on Intelligent and Automation, Shanghai, China; 2002, 321-325.
-
(2002)
Proceedings of the 4th World Congress on Intelligent and Automation
, pp. 321-325
-
-
Diao, L.1
Hu, K.2
Lu, Y.3
Shi, C.4
-
157
-
-
33750291885
-
MP-Boost: a multiple-pivot boosting algorithm and its application to text categorization
-
Lecture Notes in Computer Science. Berlin/Heidelberg: Springer
-
Esuli A, Fagni T, Sebastiani F. MP-Boost: a multiple-pivot boosting algorithm and its application to text categorization. In: String Processing and Information Retrieval (SPIRE), Lecture Notes in Computer Science, vol. 4209. Berlin/Heidelberg: Springer; 2006, 1-12.
-
(2006)
String Processing and Information Retrieval (SPIRE)
, vol.4209
, pp. 1-12
-
-
Esuli, A.1
Fagni, T.2
Sebastiani, F.3
-
158
-
-
36849011561
-
Model-shared subspace boosting for multi-label classification
-
New York, NY, USA
-
Yan R, Tesic J, Smith JR. Model-shared subspace boosting for multi-label classification. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD '07), New York, NY, USA; 2007, 834-843.
-
(2007)
Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD '07)
, pp. 834-843
-
-
Yan, R.1
Tesic, J.2
Smith, J.R.3
-
159
-
-
80054948516
-
Multi-label classification without the multi-label cost
-
Zhang X, Yuan Q, Zhao S, Fan W, Zheng W, Wang Z. Multi-label classification without the multi-label cost. In: Proceedings of the 10th SIAM International Conference on Data Mining; 2010.
-
(2010)
Proceedings of the 10th SIAM International Conference on Data Mining
-
-
Zhang, X.1
Yuan, Q.2
Zhao, S.3
Fan, W.4
Zheng, W.5
Wang, Z.6
-
161
-
-
78649503228
-
Multilabel classification using error correction codes
-
Lecture Notes in Computer Science
-
Kouzani A. Multilabel classification using error correction codes. In: Advances in Computation and Intelligence, Lecture Notes in Computer Science, vol. 6382; 2010, 444-454.
-
(2010)
Advances in Computation and Intelligence
, vol.6382
, pp. 444-454
-
-
Kouzani, A.1
-
162
-
-
84872109628
-
Multiple classifier method for structured output prediction based on error correcting output codes
-
Lecture Notes in Computer Science
-
Kajdanowicz T, Wozniak M, Kazienko P. Multiple classifier method for structured output prediction based on error correcting output codes. In: Intelligent Information and Database Systems, Lecture Notes in Computer Science, vol. 6592; 2011, 333-342.
-
(2011)
Intelligent Information and Database Systems
, vol.6592
, pp. 333-342
-
-
Kajdanowicz, T.1
Wozniak, M.2
Kazienko, P.3
-
164
-
-
84865275504
-
Compressed labeling on distilled labelsets for multi-label learning
-
Zhou T, Tao D, Wu X. Compressed labeling on distilled labelsets for multi-label learning. Mach Learn 2012, 88:69-126.
-
(2012)
Mach Learn
, vol.88
, pp. 69-126
-
-
Zhou, T.1
Tao, D.2
Wu, X.3
-
165
-
-
0026692226
-
Stacked generalization
-
Wolpert DH. Stacked generalization. Neural Networks 1992, 5:241-259.
-
(1992)
Neural Networks
, vol.5
, pp. 241-259
-
-
Wolpert, D.H.1
-
168
-
-
0942266514
-
Support vector data description
-
Tax D, Duan RPW. Support vector data description. Mach Learn 2004, 54:45-66.
-
(2004)
Mach Learn
, vol.54
, pp. 45-66
-
-
Tax, D.1
Duan, R.P.W.2
-
170
-
-
0035964273
-
Testing the equality of distributions of random vectors with categorical components
-
Nettleton D, Banerjee T. Testing the equality of distributions of random vectors with categorical components. Comput Stat Data Anal 2001, 37:195-208.
-
(2001)
Comput Stat Data Anal
, vol.37
, pp. 195-208
-
-
Nettleton, D.1
Banerjee, T.2
-
171
-
-
0346325840
-
A preliminary approach to the multilabel classification problem of portuguese juridical documents
-
Gonçalves T, Quaresma P. A preliminary approach to the multilabel classification problem of portuguese juridical documents. Prog Artif Intell, Lect Notes Comput Sci 2003, 2902:435-444.
