메뉴 건너뛰기




Volumn 4, Issue 6, 2014, Pages 411-444

Multi-label learning: A review of the state of the art and ongoing research

Author keywords

[No Author keywords available]

Indexed keywords

DATA MINING;

EID: 84912136436     PISSN: 19424787     EISSN: 19424795     Source Type: Journal    
DOI: 10.1002/widm.1139     Document Type: Article
Times cited : (227)

References (270)
  • 1
    • 84897109377 scopus 로고    scopus 로고
    • A Review On Multi-Label Learning Algorithms
    • Zhang ML, Zhou ZH. A Review On Multi-Label Learning Algorithms. IEEE Trans Knowl Data Eng 2014, 26:1819-1837.
    • (2014) IEEE Trans Knowl Data Eng , vol.26 , pp. 1819-1837
    • Zhang, M.L.1    Zhou, Z.H.2
  • 2
    • 84912130318 scopus 로고    scopus 로고
    • First International Workshop on Learning from Multi-Label Data (MLD'09)
    • Available at:
    • First International Workshop on Learning from Multi-Label Data (MLD'09). Available at: http://lpis.csd.auth.gr/workshops/mld09/mld09.pdf. (2009).
    • (2009)
  • 3
    • 84912087150 scopus 로고    scopus 로고
    • Second International Workshop on Learning from Multi-Label Data (MLD'10)
    • Second International Workshop on Learning from Multi-Label Data (MLD'10). http://cse.seu.edu.cn/conf/MLD10/files/MLD'10.pdf (2010).
    • (2010)
  • 4
    • 84912108721 scopus 로고    scopus 로고
    • Extreme Classification: Multi-Class & Multi-Label Learning with Millions of Categories
    • Available at:
    • Extreme Classification: Multi-Class & Multi-Label Learning with Millions of Categories. Available at: http://nips.cc/Conferences/2013/Program/event.php?ID=3707 (2013).
    • (2013)
  • 5
    • 84912123901 scopus 로고    scopus 로고
    • Special issue on learning from multi-label data
    • Special issue on learning from multi-label data. Mach Learn 2012, 88.
    • (2012) Mach Learn , vol.88
  • 6
    • 84912087149 scopus 로고    scopus 로고
    • LAMDA: Learning and Mining from Data. Data & Code. Available at:
    • LAMDA: Learning and Mining from Data. Data & Code. Available at: http://lamda.nju.edu.cn/Data.ashx.
  • 7
    • 79955702502 scopus 로고    scopus 로고
    • LIBSVM: a library for support vector machines
    • 27:1-27:27. Available at:
    • Chang CC, Lin CJ. LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol 2, 27:1-27:27 (2011). Available at: http://www.csie.ntu.edu.tw/cjlin/libsvm.
    • (2011) ACM Trans Intell Syst Technol , vol.2
    • Chang, C.C.1    Lin, C.J.2
  • 8
    • 84912064965 scopus 로고    scopus 로고
    • MEKA: a multi-label extension to WEKA
    • Available at:
    • Read J. MEKA: a multi-label extension to WEKA. Available at: http://meka.sourceforge.net/. (2012).
    • (2012)
    • Read, J.1
  • 10
    • 67949108237 scopus 로고    scopus 로고
    • A tutorial on multi-label classification techniques
    • Berlin/Heidelberg: Springer
    • de Carvalho A, Freitas A. A tutorial on multi-label classification techniques. In: Foundations of Computational Intelligence, vol. 5, Berlin/Heidelberg: Springer; 2009, 177-195.
    • (2009) Foundations of Computational Intelligence , vol.5 , pp. 177-195
    • de Carvalho, A.1    Freitas, A.2
  • 13
    • 84861617363 scopus 로고    scopus 로고
    • An extensive experimental comparison of methods for multi-label learning
    • Madjarov G, Kocev D, Gjorgjevikj D, Džeroski S. An extensive experimental comparison of methods for multi-label learning. Pattern Recogn 2012, 45:3084-3104.
    • (2012) Pattern Recogn , vol.45 , pp. 3084-3104
    • Madjarov, G.1    Kocev, D.2    Gjorgjevikj, D.3    Džeroski, S.4
  • 15
    • 77953732572 scopus 로고    scopus 로고
    • Efficient multilabel classification algorithms for large-scale problems in the legal domain
    • Lecture Notes in Computer Science, Berlin/Heidelberg: Springer
    • Loza E, Fürnkranz J. Efficient multilabel classification algorithms for large-scale problems in the legal domain. In: Semantic Processing of Legal Texts, Lecture Notes in Computer Science, vol. 6036, Berlin/Heidelberg: Springer; 2010, 192-215.
    • (2010) Semantic Processing of Legal Texts , vol.6036 , pp. 192-215
    • Loza, E.1    Fürnkranz, J.2
  • 16
    • 84865237508 scopus 로고    scopus 로고
    • Statistical topic models for multi-label document classification
    • Rubin T, Chambers A, Smyth P, Steyvers M. Statistical topic models for multi-label document classification. Mach Learn 2012, 88:157-208.
    • (2012) Mach Learn , vol.88 , pp. 157-208
    • Rubin, T.1    Chambers, A.2    Smyth, P.3    Steyvers, M.4
  • 18
    • 0033905095 scopus 로고    scopus 로고
    • BoosTexter: a boosting-based system for text categorization
    • Schapire RE, Singer Y. BoosTexter: a boosting-based system for text categorization. Mach Learn 2000, 39:135-168.
    • (2000) Mach Learn , vol.39 , pp. 135-168
    • Schapire, R.E.1    Singer, Y.2
  • 19
    • 26944434691 scopus 로고    scopus 로고
    • Text classification for DAG-structured categories
    • Lecture Notes in Computer Science, chap. 36, Berlin/Heidelberg: Springer
    • Nguyen CD, Dung TA, Cao TH. Text classification for DAG-structured categories. In: Advances in Knowledge Discovery and Data Mining, Lecture Notes in Computer Science, vol. 3518, chap. 36, Berlin/Heidelberg: Springer; 2005; 1-18.
    • (2005) Advances in Knowledge Discovery and Data Mining , vol.3518 , pp. 1-18
    • Nguyen, C.D.1    Dung, T.A.2    Cao, T.H.3
  • 21
    • 34248573429 scopus 로고    scopus 로고
    • Grouping of TRIZ inventive principles to facilitate automatic patent classification
    • Cong H, Tong LH. Grouping of TRIZ inventive principles to facilitate automatic patent classification. Expert Systems with Applications 2008, 34:788-795.
    • (2008) Expert Systems with Applications , vol.34 , pp. 788-795
    • Cong, H.1    Tong, L.H.2
  • 23
    • 35048886584 scopus 로고    scopus 로고
    • Automatic multi-label subject indexing in a multilingual environment
    • Lecture Notes in Computer Science
    • Lauser B, Hotho A. Automatic multi-label subject indexing in a multilingual environment. In: European Conference on Digital Libraries (ECDL), Lecture Notes in Computer Science, vol. 2769; 2003, 140-151.
    • (2003) European Conference on Digital Libraries (ECDL) , vol.2769 , pp. 140-151
    • Lauser, B.1    Hotho, A.2
  • 25
    • 79951867458 scopus 로고    scopus 로고
    • Automatic tag recommendation algorithms for social recommender systems
    • Song Y, Zhang L, Giles CL. Automatic tag recommendation algorithms for social recommender systems. ACM Trans Web 2011, 5:1-31.
