메뉴 건너뛰기




Volumn 44, Issue 10-11, 2011, Pages 2274-2286

A transductive multi-label learning approach for video concept detection

Author keywords

Multi label interdependence; Transductive learning; Video concept detection

Indexed keywords

CLASSIFICATION APPROACH; DATA SETS; INTEGRATED APPROACH; LEARNING APPROACH; MULTI-LABEL; TRANSDUCTIVE LEARNING; TRECVID; VIDEO CONCEPT DETECTION;

EID: 79958844204     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2010.07.015     Document Type: Article
Times cited : (51)

References (40)
  • 1
    • 33749256006 scopus 로고    scopus 로고
    • Maximum margin semi-supervised learning for structured variables
    • Y. Altun, D.A. McAllester, and M. Belkin Maximum margin semi-supervised learning for structured variables NIPS 2005
    • (2005) NIPS
    • Altun, Y.1    McAllester, D.A.2    Belkin, M.3
  • 2
    • 33750729556 scopus 로고    scopus 로고
    • Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
    • M. Belkin, P. Niyogi, and V. Sindhwani Manifold regularization: a geometric framework for learning from labeled and unlabeled examples Journal of Machine Learning Research 7 2006 2399 2434 (Pubitemid 44708005)
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 2399-2434
    • Belkin, M.1    Niyogi, P.2    Sindhwani, V.3
  • 3
    • 84898958346 scopus 로고    scopus 로고
    • Semi-supervised support vector machines
    • K.P. Bennett, and A. Demiriz Semi-supervised support vector machines NIPS 1998 368 374
    • (1998) NIPS , pp. 368-374
    • Bennett, K.P.1    Demiriz, A.2
  • 4
    • 4344598245 scopus 로고    scopus 로고
    • An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision
    • Y. Boykov, and V. Kolmogorov An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision IEEE Transactions on Pattern Analysis and Machine Intelligence 26 9 2004 1124 1137
    • (2004) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.26 , Issue.9 , pp. 1124-1137
    • Boykov, Y.1    Kolmogorov, V.2
  • 5
    • 34250753883 scopus 로고    scopus 로고
    • Semi-supervised learning for structured output variables
    • U. Brefeld, and T. Scheffer Semi-supervised learning for structured output variables ICML 2006 145 152
    • (2006) ICML , pp. 145-152
    • Brefeld, U.1    Scheffer, T.2
  • 6
    • 32844455952 scopus 로고    scopus 로고
    • Cluster kernels for semi-supervised learning
    • O. Chapelle, J. Weston, and B. Schölkopf Cluster kernels for semi-supervised learning NIPS 2002 585 592
    • (2002) NIPS , pp. 585-592
    • Chapelle, O.1    Weston, J.2    Schölkopf, B.3
  • 7
    • 52649118114 scopus 로고    scopus 로고
    • Semi-supervised multi-label learning by solving a sylvester equation
    • G. Chen, Y. Song, F. Wang, and C. Zhang Semi-supervised multi-label learning by solving a sylvester equation SDM 2008
    • (2008) SDM
    • Chen, G.1    Song, Y.2    Wang, F.3    Zhang, C.4
  • 10
    • 25844482570 scopus 로고    scopus 로고
    • A comparison of algorithms for inference and learning in probabilistic graphical models
    • DOI 10.1109/TPAMI.2005.169
    • B.J. Frey, and N. Jojic A comparison of algorithms for inference and learning in probabilistic graphical models IEEE Transactions on Pattern Analysis and Machine Intelligence 27 9 2005 1392 1416 (Pubitemid 41387772)
    • (2005) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.27 , Issue.9 , pp. 1392-1416
    • Frey, B.J.1    Jojic, N.2
  • 11
    • 37849005540 scopus 로고    scopus 로고
    • Active context-based concept fusion with partial user labels
    • W. Jiang, S.-F. Chang, and A.C. Loui Active context-based concept fusion with partial user labels ICIP 2006 2917 2920
    • (2006) ICIP , pp. 2917-2920
    • Jiang, W.1    Chang, S.-F.2    Loui, A.C.3
  • 12
    • 1942483137 scopus 로고    scopus 로고
    • Transductive inference for text classification using support vector machines
    • T. Joachims Transductive inference for text classification using support vector machines ICML 1999 200 209
    • (1999) ICML , pp. 200-209
    • Joachims, T.1
  • 13
    • 33750129298 scopus 로고    scopus 로고
    • Convergent tree-reweighted message passing for energy minimization
    • DOI 10.1109/TPAMI.2006.200
    • V. Kolmogorov Convergent tree-reweighted message passing for energy minimization IEEE Transactions on Pattern Analysis and Machine Intelligence 28 10 2006 1568 1583 (Pubitemid 46405078)
    • (2006) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.28 , Issue.10 , pp. 1568-1583
    • Kolmogorov, V.1
  • 15
    • 84864032258 scopus 로고    scopus 로고
    • Learning to model spatial dependency: Semi-supervised discriminative random fields
    • C.-H. Lee, S. Wang, F. Jiao, D. Schuurmans, and R. Greiner Learning to model spatial dependency: semi-supervised discriminative random fields NIPS 2006 793 800