-
(2003)
Prog Artif Intell, Lect Notes Comput Sci
, vol.2902
, pp. 435-444
-
-
Gonçalves, T.1
Quaresma, P.2
-
174
-
-
0001371447
-
Ties in paired-comparison experiments: a generalization of the bradley-terry model
-
Rao P, Kupper L. Ties in paired-comparison experiments: a generalization of the bradley-terry model. Am Stat Assoc 1967, 62:194-204.
-
(1967)
Am Stat Assoc
, vol.62
, pp. 194-204
-
-
Rao, P.1
Kupper, L.2
-
177
-
-
0025206332
-
Probabilistic neural networks
-
Specht DF. Probabilistic neural networks. Neural Netw 1990, 3:109-118.
-
(1990)
Neural Netw
, vol.3
, pp. 109-118
-
-
Specht, D.F.1
-
178
-
-
0002629270
-
Rubin., D.B.: Maximum likelihood from incomplete data via the EM algorithm
-
Dempster AP, Laird NM. Rubin., D.B.: Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc B 1977, 39:1-38.
-
(1977)
J R Stat Soc B
, vol.39
, pp. 1-38
-
-
Dempster, A.P.1
Laird, N.M.2
-
181
-
-
78650550174
-
Voting conditional random fields for multi-label image classification
-
Wang X, Liu X, Shi Z, Shi Z, Sui H. Voting conditional random fields for multi-label image classification. In: 3rd International Congress on Image and Signal Processing (CISP); 2010, 1984-1988.
-
(2010)
3rd International Congress on Image and Signal Processing (CISP)
, pp. 1984-1988
-
-
Wang, X.1
Liu, X.2
Shi, Z.3
Shi, Z.4
Sui, H.5
-
182
-
-
0141764033
-
A tree projection algorithm for generation of frequent item sets
-
Agarwal R, Aggarwal C, Prasad V. A tree projection algorithm for generation of frequent item sets. J Parallel Distr Com 2001, 61:350-371.
-
(2001)
J Parallel Distr Com
, vol.61
, pp. 350-371
-
-
Agarwal, R.1
Aggarwal, C.2
Prasad, V.3
-
184
-
-
0347499408
-
Gene expression programming: a new adaptive algorithm for solving problems
-
Ferreira C. Gene expression programming: a new adaptive algorithm for solving problems. Complex Syst 2001, 13:87-129.
-
(2001)
Complex Syst
, vol.13
, pp. 87-129
-
-
Ferreira, C.1
-
185
-
-
0036530772
-
A fast and elitist multiobjective genetic algorithm: NSGA-II
-
Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 2002, 3:182-197.
-
(2002)
IEEE Trans Evol Comput
, vol.3
, pp. 182-197
-
-
Deb, K.1
Pratap, A.2
Agarwal, S.3
Meyarivan, T.4
-
186
-
-
0031211090
-
A decision-theoretic generalization of on-line learning and an application to boosting
-
Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci 1997, 55:119-139.
-
(1997)
J Comput Syst Sci
, vol.55
, pp. 119-139
-
-
Freund, Y.1
Schapire, R.E.2
-
187
-
-
0006452367
-
The alternating decision tree learning algorithm
-
San Francisco, CA, USA
-
Freund Y, Mason L. The alternating decision tree learning algorithm. In: Proceedings of the Sixteenth International Conference on Machine Learning (ICML '99), San Francisco, CA, USA; 1999, 124-133.
-
(1999)
Proceedings of the Sixteenth International Conference on Machine Learning (ICML '99)
, pp. 124-133
-
-
Freund, Y.1
Mason, L.2
-
189
-
-
0000406788
-
Solving multiclass learning problems via error-correcting output codes
-
Dietterich TG, Bakiri G. Solving multiclass learning problems via error-correcting output codes. J Artif Intell Res 1995, 2:263-286.
-
(1995)
J Artif Intell Res
, vol.2
, pp. 263-286
-
-
Dietterich, T.G.1
Bakiri, G.2
-
190
-
-
84868107507
-
Multi-label classification with error-correcting codes
-
Ferng CS, Lin HT. Multi-label classification with error-correcting codes. J Mach Learn Res 2011, 20:281-295.
-
(2011)
J Mach Learn Res
, vol.20
, pp. 281-295
-
-
Ferng, C.S.1
Lin, H.T.2
-
191
-
-
84876099300
-
Multi-label classification using error correcting output codes
-
Kajdanowicz T, Kazienko P. Multi-label classification using error correcting output codes. Int J Appl Math Comput Sci 2012, 22:829-840.
