메뉴 건너뛰기




Volumn 11, Issue 1, 2011, Pages 93-102

Multiple instance learning with multiple objective genetic programming for web mining

Author keywords

Genetic programming; Multi instance learning; Multi objective learning; Web Mining

Indexed keywords

COMPUTATIONAL EXPERIMENT; GRAMMAR-BASED GENETIC PROGRAMMING; KNOWLEDGE DISCOVERY PROCESS; MULTI OBJECTIVE; MULTI-INSTANCE LEARNING; MULTI-OBJECTIVE LEARNING; MULTIPLE INSTANCE LEARNING; MULTIPLE OBJECTIVES; OTHER ALGORITHMS; SENSITIVITY AND SPECIFICITY; WEB MINING;

EID: 77957910163     PISSN: 15684946     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.asoc.2009.10.021     Document Type: Article
Times cited : (22)

References (54)
  • 1
    • 20844435854 scopus 로고    scopus 로고
    • Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions
    • G. Adomavicius, and A. Tuzhilin Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions IEEE Transactions on Knowledge and Data Engineering 17 6 2005 734 749
    • (2005) IEEE Transactions on Knowledge and Data Engineering , vol.17 , Issue.6 , pp. 734-749
    • Adomavicius, G.1    Tuzhilin, A.2
  • 5
    • 15544389390 scopus 로고    scopus 로고
    • Multi-instance learning based web mining
    • Z.-H. Zhou, K. Jiang, and M. Li Multi-instance learning based web mining Applied Intelligence 22 2 2005 135 147
    • (2005) Applied Intelligence , vol.22 , Issue.2 , pp. 135-147
    • Zhou, Z.-H.1    Jiang, K.2    Li, M.3
  • 7
    • 0002409860 scopus 로고    scopus 로고
    • A probabilistic analysis of the rocchio algorithm with tfidf for text categorization
    • T. Joachims A probabilistic analysis of the rocchio algorithm with tfidf for text categorization D.H. Fisher, Proceedings of ICML-97, 14th International Conference on Machine Learning 1997 Morgan Kaufmann Publishers San Francisco, US/Nashville, US 143 151
    • (1997) Proceedings of ICML-97, 14th International Conference on Machine Learning , pp. 143-151
    • Joachims, T.1
  • 11
    • 0030649484 scopus 로고    scopus 로고
    • Solving the multiple instance problem with axis-parallel rectangles
    • T.G. Dietterich, R.H. Lathrop, and T. Lozano-Perez Solving the multiple instance problem with axis-parallel rectangles Artifical Intelligence 89 1-2 1997 31 71
    • (1997) Artifical Intelligence , vol.89 , Issue.12 , pp. 31-71
    • Dietterich, T.G.1    Lathrop, R.H.2    Lozano-Perez, T.3
  • 12
    • 9444267142 scopus 로고    scopus 로고
    • A two-level learning method for generalized multi-instance problems
    • N. Weidmann, E. Frank, and B. Pfahringer A two-level learning method for generalized multi-instance problems ECML 2003 468 479
    • (2003) ECML , pp. 468-479
    • Weidmann, N.1    Frank, E.2    Pfahringer, B.3
  • 17
    • 33947396751 scopus 로고    scopus 로고
    • Solving multi-instance problems with classifier ensemble based on constructive clustering
    • Z.-H. Zhou, and M.-L. Zhang Solving multi-instance problems with classifier ensemble based on constructive clustering Knowledgement Information System 11 2 2007 155 170
    • (2007) Knowledgement Information System , vol.11 , Issue.2 , pp. 155-170
    • Zhou, Z.-H.1    Zhang, M.-L.2
  • 21
    • 33750284913 scopus 로고    scopus 로고
    • Incorporating multiple svms for automatic image annotation
    • X. Qi, and Y. Han Incorporating multiple svms for automatic image annotation Pattern Recognition 40 2 2007 728 741
    • (2007) Pattern Recognition , vol.40 , Issue.2 , pp. 728-741
    • Qi, X.1    Han, Y.2
  • 25
    • 0013465187 scopus 로고    scopus 로고
    • Automatic discovery of subgoals in reinforcement learning using diverse density
    • San Francisco, CA, USA Morgan Kaufmann Publishers Inc.
    • A. McGovern, and A.G. Barto Automatic discovery of subgoals in reinforcement learning using diverse density ICML'01: Proceedings of the Eighteenth International Conference on Machine Learning San Francisco, CA, USA 2001 Morgan Kaufmann Publishers Inc. 361 368
    • (2001) ICML'01: Proceedings of the Eighteenth International Conference on Machine Learning , pp. 361-368