    • (2006) NIPS , pp. 793-800
    • Lee, C.-H.1    Wang, S.2    Jiao, F.3    Schuurmans, D.4    Greiner, R.5
  • 16
    • 70350647018 scopus 로고    scopus 로고
    • Semi-supervised multi-label learning by constrained non-negative matrix factorization
    • Y. Liu, R. Jin, and L. Yang Semi-supervised multi-label learning by constrained non-negative matrix factorization AAAI 2006
    • (2006) AAAI
    • Liu, Y.1    Jin, R.2    Yang, L.3
  • 18
    • 0041875229 scopus 로고    scopus 로고
    • On spectral clustering: Analysis and an algorithm
    • A.Y. Ng, M.I. Jordan, and Y. Weiss On spectral clustering: analysis and an algorithm NIPS 2001 849 856
    • (2001) NIPS , pp. 849-856
    • Ng, A.Y.1    Jordan, M.I.2    Weiss, Y.3
  • 20
    • 33845530850 scopus 로고    scopus 로고
    • Semi-automatic video annotation based on active learning with multiple complementary predictors
    • Y. Song, X.-S. Hua, L.-R. Dai, and M. Wang Semi-automatic video annotation based on active learning with multiple complementary predictors Multimedia Information Retrieval 2005 97 104
    • (2005) Multimedia Information Retrieval , pp. 97-104
    • Song, Y.1    Hua, X.-S.2    Dai, L.-R.3    Wang, M.4
  • 21
    • 0041965980 scopus 로고    scopus 로고
    • Cluster ensembles - A knowledge reuse framework for combining multiple partitions
    • A. Strehl, and J. Ghosh Cluster ensembles - a knowledge reuse framework for combining multiple partitions Journal of Machine Learning Research 3 2002 583 617
    • (2002) Journal of Machine Learning Research , vol.3 , pp. 583-617
    • Strehl, A.1    Ghosh, J.2
  • 22
    • 34247261088 scopus 로고    scopus 로고
    • Video annotation based on temporally consistent Gaussian random field
    • J. Tang, X.-S. Hua, T. Mei, G.-J. Qi, and X. Wu Video annotation based on temporally consistent Gaussian random field Electronics Letters 43 8 2007
    • (2007) Electronics Letters , vol.43 , Issue.8
    • Tang, J.1    Hua, X.-S.2    Mei, T.3    Qi, G.-J.4    Wu, X.5
  • 23
    • 37849052258 scopus 로고    scopus 로고
    • Structure-sensitive manifold ranking for video concept detection
    • J. Tang, X.-S. Hua, G.-J. Qi, M. Wang, T. Mei, and X. Wu Structure-sensitive manifold ranking for video concept detection ACM Multimedia 2007 852 861
    • (2007) ACM Multimedia , pp. 852-861
    • Tang, J.1    Hua, X.-S.2    Qi, G.-J.3    Wang, M.4    Mei, T.5    Wu, X.6
  • 24
    • 79958798934 scopus 로고    scopus 로고
    • TRECVID2005
    • TRECVID2005, 2005. 〈 http://www-nlpir.nist.gov/projects/trecvid/ 〉.
    • (2005)
  • 27
    • 37849049900 scopus 로고    scopus 로고
    • Optimizing multi-graph learning: Towards a unified video annotation scheme
    • M. Wang, X.-S. Hua, X. Yuan, Y. Song, and L.-R. Dai Optimizing multi-graph learning: towards a unified video annotation scheme ACM Multimedia 2007 862 871
    • (2007) ACM Multimedia , pp. 862-871
    • Wang, M.1    Hua, X.-S.2    Yuan, X.3    Song, Y.4    Dai, L.-R.5
  • 32
    • 54049147025 scopus 로고    scopus 로고
    • Graph-based semi-supervised learning with multi-label
    • Z.-J. Zha, T. Mei, J. Wang, Z. Wang, and X.-S. Hua Graph-based semi-supervised learning with multi-label ICME 2008 1321 1324
    • (2008) ICME , pp. 1321-1324
    • Zha, Z.-J.1    Mei, T.2    Wang, J.3    Wang, Z.4    Hua, X.-S.5
  • 34
    • 33947681316 scopus 로고    scopus 로고
    • ML-KNN: A lazy learning approach to multi-label learning
    • DOI 10.1016/j.patcog.2006.12.019, PII S0031320307000027
    • M.-L. Zhang, and Z.-H. Zhou ML-KNN: a lazy learning approach to multi-label learning Pattern Recognition 40 7 2007 2038 2048 (Pubitemid 46497248)
    • (2007) Pattern Recognition , vol.40 , Issue.7 , pp. 2038-2048
    • Zhang, M.-L.1    Zhou, Z.-H.2
  • 37
    • 77956708689 scopus 로고    scopus 로고
    • Semi-supervised learning by disagreement
    • doi:10.1007/s10115-009-0209-z
    • Z.-H. Zhou, M. Li, Semi-supervised learning by disgreement. Knowledge and Information Systems, 2010, doi:10.1007/s10115-009-0209-z.
    • (2010) Knowledge and Information Systems
    • Zhou, Z.-H.1    Li, M.2
  • 39
    • 1942484430 scopus 로고    scopus 로고
    • Semi-supervised learning using Gaussian fields and harmonic functions
    • X. Zhu, Z. Ghahramani, and J. Lafferty Semi-supervised learning using Gaussian fields and harmonic functions ICML 2003 912 919
    • (2003) ICML , pp. 912-919
    • Zhu, X.1    Ghahramani, Z.2    Lafferty, J.3
  • 40
    • 34547990643 scopus 로고    scopus 로고
    • Transductive support vector machines for structured variables
    • A. Zien, U. Brefeld, and T. Scheffer Transductive support vector machines for structured variables ICML 2007 1183 1190
    • (2007) ICML , pp. 1183-1190
    • Zien, A.1    Brefeld, U.2    Scheffer, T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.