    • (2011) ACM Trans Web , vol.5 , pp. 1-31
    • Song, Y.1    Zhang, L.2    Giles, C.L.3
  • 29
    • 80053402777 scopus 로고    scopus 로고
    • Reader perspective emotion analysis in text through ensemble based multi-label classification framework
    • Bhowmick PK, Basu A, Mitra P. Reader perspective emotion analysis in text through ensemble based multi-label classification framework. Comput Inf Sci 2009, 2:64-74.
    • (2009) Comput Inf Sci , vol.2 , pp. 64-74
    • Bhowmick, P.K.1    Basu, A.2    Mitra, P.3
  • 30
    • 84894097561 scopus 로고    scopus 로고
    • Sentence level news emotion analysis in fuzzy multi-label classification framework (special issue on natural language processing and its applications)
    • Bhowmick PK, Basu A, Mitra P, Prasad A. Sentence level news emotion analysis in fuzzy multi-label classification framework (special issue on natural language processing and its applications). Res Comput Sci 2010, 46:143-154.
    • (2010) Res Comput Sci , vol.46 , pp. 143-154
    • Bhowmick, P.K.1    Basu, A.2    Mitra, P.3    Prasad, A.4
  • 34
    • 79958844204 scopus 로고    scopus 로고
    • A transductive multi-label learning approach for video concept detection
    • Wang J, Zhao Y, Wu X, Hua XS. A transductive multi-label learning approach for video concept detection. Pattern Recogn 2010, 44:2274-2286.
    • (2010) Pattern Recogn , vol.44 , pp. 2274-2286
    • Wang, J.1    Zhao, Y.2    Wu, X.3    Hua, X.S.4
  • 35
    • 58149151266 scopus 로고    scopus 로고
    • TextonBoost for image understanding: multi-class object recognition and segmentation by jointly modeling texture, layout, and context
    • Shotton J, Winn J, Rother C, Criminisi A. TextonBoost for image understanding: multi-class object recognition and segmentation by jointly modeling texture, layout, and context. Int J Comput Vision 2009, 81:2-23.
    • (2009) Int J Comput Vision , vol.81 , pp. 2-23
    • Shotton, J.1    Winn, J.2    Rother, C.3    Criminisi, A.4
  • 38
    • 70350446810 scopus 로고    scopus 로고
    • Improving multilabel analysis of music titles: a large-scale validation of the correction approach
    • Pachet F, Roy P. Improving multilabel analysis of music titles: a large-scale validation of the correction approach. IEEE Trans Audio Speech Lang Proc 2009, 17:335-343.
    • (2009) IEEE Trans Audio Speech Lang Proc , vol.17 , pp. 335-343
    • Pachet, F.1    Roy, P.2
  • 39
    • 77952636818 scopus 로고    scopus 로고
    • Classification of complex information: inference of co-occurring affective states from their expressions in speech
    • Sobol-Shikler T, Robinson P. Classification of complex information: inference of co-occurring affective states from their expressions in speech. IEEE Trans Pattern Anal Mach Intell 2010, 32:1284-1297.
    • (2010) IEEE Trans Pattern Anal Mach Intell , vol.32 , pp. 1284-1297
    • Sobol-Shikler, T.1    Robinson, P.2
  • 41
    • 84865223440 scopus 로고    scopus 로고
    • Synergy of multi-label hierarchical ensembles, data fusion, and cost-sensitive methods for gene functional inference
    • Cesa-Bianchi N, Re M, Valentini G. Synergy of multi-label hierarchical ensembles, data fusion, and cost-sensitive methods for gene functional inference. Mach Learn 2012, 88:209-241.
    • (2012) Mach Learn , vol.88 , pp. 209-241
    • Cesa-Bianchi, N.1    Re, M.2    Valentini, G.3
  • 42
    • 79952857163 scopus 로고    scopus 로고
    • Hierarchical cost-sensitive algorithms for genome-wide gene function prediction
    • Cesa-Bianchi N, Valentini G. Hierarchical cost-sensitive algorithms for genome-wide gene function prediction. J Mach Learn Res 2010, 8:14-29.
    • (2010) J Mach Learn Res , vol.8 , pp. 14-29
    • Cesa-Bianchi, N.1    Valentini, G.2
  • 46
    • 33748366796 scopus 로고    scopus 로고
    • Multilabel neural networks with applications to functional genomics and text categorization
    • Zhang ML, Zhou ZH. Multilabel neural networks with applications to functional genomics and text categorization. IEEE Trans Knowl Data Eng 2006, 18:1338-1351.
    • (2006) IEEE Trans Knowl Data Eng , vol.18 , pp. 1338-1351
    • Zhang, M.L.1    Zhou, Z.H.2
  • 47
    • 51849091084 scopus 로고    scopus 로고
    • Multi-label hierarchical classification of protein functions with artificial immune systems
    • Lecture Notes in Bioinformatics
    • Alves RT, Delgado MR, Freitas AA. Multi-label hierarchical classification of protein functions with artificial immune systems. In: Proceedings of the Brazilian Symposium in Bioinformatics (BSB-2008), Lecture Notes in Bioinformatics, vol. 5167; 2008, 1-12.
    • (2008) Proceedings of the Brazilian Symposium in Bioinformatics (BSB-2008) , vol.5167 , pp. 1-12
    • Alves, R.T.1    Delgado, M.R.2    Freitas, A.A.3
  • 48
    • 78549287454 scopus 로고    scopus 로고
    • Knowledge discovery with artificial immune systems for hierarchical multi-label classification of protein functions
    • Barcelona, Spain
    • Alves RT, Delgado MR, Freitas AA. Knowledge discovery with artificial immune systems for hierarchical multi-label classification of protein functions. In: IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Barcelona, Spain; 2010, 1-8.
    • (2010) IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) , pp. 1-8
    • Alves, R.T.1    Delgado, M.R.2    Freitas, A.A.3
  • 50
    • 77956692717 scopus 로고    scopus 로고
    • A hierarchical multi-label classification ant colony algorithm for protein function prediction
    • Otero F, Freitas A, Johnson C. A hierarchical multi-label classification ant colony algorithm for protein function prediction. Memetic Comput 2010, 2:165-181.
    • (2010) Memetic Comput , vol.2 , pp. 165-181
    • Otero, F.1    Freitas, A.2    Johnson, C.3
  • 52
    • 79953316878 scopus 로고    scopus 로고
    • iLoc-Euk: a multi-label classifier for predicting the subcellular localization of singleplex and multiplex eukaryotic proteins
    • Chou KC, Wu ZC, Xiao X. iLoc-Euk: a multi-label classifier for predicting the subcellular localization of singleplex and multiplex eukaryotic proteins. PLoS ONE 2011, 6.
    • (2011) PLoS ONE , vol.6
    • Chou, K.C.1    Wu, Z.C.2    Xiao, X.3
  • 53
    • 33845310880 scopus 로고    scopus 로고
    • The study of drug-reaction relationships using global optimization techniques
    • Mammadov MA, Rubinov AM, Yearwood J. The study of drug-reaction relationships using global optimization techniques. Optim Method Softw 2007, 22:99-126.
    • (2007) Optim Method Softw , vol.22 , pp. 99-126
    • Mammadov, M.A.1    Rubinov, A.M.2    Yearwood, J.3
  • 54
    • 84912127051 scopus 로고    scopus 로고
    • Identification of the dual action antihypertensive drugs using TFS-based support vector machines
    • Kawai K, Takahashi Y. Identification of the dual action antihypertensive drugs using TFS-based support vector machines. Chem-Bio Inf J 2009, 4:44-51.