-
(2012)
Int J Appl Math Comput Sci
, vol.22
, pp. 829-840
-
-
Kajdanowicz, T.1
Kazienko, P.2
-
192
-
-
84868094158
-
Error-correcting output codes as a transformation from multi-class to multi-label prediction
-
Lecture Notes in Computer Science. Berlin/Heidelberg: Springer
-
Fürnkranz J, Park SH. Error-correcting output codes as a transformation from multi-class to multi-label prediction. In: Discovery Science, Lecture Notes in Computer Science, vol. 7569 Berlin/Heidelberg: Springer; 2012, 254-267.
-
(2012)
Discovery Science
, vol.7569
, pp. 254-267
-
-
Fürnkranz, J.1
Park, S.H.2
-
195
-
-
84865207305
-
Scalable and efficient multi-label classification for evolving data streams
-
Read J, Bifet A, Holmes G, Pfahringer B. Scalable and efficient multi-label classification for evolving data streams. Mach Learn 2012, 88:243-272.
-
(2012)
Mach Learn
, vol.88
, pp. 243-272
-
-
Read, J.1
Bifet, A.2
Holmes, G.3
Pfahringer, B.4
-
196
-
-
77956201769
-
Multi-label learning by exploiting label dependency
-
New York, NY, USA
-
Zhang ML, Zhang K. Multi-label learning by exploiting label dependency. In: Proceedings of the 16th International Conference on Knowledge Discovery and Data Mining (KDD '10), New York, NY, USA; 2010, 999-1008.
-
(2010)
Proceedings of the 16th International Conference on Knowledge Discovery and Data Mining (KDD '10)
, pp. 999-1008
-
-
Zhang, M.L.1
Zhang, K.2
-
197
-
-
6944251719
-
Predicting gene function in Saccharomyces cerevisiae
-
Clare A, King RD. Predicting gene function in Saccharomyces cerevisiae. Bioinformatics 2003, 2:42-49.
-
(2003)
Bioinformatics
, vol.2
, pp. 42-49
-
-
Clare, A.1
King, R.D.2
-
198
-
-
33947681316
-
ML-KNN: A lazy learning approach to multi-label learning
-
Zhang ML, Zhou ZH. ML-KNN: A lazy learning approach to multi-label learning. Pattern Recogn 2007, 40:2038-2048.
-
(2007)
Pattern Recogn
, vol.40
, pp. 2038-2048
-
-
Zhang, M.L.1
Zhou, Z.H.2
-
199
-
-
67049088703
-
Multi-label classification using ensembles of pruned sets
-
Washington, DC, USA
-
Read J, Pfahringer B, Holmes G. Multi-label classification using ensembles of pruned sets. In: ICDM '08: Proceedings of the 2008 Eighth IEEE International Conference on Data Mining, Washington, DC, USA; 2008, 995-1000.
-
(2008)
ICDM '08: Proceedings of the 2008 Eighth IEEE International Conference on Data Mining
, pp. 995-1000
-
-
Read, J.1
Pfahringer, B.2
Holmes, G.3
-
200
-
-
84866035306
-
Multi-label hypothesis reuse
-
Beijing, China
-
Huang SJ, Yu Y, Zhou ZH. Multi-label hypothesis reuse. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD12), Beijing, China; 2012, 525-533.
-
(2012)
Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD12)
, pp. 525-533
-
-
Huang, S.J.1
Yu, Y.2
Zhou, Z.H.3
-
202
-
-
37849015906
-
Correlative multi-label video annotation
-
New York, NY, USA
-
Qi GJ, Hua XS, Rui Y, Tang J, Mei T, Zhang HJ. Correlative multi-label video annotation. In: Proceedings of the 15th International Conference on Multimedia, New York, NY, USA; 2007, 17-26.
-
(2007)
Proceedings of the 15th International Conference on Multimedia
, pp. 17-26
-
-
Qi, G.J.1
Hua, X.S.2
Rui, Y.3
Tang, J.4
Mei, T.5
Zhang, H.J.6
-
203
-
-
84885572482
-
Multi-labelled classification using maximum entropy method
-
New York, NY, USA
-
Zhu S, Ji X, Xu W, Gong Y. Multi-labelled classification using maximum entropy method. In: SIGIR '05: Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, New York, NY, USA; 2005, 274-281.