    • McGovern, A.1    Barto, A.G.2
  • 26
    • 45049085740 scopus 로고    scopus 로고
    • An em based multiple instance learning method for image classification
    • H.T. Pao, S.C. Chuang, Y.Y. Xu, and H. Fu An em based multiple instance learning method for image classification Expert Systems with Applications 35 3 2008 1468 1472
    • (2008) Expert Systems with Applications , vol.35 , Issue.3 , pp. 1468-1472
    • Pao, H.T.1    Chuang, S.C.2    Xu, Y.Y.3    Fu, H.4
  • 31
    • 1642357513 scopus 로고    scopus 로고
    • Improve multi-instance neural networks through feature selection
    • M.-L. Zhang, and Z.-H. Zhou Improve multi-instance neural networks through feature selection Neural Processing Letters 19 1 2004 1 10
    • (2004) Neural Processing Letters , vol.19 , Issue.1 , pp. 1-10
    • Zhang, M.-L.1    Zhou, Z.-H.2
  • 33
    • 31444436020 scopus 로고    scopus 로고
    • Adapting rbf neural networks to multi-instance learning
    • M.-L. Zhang, and Z.-H. Zhou Adapting rbf neural networks to multi-instance learning Neural Processing Letters 23 1 2006 1 26
    • (2006) Neural Processing Letters , vol.23 , Issue.1 , pp. 1-26
    • Zhang, M.-L.1    Zhou, Z.-H.2
  • 36
    • 84863161940 scopus 로고    scopus 로고
    • Image categorization by learning and reasoning with regions
    • Y. Chen, and J.Z. Wang Image categorization by learning and reasoning with regions Journal of Machine Learning Research 5 2004 913 939
    • (2004) Journal of Machine Learning Research , vol.5 , pp. 913-939
    • Chen, Y.1    Wang, J.Z.2
  • 40
    • 0002442796 scopus 로고    scopus 로고
    • Machine learning in automated text categorization
    • F. Sebastiani Machine learning in automated text categorization ACM Computing Surveys 34 1 2002 1 7
    • (2002) ACM Computing Surveys , vol.34 , Issue.1 , pp. 1-7
    • Sebastiani, F.1
  • 41
  • 43
    • 33947639608 scopus 로고    scopus 로고
    • On finding multiple pareto-optimal solutions using classical and evolutionary generating methods
    • P.K. Shukla, and K. Deb On finding multiple pareto-optimal solutions using classical and evolutionary generating methods European Journal of Operational Research 181 3 2007 1630 1652
    • (2007) European Journal of Operational Research , vol.181 , Issue.3 , pp. 1630-1652
    • Shukla, P.K.1    Deb, K.2
  • 44
    • 33947098434 scopus 로고    scopus 로고
    • Multiobjective constrained optimal synthesis of planar mechanisms using anew evolutionary algorithm
    • J.A. Cabrera, F. Nadal, J.P. Munnoz, and A. Simon Multiobjective constrained optimal synthesis of planar mechanisms using anew evolutionary algorithm Mechanism and Machine Theory 42 7 2007 791 806
    • (2007) Mechanism and Machine Theory , vol.42 , Issue.7 , pp. 791-806
    • Cabrera, J.A.1    Nadal, F.2    Munnoz, J.P.3    Simon, A.4
  • 52
    • 0004140075 scopus 로고    scopus 로고
    • SPEA2: Improving the Strength Pareto Evolutionary Algorithm
    • Gloriastrasse 35, CH-8092 Zurich, Switzerland
    • E. Zitzler, M. Laumanns, L. Thiele, SPEA2: Improving the Strength Pareto Evolutionary Algorithm, Tech. Rep. 103, Gloriastrasse 35, CH-8092 Zurich, Switzerland, 2001.
    • (2001) Tech. Rep. , vol.103
    • Zitzler, E.1    Laumanns, M.2    Thiele, L.3
  • 53
    • 35748982409 scopus 로고    scopus 로고
    • JCLEC: A Java framework for evolutionary computation soft computing
    • S. Ventura, C. Romero, A. Zafra, J.A. Delgado, and C. Hervas JCLEC: a Java framework for evolutionary computation soft computing Soft Computing 4 12 2008 381 392
    • (2008) Soft Computing , vol.4 , Issue.12 , pp. 381-392
    • Ventura, S.1    Romero, C.2    Zafra, A.3    Delgado, J.A.4    Hervas, C.5
  • 54
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • J. Demsar Statistical comparisons of classifiers over multiple data sets Journal of Machine Learning Research 7 2006 1 30 (Pubitemid 43022939)
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demsar, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.