    • (2009) Chem-Bio Inf J , vol.4 , pp. 44-51
    • Kawai, K.1    Takahashi, Y.2
  • 60
    • 67349227408 scopus 로고    scopus 로고
    • Automatic detection of learning styles for an e-learning system
    • Özpolat E, Akar GB. Automatic detection of learning styles for an e-learning system. Comput Educ 2009, 53:355-367.
    • (2009) Comput Educ , vol.53 , pp. 355-367
    • Özpolat, E.1    Akar, G.B.2
  • 61
    • 84859209611 scopus 로고    scopus 로고
    • A model for multi-label classification and ranking of learning objects
    • López VF, de la Prieta F, Ogihara M, Wong DD. A model for multi-label classification and ranking of learning objects. Expert Syst Appl 2012, 39:8878-8884.
    • (2012) Expert Syst Appl , vol.39 , pp. 8878-8884
    • López, V.F.1    de la Prieta, F.2    Ogihara, M.3    Wong, D.D.4
  • 63
    • 84878305264 scopus 로고    scopus 로고
    • Symptom selection for multi-label data of inquiry diagnosis in traditional Chinese medicine
    • Shao H, Li G, Liu G, Wang Y. Symptom selection for multi-label data of inquiry diagnosis in traditional Chinese medicine. Sci China Ser F-Info Sci 2010, 1:1-13.
    • (2010) Sci China Ser F-Info Sci , vol.1 , pp. 1-13
    • Shao, H.1    Li, G.2    Liu, G.3    Wang, Y.4
  • 64
    • 84866039840 scopus 로고    scopus 로고
    • Pattern classification of dermoscopy images: a perceptually uniform model
    • Abbas Q, Celebi M, Serrano C, García IF, Ma G. Pattern classification of dermoscopy images: a perceptually uniform model. Pattern Recogn 2013, 46:86-97.
    • (2013) Pattern Recogn , vol.46 , pp. 86-97
    • Abbas, Q.1    Celebi, M.2    Serrano, C.3    García, I.F.4    Ma, G.5
  • 66
    • 65449124511 scopus 로고    scopus 로고
    • A study on threshold selection for multi-label classification
    • Technical Report, National Taiwan University
    • Fan RE, Lin CJ. A study on threshold selection for multi-label classification. Technical Report, National Taiwan University; 2007.
    • (2007)
    • Fan, R.E.1    Lin, C.J.2
  • 68
    • 33749663109 scopus 로고    scopus 로고
    • Selection strategies for multi-label text categorization
    • Lecture Notes in Computer Science
    • Montejo-Ráez A, Ureña López L. Selection strategies for multi-label text categorization.In: Advances in Natural Language Processing, Lecture Notes in Computer Science, vol. 4139; 2006, 585-592.
    • (2006) Advances in Natural Language Processing , vol.4139 , pp. 585-592
    • Montejo-Ráez, A.1    Ureña López, L.2
  • 70
    • 79955550286 scopus 로고    scopus 로고
    • Multi-dimensional classification with Bayesian networks
    • Bielza C, Li G, Larrañaga P. Multi-dimensional classification with Bayesian networks. Int J Approx Reasoning 2011, 52:705-727.
    • (2011) Int J Approx Reasoning , vol.52 , pp. 705-727
    • Bielza, C.1    Li, G.2    Larrañaga, P.3
  • 71
    • 67649387956 scopus 로고    scopus 로고
    • Multi-output regression on the output manifold
    • Liu G, Lin Z, Yu Y. Multi-output regression on the output manifold. Pattern Recogn 2009, 42:2737-2743.
    • (2009) Pattern Recogn , vol.42 , pp. 2737-2743
    • Liu, G.1    Lin, Z.2    Yu, Y.3
  • 73
    • 78049326859 scopus 로고    scopus 로고
    • Regret analysis for performance metrics in multi-label classification: the case of hamming and subset zero-one loss
    • Lecture Notes in Computer Science, Berlin/Heidelberg: Springer
    • Dembczyński K, Waegeman W, Cheng W, Hüllermeier E. Regret analysis for performance metrics in multi-label classification: the case of hamming and subset zero-one loss. In: Machine Learning and Knowledge Discovery in Databases, Lecture Notes in Computer Science, vol. 6321. Berlin/Heidelberg: Springer; 2010, 280-295.
    • (2010) Machine Learning and Knowledge Discovery in Databases , vol.6321 , pp. 280-295
    • Dembczyński, K.1    Waegeman, W.2    Cheng, W.3    Hüllermeier, E.4
  • 74
    • 0033281701 scopus 로고    scopus 로고
    • Improved boosting algorithms using confidence-rated predictions
    • Schapire RE, Singer Y. Improved boosting algorithms using confidence-rated predictions. Mach Learn 1999, 37:297-336.
    • (1999) Mach Learn , vol.37 , pp. 297-336
    • Schapire, R.E.1    Singer, Y.2
  • 76
    • 0142228873 scopus 로고    scopus 로고
    • A family of additive online algorithms for category ranking
    • Crammer K, Singer Y. A family of additive online algorithms for category ranking. J Mach Learn Res 2003, 3:1025-1058.
    • (2003) J Mach Learn Res , vol.3 , pp. 1025-1058
    • Crammer, K.1    Singer, Y.2
  • 77
    • 84862825073 scopus 로고    scopus 로고
    • Multi-label classification with label constraints
    • Technical Report, TUD-KE-2008-04, Knowledge Engineering Group, TU Darmstadt; Available at:
    • Park SH, Fürnkranz J. Multi-label classification with label constraints. Technical Report, TUD-KE-2008-04, Knowledge Engineering Group, TU Darmstadt; 2008. Available at: http://www.ke.tu-darmstadt.de/publications/reports/tud-ke-2008-04.pdf.
    • (2008)
    • Park, S.H.1    Fürnkranz, J.2
  • 78
    • 84912087148 scopus 로고    scopus 로고
    • Scalable multi-label classification. PhD Thesis, University of Waikato
    • Read J. Scalable multi-label classification. PhD Thesis, University of Waikato, 2010.
    • (2010)
    • Read, J.1
  • 79
    • 29644434908 scopus 로고    scopus 로고
    • Incremental algorithms for hierarchical classification
    • Bianchi NC, Gentile C, Zaniboni L. Incremental algorithms for hierarchical classification. J Mach Learn Res 2006, 7:31-54.
    • (2006) J Mach Learn Res , vol.7 , pp. 31-54
    • Bianchi, N.C.1    Gentile, C.2    Zaniboni, L.3
  • 82
    • 77957910163 scopus 로고    scopus 로고
    • Multiple instance learning with multiple objective genetic programming for web mining
    • Zafra A, Gibaja E, Ventura S. Multiple instance learning with multiple objective genetic programming for web mining. Appl Soft Comput 2011, 11:93-102.
    • (2011) Appl Soft Comput , vol.11 , pp. 93-102
    • Zafra, A.1    Gibaja, E.2    Ventura, S.3
  • 84
    • 84873337014 scopus 로고    scopus 로고
    • Preferential text classification: learning algorithms and evaluation measures
    • Aiolli F, Cardin R, Sebastiani F, Sperduti A. Preferential text classification: learning algorithms and evaluation measures. Inf Retr 2009, 12:559-580.