-
(2005)
SIGIR '05: Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval
, pp. 274-281
-
-
Zhu, S.1
Ji, X.2
Xu, W.3
Gong, Y.4
-
204
-
-
51949086514
-
Two-dimensional active learning for image classification
-
Qi GJ, Hua XS, Rui Y, Tang J, Zhang HJ. Two-dimensional active learning for image classification. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2008); 2008, 1-8.
-
(2008)
IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2008)
, pp. 1-8
-
-
Qi, G.J.1
Hua, X.S.2
Rui, Y.3
Tang, J.4
Zhang, H.J.5
-
205
-
-
77953216761
-
A shared-subspace learning framework for multi-label classification
-
Ji S, Tang L, Yu S, Ye J. A shared-subspace learning framework for multi-label classification. ACM Trans Knowl Discov Data 2010, 4:1-29.
-
(2010)
ACM Trans Knowl Discov Data
, vol.4
, pp. 1-29
-
-
Ji, S.1
Tang, L.2
Yu, S.3
Ye, J.4
-
206
-
-
84876707612
-
Predicting human immunodeficiency virus inhibitors using multi-dimensional bayesian network classifiers
-
Borchani H, Bielza C, Toro C, Larrañaga P. Predicting human immunodeficiency virus inhibitors using multi-dimensional bayesian network classifiers. Artif Intell Med 2013, 57:219-229.
-
(2013)
Artif Intell Med
, vol.57
, pp. 219-229
-
-
Borchani, H.1
Bielza, C.2
Toro, C.3
Larrañaga, P.4
-
208
-
-
84897644389
-
Multi-label classification with bayesian network-based chain classifiers
-
Sucar LE, Bielza C, Morales EF, Hernandez-Leal P, Zaragoza JH, Larrañaga P. Multi-label classification with bayesian network-based chain classifiers. Pattern Recogn Lett 2014, 41:14-22.
-
(2014)
Pattern Recogn Lett
, vol.41
, pp. 14-22
-
-
Sucar, L.E.1
Bielza, C.2
Morales, E.F.3
Hernandez-Leal, P.4
Zaragoza, J.H.5
Larrañaga, P.6
-
209
-
-
0003141935
-
A comparative study on feature selection in text categorization
-
San Francisco, CA, USA
-
Yang Y, Pedersen JO. A comparative study on feature selection in text categorization. In: Proceedings of the Fourteenth International Conference on Machine Learning (ICML '97), San Francisco, CA, USA; 1997, 412-420.
-
(1997)
Proceedings of the Fourteenth International Conference on Machine Learning (ICML '97)
, pp. 412-420
-
-
Yang, Y.1
Pedersen, J.O.2
-
212
-
-
67650995440
-
Feature selection for multi-label naive Bayes classification
-
Zhang ML, Peña JM, Robles V. Feature selection for multi-label naive Bayes classification. Inform Sci 2009, 179:3218-3229.
-
(2009)
Inform Sci
, vol.179
, pp. 3218-3229
-
-
Zhang, M.L.1
Peña, J.M.2
Robles, V.3
-
214
-
-
0000764772
-
The use of multiple measurements in taxonomic problems
-
Fisher RA. The use of multiple measurements in taxonomic problems. Ann Eugen 1936, 7:179-188.
-
(1936)
Ann Eugen
, vol.7
, pp. 179-188
-
-
Fisher, R.A.1
-
215
-
-
78149293310
-
Multi-label linear discriminant analysis
-
Lecture Notes in Computer Science, Berlin/Heidelberg: Springer
-
Wang H, Ding C, Huang H. Multi-label linear discriminant analysis. In: Computer Vision-ECCV 2010, Lecture Notes in Computer Science, vol. 6316, Berlin/Heidelberg: Springer; 2010, 126-139.
-
(2010)
Computer Vision-ECCV 2010
, vol.6316
, pp. 126-139
-
-
Wang, H.1
Ding, C.2
Huang, H.3
-
216
-
-
40849120440
-
On applying linear discriminant analysis for multi-labeled problems
-
Park CH, Lee M. On applying linear discriminant analysis for multi-labeled problems. Pattern Recogn Lett 2008, 29:878-887.
-
(2008)
Pattern Recogn Lett
, vol.29
, pp. 878-887
-
-
Park, C.H.1
Lee, M.2
-
218
-
-
84885640929
-
Multi-label informed latent semantic indexing
-
New York, NY, USA
-
Yu K, Yu S, Tresp V. Multi-label informed latent semantic indexing. In: Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, New York, NY, USA; 2005, 258-265.
-
(2005)
Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval
, pp. 258-265
-
-
Yu, K.1
Yu, S.2
Tresp, V.3
-
222
-
-
79251624015
-
On the combination of two decompositive multi-label classification methods
-
Tsoumakas G, Menca EL, Katakis I, Park S, Fürnkrnaz J. On the combination of two decompositive multi-label classification methods. In: Workshop on Preference Learning, ECML PKDD 09; 2009, 114-133.
-
(2009)
Workshop on Preference Learning, ECML PKDD 09
, pp. 114-133
-
-
Tsoumakas, G.1
Menca, E.L.2
Katakis, I.3
Park, S.4
Fürnkrnaz, J.5
-
223
-
-
84858826037
-
Improving multi-label classifiers via label reduction with association rules
-
Lecture Notes in Computer Science. Berlin/Heidelberg: Springer
-
Charte F, Rivera A, del Jesus M, Herrera F. Improving multi-label classifiers via label reduction with association rules. In: Hybrid Artificial Intelligent Systems, Lecture Notes in Computer Science, vol. 7209. Berlin/Heidelberg: Springer; 2012, 188-199.
-
(2012)
Hybrid Artificial Intelligent Systems
, vol.7209
, pp. 188-199
-
-
Charte, F.1
Rivera, A.2
del Jesus, M.3
Herrera, F.4
-
224
-
-
2442449952
-
Mining frequent patterns without candidate generation: a frequent-pattern tree approach
-
Han J, Pei J, Yin Y, Mao R. Mining frequent patterns without candidate generation: a frequent-pattern tree approach. Data Min Knowl Discov 2004, 8:53-87.
-
(2004)
Data Min Knowl Discov
, vol.8
, pp. 53-87
-
-
Han, J.1
Pei, J.2
Yin, Y.3
Mao, R.4
-
225
-
-
78649325096
-
Canonical correlation analysis for multilabel classification: a least-squares formulation, extensions, and analysis
-
Sun L, Ji S, Ye J. Canonical correlation analysis for multilabel classification: a least-squares formulation, extensions, and analysis. IEEE Trans Pattern Anal Mach Intell 2011, 33:194-200.
-
(2011)
IEEE Trans Pattern Anal Mach Intell
, vol.33
, pp. 194-200
-
-
Sun, L.1
Ji, S.2
Ye, J.3
-
229
-
-
80955134248
-
Multi-instance multi-label learning
-
Zhou ZH, Zhang ML, Huang SJ, Li YF. Multi-instance multi-label learning. Artif Intell 2012, 176:2291-2320.
-
(2012)
Artif Intell
, vol.176
, pp. 2291-2320
-
-
Zhou, Z.H.1
Zhang, M.L.2
Huang, S.J.3
Li, Y.F.4
-
230
-
-
84865269277
-
Multi-instance multi-label learning based on Gaussian process with application to visual mobile robot navigation
-
He J, Gu H, Wang Z. Multi-instance multi-label learning based on Gaussian process with application to visual mobile robot navigation. Inform Sci 2012, 190:162-177.
-
(2012)
Inform Sci
, vol.190
, pp. 162-177
-
-
He, J.1
Gu, H.2
Wang, Z.3
-
231
-
-
84864028262
-
Multi-instance multi-label learning with application to scene classification
-
Zhou ZH, Zhang ML. Multi-instance multi-label learning with application to scene classification. In: NIPS; 2006, 1609-1616.
-
(2006)
NIPS
, pp. 1609-1616
-
-
Zhou, Z.H.1
Zhang, M.L.2
-
232
-
-
7444219637
-
Logistic regression and boosting for labeled bags of instances
-
Lecture Notes in Computer Science. Berlin/Heidelberg: Springer
-
Xu X, Frank E. Logistic regression and boosting for labeled bags of instances. In: Advances in Knowledge Discovery and Data Mining, Lecture Notes in Computer Science, vol. 3056, Berlin/Heidelberg: Springer; 2004, 272-281.
-
(2004)
Advances in Knowledge Discovery and Data Mining
, vol.3056
, pp. 272-281
-
-
Xu, X.1
Frank, E.2
-
233
-
-
84884945309
-
Sparse-MIML: a sparsity-based multi-instance multi-learning algorithm
-
Lecture Notes in Computer Science
-
Shen C, Jing L, Ng M. Sparse-MIML: a sparsity-based multi-instance multi-learning algorithm. In: Energy Minimization Methods in Computer Vision and Pattern Recognition, Lecture Notes in Computer Science, vol. 8081; 2013, 294-306.