    • (2009) Inf Retr , vol.12 , pp. 559-580
    • Aiolli, F.1    Cardin, R.2    Sebastiani, F.3    Sperduti, A.4
  • 87
    • 77957848369 scopus 로고    scopus 로고
    • Combine multi-valued attribute decomposition with multi-label learning
    • Li H, Guo YJ, Wu M, Li P, Xiang Y. Combine multi-valued attribute decomposition with multi-label learning. Expert Syst Appl 2010, 37:8721-8728.
    • (2010) Expert Syst Appl , vol.37 , pp. 8721-8728
    • Li, H.1    Guo, Y.J.2    Wu, M.3    Li, P.4    Xiang, Y.5
  • 89
    • 84876811202 scopus 로고    scopus 로고
    • RCV1: a new benchmark collection for text categorization research
    • Lewis DD, Yang Y, Rose TG, Li F. RCV1: a new benchmark collection for text categorization research. J Mach Learn Res 2005, 5:361-397.
    • (2005) J Mach Learn Res , vol.5 , pp. 361-397
    • Lewis, D.D.1    Yang, Y.2    Rose, T.G.3    Li, F.4
  • 90
    • 3042597440 scopus 로고    scopus 로고
    • Learning multi-label scene classification
    • Boutell M, Luo J, Shen X, Brown C. Learning multi-label scene classification. Pattern Recogn 2004, 37:1757-1771.
    • (2004) Pattern Recogn , vol.37 , pp. 1757-1771
    • Boutell, M.1    Luo, J.2    Shen, X.3    Brown, C.4
  • 92
    • 78649492473 scopus 로고    scopus 로고
    • Optimization method based extreme learning machine for classification
    • Huang GB, Ding X, Zhou H. Optimization method based extreme learning machine for classification. Neurocomputing 2010, 74:155-163.
    • (2010) Neurocomputing , vol.74 , pp. 155-163
    • Huang, G.B.1    Ding, X.2    Zhou, H.3
  • 93
    • 79959667141 scopus 로고    scopus 로고
    • iLoc-Virus: a multi-label learning classifier for identifying the subcellular localization of virus proteins with both single and multiple sites
    • Xiao X, Wu ZC, Chou KC. iLoc-Virus: a multi-label learning classifier for identifying the subcellular localization of virus proteins with both single and multiple sites. J Theor Biol 2011, 284:42-51.
    • (2011) J Theor Biol , vol.284 , pp. 42-51
    • Xiao, X.1    Wu, Z.C.2    Chou, K.C.3
  • 97
    • 83155175374 scopus 로고    scopus 로고
    • Classifier chains for multi-label classification
    • Read J, Pfahringer B, Holmes G, Frank E. Classifier chains for multi-label classification. Mach Learn 2011, 85:1-27.
    • (2011) Mach Learn , vol.85 , pp. 1-27
    • Read, J.1    Pfahringer, B.2    Holmes, G.3    Frank, E.4
  • 101
    • 80054948724 scopus 로고    scopus 로고
    • Incorporating label dependency into the binary relevance framework for multi-label classification
    • Cherman EA, Metz J, Monard MC. Incorporating label dependency into the binary relevance framework for multi-label classification. Expert Syst Appl 2012, 39:1647-1655.
    • (2012) Expert Syst Appl , vol.39 , pp. 1647-1655
    • Cherman, E.A.1    Metz, J.2    Monard, M.C.3
  • 105
    • 77649237436 scopus 로고    scopus 로고
    • Efficient voting prediction for pairwise multilabel classification
    • Loza E, Park SH, Fürnkranz J. Efficient voting prediction for pairwise multilabel classification. Neurocomputing 2010, 73:1164-1176.
    • (2010) Neurocomputing , vol.73 , pp. 1164-1176
    • Loza, E.1    Park, S.H.2    Fürnkranz, J.3
  • 110
    • 79957460742 scopus 로고    scopus 로고
    • Cost-sensitive multi-label learning for audio tag annotation and retrieval
    • Lo H, Wang J, Wang H, Lin S. Cost-sensitive multi-label learning for audio tag annotation and retrieval. IEEE Trans Multimedia 2011, 13:518-529.
    • (2011) IEEE Trans Multimedia , vol.13 , pp. 518-529
    • Lo, H.1    Wang, J.2    Wang, H.3    Lin, S.4
  • 111
    • 84904195795 scopus 로고    scopus 로고
    • Ensemble methods for multi-label classification
    • Rokach L, Schclar A, Itach E. Ensemble methods for multi-label classification. Expert Syst Appl 2014, 41:7507-7523.
    • (2014) Expert Syst Appl , vol.41 , pp. 7507-7523
    • Rokach, L.1    Schclar, A.2    Itach, E.3
  • 114
    • 46149105706 scopus 로고    scopus 로고
    • Induction from multi-label examples in information retrieval systems: a case study
    • Sarinnapakorn K, Kubat M. Induction from multi-label examples in information retrieval systems: a case study. Appl Artif Intell 2008, 22:407-432.
    • (2008) Appl Artif Intell , vol.22 , pp. 407-432
    • Sarinnapakorn, K.1    Kubat, M.2
  • 115
    • 77958544287 scopus 로고    scopus 로고
    • Constructing a fast algorithm for multi-label classification with support vector data description
    • Xu J. Constructing a fast algorithm for multi-label classification with support vector data description. In: Proceedings of the IEEE International Conference on Granular Computing (GrC); 2010, 817-821.
    • (2010) Proceedings of the IEEE International Conference on Granular Computing (GrC) , pp. 817-821
    • Xu, J.1
  • 117
    • 4544369306 scopus 로고    scopus 로고
    • An unbiased method for constructing multilabel classification trees
    • Noh HG, Song MS, Park SH. An unbiased method for constructing multilabel classification trees. Comput Stat Data Anal 2004, 47:149-164.
    • (2004) Comput Stat Data Anal , vol.47 , pp. 149-164
    • Noh, H.G.1    Song, M.S.2    Park, S.H.3
  • 120
    • 84855909023 scopus 로고    scopus 로고
    • An efficient multi-label support vector machine with a zero label
    • Xu J. An efficient multi-label support vector machine with a zero label. Expert Syst Appl 2012, 39:4796-4804.
    • (2012) Expert Syst Appl , vol.39 , pp. 4796-4804
    • Xu, J.1
  • 121
    • 45149090105 scopus 로고    scopus 로고
    • Parallel and sequential support vectormachines for multi-label classification
    • Wang L, Chang M, Feng J. Parallel and sequential support vectormachines for multi-label classification. Int J Inf Technol 2005, 11:11-18.
    • (2005) Int J Inf Technol , vol.11 , pp. 11-18
    • Wang, L.1    Chang, M.2    Feng, J.3
  • 125
    • 68949141664 scopus 로고    scopus 로고
    • Combining instance-based learning and logistic regression for multilabel classification
    • Cheng W, Hüllermeier E. Combining instance-based learning and logistic regression for multilabel classification. Mach Learn 2009, 76:211-225.
    • (2009) Mach Learn , vol.76 , pp. 211-225
    • Cheng, W.1    Hüllermeier, E.2
  • 130
    • 77954867886 scopus 로고    scopus 로고
    • Evidential multi-label classification approach to learning from data with imprecise labels
    • Lecture Notes in Computer Science, Berlin/Heidelberg: Springer
    • Younes Z, Abdallah F, Denoeux T. Evidential multi-label classification approach to learning from data with imprecise labels. In: Computational Intelligence for Knowledge-Based Systems Design, Lecture Notes in Computer Science, vol. 6178, Berlin/Heidelberg: Springer; 2010, 119-128.
    • (2010) Computational Intelligence for Knowledge-Based Systems Design , vol.6178 , pp. 119-128
    • Younes, Z.1    Abdallah, F.2    Denoeux, T.3
  • 131
    • 80255123384 scopus 로고    scopus 로고
    • FSKNN: multi-label text categorization based on fuzzy similarity and k nearest neighbors
    • Jiang JY, Tsai SC, Lee SJ. FSKNN: multi-label text categorization based on fuzzy similarity and k nearest neighbors. Expert Syst Appl 2012, 39:2813-2821.
    • (2012) Expert Syst Appl , vol.39 , pp. 2813-2821
    • Jiang, J.Y.1    Tsai, S.C.2    Lee, S.J.3
  • 133
    • 62649132781 scopus 로고    scopus 로고
    • Ml-rbf: RBF neural networks for multi-label learning
    • Zhang ML. Ml-rbf: RBF neural networks for multi-label learning. Neural Proc Lett 2009, 29:61-74.
    • (2009) Neural Proc Lett , vol.29 , pp. 61-74
    • Zhang, M.L.1
  • 135
    • 78651249964 scopus 로고    scopus 로고
    • An enhanced probabilistic neural network approach applied to text classification
    • Lecture Notes in Computer Science, chap. 78. Berlin/Heidelberg: Springer
    • Ciarelli P, Oliveira E. An enhanced probabilistic neural network approach applied to text classification. In: Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, Lecture Notes in Computer Science, vol. 5856, chap. 78. Berlin/Heidelberg: Springer; 2009, 661-668.
    • (2009) Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications , vol.5856 , pp. 661-668
    • Ciarelli, P.1    Oliveira, E.2
  • 136
    • 70349847753 scopus 로고    scopus 로고
    • ART-based neural networks for multi-label classification. In: Advances in Intelligent Data Analysis VIII
    • Lecture Notes in Computer Science. Berlin/Heidelberg: Springer
    • Sapozhnikova E. ART-based neural networks for multi-label classification. In: Advances in Intelligent Data Analysis VIII, Lecture Notes in Computer Science, vol. 5772, Berlin/Heidelberg: Springer; 2009, 167-177.
    • (2009) , vol.5772 , pp. 167-177
    • Sapozhnikova, E.1
  • 137
    • 0003223784 scopus 로고    scopus 로고
    • Multi-label text classification with a mixture model trained by EM
    • McCallum AK. Multi-label text classification with a mixture model trained by EM. In: AAAI 99 Workshop on Text Learning; 1999.
    • (1999) AAAI 99 Workshop on Text Learning
    • McCallum, A.K.1
  • 138
    • 35048842358 scopus 로고    scopus 로고
    • Extended parametric mixture model for robust multi-labeled text categorization
    • Lecture Notes in Computer Science
    • Kaneda Y, Ueda N, Saito K. Extended parametric mixture model for robust multi-labeled text categorization. In: Knowledge-Based Intelligent Information and Engineering Systems, Lecture Notes in Computer Science, vol. 3214; 2004, 616-623.
    • (2004) Knowledge-Based Intelligent Information and Engineering Systems , vol.3214 , pp. 616-623
    • Kaneda, Y.1    Ueda, N.2    Saito, K.3
  • 142
    • 34047263437 scopus 로고    scopus 로고
    • A greedy classification algorithm based on association rule
    • Thabtah FA, Cowling PI. A greedy classification algorithm based on association rule. Appl Soft Comput 2007, 7:1102-1111.
    • (2007) Appl Soft Comput , vol.7 , pp. 1102-1111
    • Thabtah, F.A.1    Cowling, P.I.2
  • 143
    • 36049012235 scopus 로고    scopus 로고
    • A tree-projection-based algorithm for multi-label recurrent-item associative-classification rule generation
    • Rak R, Kurgan L, Reformat M. A tree-projection-based algorithm for multi-label recurrent-item associative-classification rule generation. Data Knowl Eng 2008, 64:171-197.
    • (2008) Data Knowl Eng , vol.64 , pp. 171-197
    • Rak, R.1    Kurgan, L.2    Reformat, M.3
  • 145
    • 84875086969 scopus 로고    scopus 로고
    • A grammar-guided genetic programming algorithm for multi-label classification
    • Lecture Notes in Computer Science
    • Cano A, Zafra A, Galindo ELG, Ventura S. A grammar-guided genetic programming algorithm for multi-label classification. In: 16th European Conference, EuroGP, Lecture Notes in Computer Science, vol. 7831; 2013, 217-228.
    • (2013) 16th European Conference, EuroGP , vol.7831 , pp. 217-228
    • Cano, A.1    Zafra, A.2    Galindo, E.L.G.3    Ventura, S.4
  • 146
    • 77954578177 scopus 로고    scopus 로고
    • Evolving multi-label classification rules with gene expression programming: a preliminary study
    • Lecture Notes in Computer Science
    • Ávila J, Gibaja E, Ventura S. Evolving multi-label classification rules with gene expression programming: a preliminary study. In: Hybrid Artificial Intelligence Systems (HAIS), Lecture Notes in Computer Science, vol. 6077; 2010, 9-16.
    • (2010) Hybrid Artificial Intelligence Systems (HAIS) , vol.6077 , pp. 9-16
    • Ávila, J.1    Gibaja, E.2    Ventura, S.3
  • 147
    • 79951839130 scopus 로고    scopus 로고
    • A gene expression programming algorithm for multi-label classification
    • Ávila JL, Gibaja EL, Zafra A, Ventura S. A gene expression programming algorithm for multi-label classification. J Mult-Valued Log S 2011, 17:183-206.
    • (2011) J Mult-Valued Log S , vol.17 , pp. 183-206
    • Ávila, J.L.1    Gibaja, E.L.2    Zafra, A.3    Ventura, S.4
  • 153
    • 33644485800 scopus 로고    scopus 로고
    • Discretizing continuous attributes in adaboost for text categorization
    • Lecture Notes in Computer Science, Berlin/Heidelberg: Springer
    • Nardiello P, Sebastiani F, Sperduti A. Discretizing continuous attributes in adaboost for text categorization. In: Advances in Information Retrieval, Lecture Notes in Computer Science, vol. 2633, Berlin/Heidelberg: Springer; 2003, 320-334.
    • (2003) Advances in Information Retrieval , vol.2633 , pp. 320-334
    • Nardiello, P.1    Sebastiani, F.2    Sperduti, A.3
  • 157
    • 33750291885 scopus 로고    scopus 로고
    • MP-Boost: a multiple-pivot boosting algorithm and its application to text categorization
    • Lecture Notes in Computer Science. Berlin/Heidelberg: Springer
    • Esuli A, Fagni T, Sebastiani F. MP-Boost: a multiple-pivot boosting algorithm and its application to text categorization. In: String Processing and Information Retrieval (SPIRE), Lecture Notes in Computer Science, vol. 4209. Berlin/Heidelberg: Springer; 2006, 1-12.