-
(2013)
Energy Minimization Methods in Computer Vision and Pattern Recognition
, vol.8081
, pp. 294-306
-
-
Shen, C.1
Jing, L.2
Ng, M.3
-
235
-
-
69249202332
-
MIMLRBF: RBF neural networks for multi-instance multi-label learning
-
Zhang ML, Wang ZJ. MIMLRBF: RBF neural networks for multi-instance multi-label learning. Neurocomputing 2009, 72:3951-3956.
-
(2009)
Neurocomputing
, vol.72
, pp. 3951-3956
-
-
Zhang, M.L.1
Wang, Z.J.2
-
236
-
-
67149122177
-
M3MIML: a maximum margin method for multi-instance multi-label learning
-
Washington, DC, USA
-
Zhang ML, Zhou ZH. M3MIML: a maximum margin method for multi-instance multi-label learning. In: ICDM '08: Proceedings of the 2008 Eighth IEEE International Conference on Data Mining, Washington, DC, USA; 2008, 688-697.
-
(2008)
ICDM '08: Proceedings of the 2008 Eighth IEEE International Conference on Data Mining
, pp. 688-697
-
-
Zhang, M.L.1
Zhou, Z.H.2
-
237
-
-
84863338235
-
Dirichlet-Bernoulli alignment: a generative model for multi-class multi-label multi-instance corpora
-
Vancouver, British Columbia, Canada
-
Yang SH, Zha H, Hu BG. Dirichlet-Bernoulli alignment: a generative model for multi-class multi-label multi-instance corpora. In: Annual Conference on Neural Information Processing Systems, Vancouver, British Columbia, Canada; 2009, 2143-2150.
-
(2009)
Annual Conference on Neural Information Processing Systems
, pp. 2143-2150
-
-
Yang, S.H.1
Zha, H.2
Hu, B.G.3
-
240
-
-
38249011246
-
Krylov-subspace methods for the Sylvester equation
-
Hu DY, Reichel L. Krylov-subspace methods for the Sylvester equation. Linear Algebra Appl 1992, 172:283-313.
-
(1992)
Linear Algebra Appl
, vol.172
, pp. 283-313
-
-
Hu, D.Y.1
Reichel, L.2
-
241
-
-
60649094696
-
Graph-based semi-supervised learning with multiple labels (special issue on emerging techniques for multimedia content sharing, search and understanding)
-
Zha ZJ, Mei T, Wang J, Wang Z, Hua XS. Graph-based semi-supervised learning with multiple labels (special issue on emerging techniques for multimedia content sharing, search and understanding). Journal of Visual Communication and Image Representation 2009, 20:97-103.
-
(2009)
Journal of Visual Communication and Image Representation
, vol.20
, pp. 97-103
-
-
Zha, Z.J.1
Mei, T.2
Wang, J.3
Wang, Z.4
Hua, X.S.5
-
244
-
-
41549144249
-
Optimization techniques for semisupervised support vector machines
-
Chapelle O, Sindhwaniand V, Keerthi SS. Optimization techniques for semisupervised support vector machines. J Mach Learn Res 2008, 9:203-233.
-
(2008)
J Mach Learn Res
, vol.9
, pp. 203-233
-
-
Chapelle, O.1
Sindhwaniand, V.2
Keerthi, S.S.3
-
246
-
-
69549086366
-
Two-dimensional multilabel active learning with an efficient online adaptation model for image classification
-
Qi GJ, Hua XS, Rui Y, Tang J, Zhang HJ. Two-dimensional multilabel active learning with an efficient online adaptation model for image classification. IEEE Trans Pattern Anal Mach Intell 2009, 31:1880-1897.
-
(2009)
IEEE Trans Pattern Anal Mach Intell
, vol.31
, pp. 1880-1897
-
-
Qi, G.J.1
Hua, X.S.2
Rui, Y.3
Tang, J.4
Zhang, H.J.5
-
247
-
-
70449604756
-
Multi-view multi-label active learning for image classification
-
Zhang X, Cheng J, Xu C, Lu H, Ma S. Multi-view multi-label active learning for image classification. In: IEEE International Conference on Multimedia and Expo, 2009, 258-261.
-
(2009)
IEEE International Conference on Multimedia and Expo
, pp. 258-261
-
-
Zhang, X.1
Cheng, J.2
Xu, C.3
Lu, H.4
Ma, S.5
-
248
-
-
70350639690
-
Effective multi-label active learning for text classification
-
New York, NY, USA
-
Yang B, Sun JT, Wang T, Chen Z. Effective multi-label active learning for text classification. In: KDD '09: Proceedings of the 15th International Conference on Knowledge Discovery and Data Mining, New York, NY, USA; 2009, 917-926.