    • (2006) String Processing and Information Retrieval (SPIRE) , vol.4209 , pp. 1-12
    • Esuli, A.1    Fagni, T.2    Sebastiani, F.3
  • 161
    • 78649503228 scopus 로고    scopus 로고
    • Multilabel classification using error correction codes
    • Lecture Notes in Computer Science
    • Kouzani A. Multilabel classification using error correction codes. In: Advances in Computation and Intelligence, Lecture Notes in Computer Science, vol. 6382; 2010, 444-454.
    • (2010) Advances in Computation and Intelligence , vol.6382 , pp. 444-454
    • Kouzani, A.1
  • 162
    • 84872109628 scopus 로고    scopus 로고
    • Multiple classifier method for structured output prediction based on error correcting output codes
    • Lecture Notes in Computer Science
    • Kajdanowicz T, Wozniak M, Kazienko P. Multiple classifier method for structured output prediction based on error correcting output codes. In: Intelligent Information and Database Systems, Lecture Notes in Computer Science, vol. 6592; 2011, 333-342.
    • (2011) Intelligent Information and Database Systems , vol.6592 , pp. 333-342
    • Kajdanowicz, T.1    Wozniak, M.2    Kazienko, P.3
  • 164
    • 84865275504 scopus 로고    scopus 로고
    • Compressed labeling on distilled labelsets for multi-label learning
    • Zhou T, Tao D, Wu X. Compressed labeling on distilled labelsets for multi-label learning. Mach Learn 2012, 88:69-126.
    • (2012) Mach Learn , vol.88 , pp. 69-126
    • Zhou, T.1    Tao, D.2    Wu, X.3
  • 165
    • 0026692226 scopus 로고
    • Stacked generalization
    • Wolpert DH. Stacked generalization. Neural Networks 1992, 5:241-259.
    • (1992) Neural Networks , vol.5 , pp. 241-259
    • Wolpert, D.H.1
  • 168
    • 0942266514 scopus 로고    scopus 로고
    • Support vector data description
    • Tax D, Duan RPW. Support vector data description. Mach Learn 2004, 54:45-66.
    • (2004) Mach Learn , vol.54 , pp. 45-66
    • Tax, D.1    Duan, R.P.W.2
  • 170
    • 0035964273 scopus 로고    scopus 로고
    • Testing the equality of distributions of random vectors with categorical components
    • Nettleton D, Banerjee T. Testing the equality of distributions of random vectors with categorical components. Comput Stat Data Anal 2001, 37:195-208.
    • (2001) Comput Stat Data Anal , vol.37 , pp. 195-208
    • Nettleton, D.1    Banerjee, T.2
  • 171
    • 0346325840 scopus 로고    scopus 로고
    • A preliminary approach to the multilabel classification problem of portuguese juridical documents
    • Gonçalves T, Quaresma P. A preliminary approach to the multilabel classification problem of portuguese juridical documents. Prog Artif Intell, Lect Notes Comput Sci 2003, 2902:435-444.
    • (2003) Prog Artif Intell, Lect Notes Comput Sci , vol.2902 , pp. 435-444
    • Gonçalves, T.1    Quaresma, P.2
  • 174
    • 0001371447 scopus 로고
    • Ties in paired-comparison experiments: a generalization of the bradley-terry model
    • Rao P, Kupper L. Ties in paired-comparison experiments: a generalization of the bradley-terry model. Am Stat Assoc 1967, 62:194-204.
    • (1967) Am Stat Assoc , vol.62 , pp. 194-204
    • Rao, P.1    Kupper, L.2
  • 177
    • 0025206332 scopus 로고
    • Probabilistic neural networks
    • Specht DF. Probabilistic neural networks. Neural Netw 1990, 3:109-118.
    • (1990) Neural Netw , vol.3 , pp. 109-118
    • Specht, D.F.1
  • 178
    • 0002629270 scopus 로고
    • Rubin., D.B.: Maximum likelihood from incomplete data via the EM algorithm
    • Dempster AP, Laird NM. Rubin., D.B.: Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc B 1977, 39:1-38.
    • (1977) J R Stat Soc B , vol.39 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2
  • 182
    • 0141764033 scopus 로고    scopus 로고
    • A tree projection algorithm for generation of frequent item sets
    • Agarwal R, Aggarwal C, Prasad V. A tree projection algorithm for generation of frequent item sets. J Parallel Distr Com 2001, 61:350-371.
    • (2001) J Parallel Distr Com , vol.61 , pp. 350-371
    • Agarwal, R.1    Aggarwal, C.2    Prasad, V.3
  • 183
  • 184
    • 0347499408 scopus 로고    scopus 로고
    • Gene expression programming: a new adaptive algorithm for solving problems
    • Ferreira C. Gene expression programming: a new adaptive algorithm for solving problems. Complex Syst 2001, 13:87-129.
    • (2001) Complex Syst , vol.13 , pp. 87-129
    • Ferreira, C.1
  • 186
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci 1997, 55:119-139.
    • (1997) J Comput Syst Sci , vol.55 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 189
    • 0000406788 scopus 로고
    • Solving multiclass learning problems via error-correcting output codes
    • Dietterich TG, Bakiri G. Solving multiclass learning problems via error-correcting output codes. J Artif Intell Res 1995, 2:263-286.
    • (1995) J Artif Intell Res , vol.2 , pp. 263-286
    • Dietterich, T.G.1    Bakiri, G.2
  • 190
    • 84868107507 scopus 로고    scopus 로고
    • Multi-label classification with error-correcting codes
    • Ferng CS, Lin HT. Multi-label classification with error-correcting codes. J Mach Learn Res 2011, 20:281-295.
    • (2011) J Mach Learn Res , vol.20 , pp. 281-295
    • Ferng, C.S.1    Lin, H.T.2
  • 191
    • 84876099300 scopus 로고    scopus 로고
    • Multi-label classification using error correcting output codes
    • Kajdanowicz T, Kazienko P. Multi-label classification using error correcting output codes. Int J Appl Math Comput Sci 2012, 22:829-840.
    • (2012) Int J Appl Math Comput Sci , vol.22 , pp. 829-840
    • Kajdanowicz, T.1    Kazienko, P.2
  • 192
    • 84868094158 scopus 로고    scopus 로고
    • Error-correcting output codes as a transformation from multi-class to multi-label prediction
    • Lecture Notes in Computer Science. Berlin/Heidelberg: Springer
    • Fürnkranz J, Park SH. Error-correcting output codes as a transformation from multi-class to multi-label prediction. In: Discovery Science, Lecture Notes in Computer Science, vol. 7569 Berlin/Heidelberg: Springer; 2012, 254-267.
    • (2012) Discovery Science , vol.7569 , pp. 254-267
    • Fürnkranz, J.1    Park, S.H.2
  • 195
    • 84865207305 scopus 로고    scopus 로고
    • Scalable and efficient multi-label classification for evolving data streams
    • Read J, Bifet A, Holmes G, Pfahringer B. Scalable and efficient multi-label classification for evolving data streams. Mach Learn 2012, 88:243-272.
    • (2012) Mach Learn , vol.88 , pp. 243-272
    • Read, J.1    Bifet, A.2    Holmes, G.3    Pfahringer, B.4
  • 197
    • 6944251719 scopus 로고    scopus 로고
    • Predicting gene function in Saccharomyces cerevisiae
    • Clare A, King RD. Predicting gene function in Saccharomyces cerevisiae. Bioinformatics 2003, 2:42-49.
    • (2003) Bioinformatics , vol.2 , pp. 42-49
    • Clare, A.1    King, R.D.2
  • 198
    • 33947681316 scopus 로고    scopus 로고
    • ML-KNN: A lazy learning approach to multi-label learning
    • Zhang ML, Zhou ZH. ML-KNN: A lazy learning approach to multi-label learning. Pattern Recogn 2007, 40:2038-2048.
    • (2007) Pattern Recogn , vol.40 , pp. 2038-2048
    • Zhang, M.L.1    Zhou, Z.H.2
  • 205
    • 77953216761 scopus 로고    scopus 로고
    • A shared-subspace learning framework for multi-label classification
    • Ji S, Tang L, Yu S, Ye J. A shared-subspace learning framework for multi-label classification. ACM Trans Knowl Discov Data 2010, 4:1-29.
    • (2010) ACM Trans Knowl Discov Data , vol.4 , pp. 1-29
    • Ji, S.1    Tang, L.2    Yu, S.3    Ye, J.4
  • 206
    • 84876707612 scopus 로고    scopus 로고
    • Predicting human immunodeficiency virus inhibitors using multi-dimensional bayesian network classifiers
    • Borchani H, Bielza C, Toro C, Larrañaga P. Predicting human immunodeficiency virus inhibitors using multi-dimensional bayesian network classifiers. Artif Intell Med 2013, 57:219-229.
    • (2013) Artif Intell Med , vol.57 , pp. 219-229
    • Borchani, H.1    Bielza, C.2    Toro, C.3    Larrañaga, P.4
  • 212
    • 67650995440 scopus 로고    scopus 로고
    • Feature selection for multi-label naive Bayes classification
    • Zhang ML, Peña JM, Robles V. Feature selection for multi-label naive Bayes classification. Inform Sci 2009, 179:3218-3229.
    • (2009) Inform Sci , vol.179 , pp. 3218-3229
    • Zhang, M.L.1    Peña, J.M.2    Robles, V.3
  • 214
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • Fisher RA. The use of multiple measurements in taxonomic problems. Ann Eugen 1936, 7:179-188.
    • (1936) Ann Eugen , vol.7 , pp. 179-188
    • Fisher, R.A.1
  • 215
    • 78149293310 scopus 로고    scopus 로고
    • Multi-label linear discriminant analysis
    • Lecture Notes in Computer Science, Berlin/Heidelberg: Springer
    • Wang H, Ding C, Huang H. Multi-label linear discriminant analysis. In: Computer Vision-ECCV 2010, Lecture Notes in Computer Science, vol. 6316, Berlin/Heidelberg: Springer; 2010, 126-139.
    • (2010) Computer Vision-ECCV 2010 , vol.6316 , pp. 126-139
    • Wang, H.1    Ding, C.2    Huang, H.3
  • 216
    • 40849120440 scopus 로고    scopus 로고
    • On applying linear discriminant analysis for multi-labeled problems
    • Park CH, Lee M. On applying linear discriminant analysis for multi-labeled problems. Pattern Recogn Lett 2008, 29:878-887.
    • (2008) Pattern Recogn Lett , vol.29 , pp. 878-887
    • Park, C.H.1    Lee, M.2
  • 223
    • 84858826037 scopus 로고    scopus 로고
    • Improving multi-label classifiers via label reduction with association rules
    • Lecture Notes in Computer Science. Berlin/Heidelberg: Springer
    • Charte F, Rivera A, del Jesus M, Herrera F. Improving multi-label classifiers via label reduction with association rules. In: Hybrid Artificial Intelligent Systems, Lecture Notes in Computer Science, vol. 7209. Berlin/Heidelberg: Springer; 2012, 188-199.
    • (2012) Hybrid Artificial Intelligent Systems , vol.7209 , pp. 188-199
    • Charte, F.1    Rivera, A.2    del Jesus, M.3    Herrera, F.4
  • 224
    • 2442449952 scopus 로고    scopus 로고
    • Mining frequent patterns without candidate generation: a frequent-pattern tree approach
    • Han J, Pei J, Yin Y, Mao R. Mining frequent patterns without candidate generation: a frequent-pattern tree approach. Data Min Knowl Discov 2004, 8:53-87.
    • (2004) Data Min Knowl Discov , vol.8 , pp. 53-87
    • Han, J.1    Pei, J.2    Yin, Y.3    Mao, R.4
  • 225
    • 78649325096 scopus 로고    scopus 로고
    • Canonical correlation analysis for multilabel classification: a least-squares formulation, extensions, and analysis
    • Sun L, Ji S, Ye J. Canonical correlation analysis for multilabel classification: a least-squares formulation, extensions, and analysis. IEEE Trans Pattern Anal Mach Intell 2011, 33:194-200.
    • (2011) IEEE Trans Pattern Anal Mach Intell , vol.33 , pp. 194-200
    • Sun, L.1    Ji, S.2    Ye, J.3
  • 230
    • 84865269277 scopus 로고    scopus 로고
    • Multi-instance multi-label learning based on Gaussian process with application to visual mobile robot navigation
    • He J, Gu H, Wang Z. Multi-instance multi-label learning based on Gaussian process with application to visual mobile robot navigation. Inform Sci 2012, 190:162-177.
    • (2012) Inform Sci , vol.190 , pp. 162-177
    • He, J.1    Gu, H.2    Wang, Z.3
  • 231
    • 84864028262 scopus 로고    scopus 로고
    • Multi-instance multi-label learning with application to scene classification
    • Zhou ZH, Zhang ML. Multi-instance multi-label learning with application to scene classification. In: NIPS; 2006, 1609-1616.
    • (2006) NIPS , pp. 1609-1616
    • Zhou, Z.H.1    Zhang, M.L.2
  • 232
    • 7444219637 scopus 로고    scopus 로고
    • Logistic regression and boosting for labeled bags of instances
    • Lecture Notes in Computer Science. Berlin/Heidelberg: Springer
    • Xu X, Frank E. Logistic regression and boosting for labeled bags of instances. In: Advances in Knowledge Discovery and Data Mining, Lecture Notes in Computer Science, vol. 3056, Berlin/Heidelberg: Springer; 2004, 272-281.
    • (2004) Advances in Knowledge Discovery and Data Mining , vol.3056 , pp. 272-281
    • Xu, X.1    Frank, E.2
  • 233
    • 84884945309 scopus 로고    scopus 로고
    • Sparse-MIML: a sparsity-based multi-instance multi-learning algorithm
    • Lecture Notes in Computer Science
    • Shen C, Jing L, Ng M. Sparse-MIML: a sparsity-based multi-instance multi-learning algorithm. In: Energy Minimization Methods in Computer Vision and Pattern Recognition, Lecture Notes in Computer Science, vol. 8081; 2013, 294-306.
    • (2013) Energy Minimization Methods in Computer Vision and Pattern Recognition , vol.8081 , pp. 294-306
    • Shen, C.1    Jing, L.2    Ng, M.3
  • 235
    • 69249202332 scopus 로고    scopus 로고
    • MIMLRBF: RBF neural networks for multi-instance multi-label learning
    • Zhang ML, Wang ZJ. MIMLRBF: RBF neural networks for multi-instance multi-label learning. Neurocomputing 2009, 72:3951-3956.
    • (2009) Neurocomputing , vol.72 , pp. 3951-3956
    • Zhang, M.L.1    Wang, Z.J.2
  • 237
    • 84863338235 scopus 로고    scopus 로고
    • Dirichlet-Bernoulli alignment: a generative model for multi-class multi-label multi-instance corpora
    • Vancouver, British Columbia, Canada
    • Yang SH, Zha H, Hu BG. Dirichlet-Bernoulli alignment: a generative model for multi-class multi-label multi-instance corpora. In: Annual Conference on Neural Information Processing Systems, Vancouver, British Columbia, Canada; 2009, 2143-2150.