-
(2009)
KDD '09: Proceedings of the 15th International Conference on Knowledge Discovery and Data Mining
, pp. 917-926
-
-
Yang, B.1
Sun, J.T.2
Wang, T.3
Chen, Z.4
-
249
-
-
67650703463
-
Active learning strategies for multi-label text classification
-
Lecture Notes in Computer Science, Berlin/Heidelberg: Springer
-
Esuli A, Sebastiani F. Active learning strategies for multi-label text classification. In: Advances in Information Retrieval, Lecture Notes in Computer Science, vol. 5478. Berlin/Heidelberg: Springer; 2009, 102-113.
-
(2009)
Advances in Information Retrieval
, vol.5478
, pp. 102-113
-
-
Esuli, A.1
Sebastiani, F.2
-
250
-
-
70649092958
-
Mining multi-label concept-drifting data streams using dynamic classifier ensemble
-
Lecture Notes in Computer Science, Berlin/Heidelberg: Springer
-
Qu W, Zhang Y, Zhu J, Qiu Q. Mining multi-label concept-drifting data streams using dynamic classifier ensemble. In: Advances in Machine Learning, Lecture Notes in Computer Science, vol. 5828, Berlin/Heidelberg: Springer; 2009, 308-321.
-
(2009)
Advances in Machine Learning
, vol.5828
, pp. 308-321
-
-
Qu, W.1
Zhang, Y.2
Zhu, J.3
Qiu, Q.4
-
251
-
-
0034592938
-
Mining high-speed data streams
-
New York, NY, USA
-
Domingos P, Hulten G. Mining high-speed data streams. In: Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD '00), New York, NY, USA; 2000, 71-80.
-
(2000)
Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD '00)
, pp. 71-80
-
-
Domingos, P.1
Hulten, G.2
-
252
-
-
70350700681
-
New ensemble methods for evolving data streams
-
Bifet A, Holmes G, Pfahringer B, Kirkby R, Gavaldà R. New ensemble methods for evolving data streams. In: 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; 2009, 139-148.
-
(2009)
15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 139-148
-
-
Bifet, A.1
Holmes, G.2
Pfahringer, B.3
Kirkby, R.4
Gavaldà, R.5
-
254
-
-
83655189796
-
Dealing with concept drift and class imbalance in multi-label stream classification
-
Barcelona, Spain
-
Xioufis ES, Spiliopoulou M, Tsoumakas G, Vlahavas IP. Dealing with concept drift and class imbalance in multi-label stream classification. In: Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI), Barcelona, Spain; 2011, 1583-1588.
-
(2011)
Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI)
, pp. 1583-1588
-
-
Xioufis, E.S.1
Spiliopoulou, M.2
Tsoumakas, G.3
Vlahavas, I.P.4
-
255
-
-
0034069495
-
Gene ontology: tool for the unification of biology
-
The Gene Ontology Consortium
-
The Gene Ontology Consortium. Gene ontology: tool for the unification of biology. Nat Genet 2000, 25:25-29.
-
(2000)
Nat Genet
, vol.25
, pp. 25-29
-
-
-
256
-
-
84863574182
-
A genetic algorithm for Hierarchical Multi-Label Classification
-
New York, NY, USA
-
Cerri, R., Barros, R.C., de Carvalho, A.C.P.L.F. A genetic algorithm for Hierarchical Multi-Label Classification. In: Proceedings of the 27th Annual ACM Symposium on Applied Computing (SAC '12), New York, NY, USA; 2012, 250-255.
-
(2012)
Proceedings of the 27th Annual ACM Symposium on Applied Computing (SAC '12)
, pp. 250-255
-
-
Cerri, R.1
Barros, R.C.2
de Carvalho, A.C.P.L.3
-
258
-
-
33750303563
-
Decision trees for hierarchical multilabel classification: a case study in functional genomics
-
Lecture Notes in Computer Science
-
Blockeel H, Schietgat L, Struyf J, Dzrěoski S, Clare A. Decision trees for hierarchical multilabel classification: a case study in functional genomics. In: 10th European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD), Lecture Notes in Computer Science, vol. 4213; 2006, 18-29.
-
(2006)
10th European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD)
, vol.4213
, pp. 18-29
-
-
Blockeel, H.1
Schietgat, L.2
Struyf, J.3
Dzrěoski, S.4
Clare, A.5
-
259
-
-
25844463253
-
Machine learning and data mining for yeast functional genomics
-
PhD Thesis, University of Wales
-
Clare A. Machine learning and data mining for yeast functional genomics. PhD Thesis, University of Wales, 2003.
-
(2003)
-
-
Clare, A.1
-
260
-
-
33749264456
-
Hierarchical classification: combining Bayes with SVM
-
Cesa-Bianchi, N., Gentile, C., Zaniboni, L. Hierarchical classification: combining Bayes with SVM. In: Proceedings of the Twenty-Third International Conference on Machine Learning (ICML); 2006, 177-184.
-
(2006)
Proceedings of the Twenty-Third International Conference on Machine Learning (ICML)
, pp. 177-184
-
-
Cesa-Bianchi, N.1
Gentile, C.2
Zaniboni, L.3
-
261
-
-
33750303526
-
TreeBoost.MH: a boosting algorithm for multi-label hierarchical text categorization
-
Lecture Notes in Computer Science. Berlin/Heidelberg: Springer
-
Esuli A, Fagni T, Sebastiani F. TreeBoost.MH: a boosting algorithm for multi-label hierarchical text categorization. In: String Processing and Information Retrieval (SPIRE), Lecture Notes in Computer Science, vol. 4209. Berlin/Heidelberg: Springer; 2006, 13-24.
-
(2006)
String Processing and Information Retrieval (SPIRE)
, vol.4209
, pp. 13-24
-
-
Esuli, A.1
Fagni, T.2
Sebastiani, F.3
-
262
-
-
78649318170
-
Multi-label classification and extracting predicted class hierarchies
-
Brucker F, Benites F, Sapozhnikova E. Multi-label classification and extracting predicted class hierarchies. Pattern Recogn 2010, 44:724-738.
-
(2010)
Pattern Recogn
, vol.44
, pp. 724-738
-
-
Brucker, F.1
Benites, F.2
Sapozhnikova, E.3
-
264
-
-
77957042586
-
Undersampling approach for imbalanced training sets and induction from multi-label text-categorization domains
-
LNCS. Berlin/Heidelberg: Springer
-
Dendamrongvit S, Kubat M. Undersampling approach for imbalanced training sets and induction from multi-label text-categorization domains. In: New Frontiers in Applied Data Mining, LNCS, vol. 5669. Berlin/Heidelberg: Springer; 2010, 40-52.
-
(2010)
New Frontiers in Applied Data Mining
, vol.5669
, pp. 40-52
-
-
Dendamrongvit, S.1
Kubat, M.2
-
265
-
-
84855780778
-
Multilabel classification using heterogeneous ensemble of multi-label classifiers
-
Tahir MA, Kittler J, Bouridane A. Multilabel classification using heterogeneous ensemble of multi-label classifiers. Pattern Recogn Lett 2012, 33:513-523.
-
(2012)
Pattern Recogn Lett
, vol.33
, pp. 513-523
-
-
Tahir, M.A.1
Kittler, J.2
Bouridane, A.3
-
267
-
-
70350370227
-
An empirical study of multi-label learning methods for video annotation
-
IEEE Computer Society, Los Alamitos, CA, USA
-
Dimou A, Tsoumakas G, Mezaris V, Kompatsiaris I, Vlahavas I. An empirical study of multi-label learning methods for video annotation. In: International Workshop on Content-Based Multimedia Indexing, IEEE Computer Society, Los Alamitos, CA, USA; 2009, 19-24.
-
(2009)
International Workshop on Content-Based Multimedia Indexing
, pp. 19-24
-
-
Dimou, A.1
Tsoumakas, G.2
Mezaris, V.3
Kompatsiaris, I.4
Vlahavas, I.5
-
269
-
-
84865223006
-
On label dependence and loss minimization in multi-label classification
-
Dembczyński K, Waegeman W, Cheng W, Hüllermeier E. On label dependence and loss minimization in multi-label classification. Mach Learn 2012, 88:5-45.
-
(2012)
Mach Learn
, vol.88
, pp. 5-45
-
-
Dembczyński, K.1
Waegeman, W.2
Cheng, W.3
Hüllermeier, E.4
-
270
-
-
84912087144
-
-
Advances in multi-label classification. Available at:
-
Read J. Advances in multi-label classification. Available at: http://users.ics.aalto.fi/jesse/talks/Charla-Malaga.pdf. (2011).
-
(2011)
-
-
Read, J.1
|