    • (2009) Annual Conference on Neural Information Processing Systems , pp. 2143-2150
    • Yang, S.H.1    Zha, H.2    Hu, B.G.3
  • 240
    • 38249011246 scopus 로고
    • Krylov-subspace methods for the Sylvester equation
    • Hu DY, Reichel L. Krylov-subspace methods for the Sylvester equation. Linear Algebra Appl 1992, 172:283-313.
    • (1992) Linear Algebra Appl , vol.172 , pp. 283-313
    • Hu, D.Y.1    Reichel, L.2
  • 241
    • 60649094696 scopus 로고    scopus 로고
    • Graph-based semi-supervised learning with multiple labels (special issue on emerging techniques for multimedia content sharing, search and understanding)
    • Zha ZJ, Mei T, Wang J, Wang Z, Hua XS. Graph-based semi-supervised learning with multiple labels (special issue on emerging techniques for multimedia content sharing, search and understanding). Journal of Visual Communication and Image Representation 2009, 20:97-103.
    • (2009) Journal of Visual Communication and Image Representation , vol.20 , pp. 97-103
    • Zha, Z.J.1    Mei, T.2    Wang, J.3    Wang, Z.4    Hua, X.S.5
  • 244
    • 41549144249 scopus 로고    scopus 로고
    • Optimization techniques for semisupervised support vector machines
    • Chapelle O, Sindhwaniand V, Keerthi SS. Optimization techniques for semisupervised support vector machines. J Mach Learn Res 2008, 9:203-233.
    • (2008) J Mach Learn Res , vol.9 , pp. 203-233
    • Chapelle, O.1    Sindhwaniand, V.2    Keerthi, S.S.3
  • 246
    • 69549086366 scopus 로고    scopus 로고
    • Two-dimensional multilabel active learning with an efficient online adaptation model for image classification
    • Qi GJ, Hua XS, Rui Y, Tang J, Zhang HJ. Two-dimensional multilabel active learning with an efficient online adaptation model for image classification. IEEE Trans Pattern Anal Mach Intell 2009, 31:1880-1897.
    • (2009) IEEE Trans Pattern Anal Mach Intell , vol.31 , pp. 1880-1897
    • Qi, G.J.1    Hua, X.S.2    Rui, Y.3    Tang, J.4    Zhang, H.J.5
  • 249
    • 67650703463 scopus 로고    scopus 로고
    • Active learning strategies for multi-label text classification
    • Lecture Notes in Computer Science, Berlin/Heidelberg: Springer
    • Esuli A, Sebastiani F. Active learning strategies for multi-label text classification. In: Advances in Information Retrieval, Lecture Notes in Computer Science, vol. 5478. Berlin/Heidelberg: Springer; 2009, 102-113.
    • (2009) Advances in Information Retrieval , vol.5478 , pp. 102-113
    • Esuli, A.1    Sebastiani, F.2
  • 250
    • 70649092958 scopus 로고    scopus 로고
    • Mining multi-label concept-drifting data streams using dynamic classifier ensemble
    • Lecture Notes in Computer Science, Berlin/Heidelberg: Springer
    • Qu W, Zhang Y, Zhu J, Qiu Q. Mining multi-label concept-drifting data streams using dynamic classifier ensemble. In: Advances in Machine Learning, Lecture Notes in Computer Science, vol. 5828, Berlin/Heidelberg: Springer; 2009, 308-321.
    • (2009) Advances in Machine Learning , vol.5828 , pp. 308-321
    • Qu, W.1    Zhang, Y.2    Zhu, J.3    Qiu, Q.4
  • 255
    • 0034069495 scopus 로고    scopus 로고
    • Gene ontology: tool for the unification of biology
    • The Gene Ontology Consortium
    • The Gene Ontology Consortium. Gene ontology: tool for the unification of biology. Nat Genet 2000, 25:25-29.
    • (2000) Nat Genet , vol.25 , pp. 25-29
  • 259
    • 25844463253 scopus 로고    scopus 로고
    • Machine learning and data mining for yeast functional genomics
    • PhD Thesis, University of Wales
    • Clare A. Machine learning and data mining for yeast functional genomics. PhD Thesis, University of Wales, 2003.
    • (2003)
    • Clare, A.1
  • 261
    • 33750303526 scopus 로고    scopus 로고
    • TreeBoost.MH: a boosting algorithm for multi-label hierarchical text categorization
    • Lecture Notes in Computer Science. Berlin/Heidelberg: Springer
    • Esuli A, Fagni T, Sebastiani F. TreeBoost.MH: a boosting algorithm for multi-label hierarchical text categorization. In: String Processing and Information Retrieval (SPIRE), Lecture Notes in Computer Science, vol. 4209. Berlin/Heidelberg: Springer; 2006, 13-24.
    • (2006) String Processing and Information Retrieval (SPIRE) , vol.4209 , pp. 13-24
    • Esuli, A.1    Fagni, T.2    Sebastiani, F.3
  • 262
    • 78649318170 scopus 로고    scopus 로고
    • Multi-label classification and extracting predicted class hierarchies
    • Brucker F, Benites F, Sapozhnikova E. Multi-label classification and extracting predicted class hierarchies. Pattern Recogn 2010, 44:724-738.
    • (2010) Pattern Recogn , vol.44 , pp. 724-738
    • Brucker, F.1    Benites, F.2    Sapozhnikova, E.3
  • 264
    • 77957042586 scopus 로고    scopus 로고
    • Undersampling approach for imbalanced training sets and induction from multi-label text-categorization domains
    • LNCS. Berlin/Heidelberg: Springer
    • Dendamrongvit S, Kubat M. Undersampling approach for imbalanced training sets and induction from multi-label text-categorization domains. In: New Frontiers in Applied Data Mining, LNCS, vol. 5669. Berlin/Heidelberg: Springer; 2010, 40-52.
    • (2010) New Frontiers in Applied Data Mining , vol.5669 , pp. 40-52
    • Dendamrongvit, S.1    Kubat, M.2
  • 265
    • 84855780778 scopus 로고    scopus 로고
    • Multilabel classification using heterogeneous ensemble of multi-label classifiers
    • Tahir MA, Kittler J, Bouridane A. Multilabel classification using heterogeneous ensemble of multi-label classifiers. Pattern Recogn Lett 2012, 33:513-523.
    • (2012) Pattern Recogn Lett , vol.33 , pp. 513-523
    • Tahir, M.A.1    Kittler, J.2    Bouridane, A.3
  • 269
    • 84865223006 scopus 로고    scopus 로고
    • On label dependence and loss minimization in multi-label classification
    • Dembczyński K, Waegeman W, Cheng W, Hüllermeier E. On label dependence and loss minimization in multi-label classification. Mach Learn 2012, 88:5-45.
    • (2012) Mach Learn , vol.88 , pp. 5-45
    • Dembczyński, K.1    Waegeman, W.2    Cheng, W.3    Hüllermeier, E.4
  • 270
    • 84912087144 scopus 로고    scopus 로고
    • Advances in multi-label classification. Available at:
    • Read J. Advances in multi-label classification. Available at: http://users.ics.aalto.fi/jesse/talks/Charla-Malaga.pdf. (2011).
    • (2011)
    • Read, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.