메뉴 건너뛰기




Volumn 22, Issue 5, 2008, Pages 407-432

Induction from multi-label examples in information retrieval systems: A case study

Author keywords

[No Author keywords available]

Indexed keywords

(SPM) CLASSES; CASE STUDIES; CLASSIFICATION PERFORMANCE; COMPUTATIONAL COSTS; COMPUTATIONAL SAVINGS; DEMPSTER-SHAFER THEORY (DST); FEATURE SUBSETS; INDUCTION ALGORITHMS; MACHINE LEARNING TECHNIQUES; RETRIEVAL SYSTEMS;

EID: 46149105706     PISSN: 08839514     EISSN: 10876545     Source Type: Journal    
DOI: 10.1080/08839510801972827     Document Type: Article
Times cited : (16)

References (50)
  • 1
    • 4344710606 scopus 로고    scopus 로고
    • A new technique for combining multiple classifiers using the Dempster-Shafer theory of evidence
    • Al-Ani, A. and M. Deriche. 2002. A new technique for combining multiple classifiers using the Dempster-Shafer theory of evidence. Journal of Artificial Intelligence Research 17:333-361.
    • (2002) Journal of Artificial Intelligence Research , vol.17 , pp. 333-361
    • Al-Ani, A.1    Deriche, M.2
  • 2
    • 0031274825 scopus 로고    scopus 로고
    • Data mining with decision trees and decision rules
    • Apte, C. and S. Weiss. 1997. Data mining with decision trees and decision rules. Future Generation Computer Systems 13:197-210.
    • (1997) Future Generation Computer Systems , vol.13 , pp. 197-210
    • Apte, C.1    Weiss, S.2
  • 4
    • 22044453925 scopus 로고    scopus 로고
    • The combination of text classifiers using reliability indicators
    • Bennett, P. N., S. T. Dumais, and E. Horvitz. 2005. The combination of text classifiers using reliability indicators. Information Retrieval 8:67-100.
    • (2005) Information Retrieval , vol.8 , pp. 67-100
    • Bennett, P.N.1    Dumais, S.T.2    Horvitz, E.3
  • 8
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L. 1996. Bagging predictors. Machine Learning 24:123-140.
    • (1996) Machine Learning , vol.24 , pp. 123-140
    • Breiman, L.1
  • 12
    • 46149090721 scopus 로고    scopus 로고
    • De Comité, F., R. Gilleron, and M. Tommasi. 2001. Learning multi-label alternating decision trees and applications. In: Proc. Conf. en Apprentissage Automatique (CAP'01), 195-210.
    • De Comité, F., R. Gilleron, and M. Tommasi. 2001. Learning multi-label alternating decision trees and applications. In: Proc. Conf. en Apprentissage Automatique (CAP'01), 195-210.
  • 13
    • 8344282787 scopus 로고    scopus 로고
    • De Comité, F., R. Gilleron, and M. Tommasi. 2003. Learning multi-label alternating decision trees from texts and data. In: Proc. Int'l Conf. on Machine Learning and Data Mining (MLDM'03), 35-49, Leipzig, Germany.
    • De Comité, F., R. Gilleron, and M. Tommasi. 2003. Learning multi-label alternating decision trees from texts and data. In: Proc. Int'l Conf. on Machine Learning and Data Mining (MLDM'03), 35-49, Leipzig, Germany.
  • 14
    • 0036945966 scopus 로고    scopus 로고
    • Boosting simple decision trees with Bayesian learning for text categorization
    • Shanghai, PR China
    • Diao, L., K. Hu, Y. Lu, and C. Shi. 2002. Boosting simple decision trees with Bayesian learning for text categorization. In: Proc. World Congress on Intelligent Control and Automation Shanghai, PR China, 321-325.
    • (2002) Proc. World Congress on Intelligent Control and Automation , pp. 321-325
    • Diao, L.1    Hu, K.2    Lu, Y.3    Shi, C.4
  • 16
    • 58149321460 scopus 로고
    • Boosting a weak learning algorithm by majority
    • Freund, Y. 1995. Boosting a weak learning algorithm by majority. Information and Computation 121: 256-285.
    • (1995) Information and Computation , vol.121 , pp. 256-285
    • Freund, Y.1
  • 17
    • 0006452367 scopus 로고    scopus 로고
    • The alternating decision tree learning algorithm
    • San Francisco, CA: Morgan Kaufmann
    • Freund, Y. and L. Mason. 1999. The alternating decision tree learning algorithm. In: Proc. Int'l Conf. on Machine Learning (ICML'99), 124-133. San Francisco, CA: Morgan Kaufmann.
    • (1999) Proc. Int'l Conf. on Machine Learning (ICML'99) , pp. 124-133
    • Freund, Y.1    Mason, L.2
  • 19
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Freund, Y. and R. E. Schapire. 1997. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences 55:119-139.
    • (1997) Journal of Computer and System Sciences , vol.55 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 21
    • 0036895475 scopus 로고    scopus 로고
    • Hyperlink ensembles: A case study in hypertext classification
    • Fürnkranz, J. 2002. Hyperlink ensembles: A case study in hypertext classification. Information Fusion 3:299-312.
    • (2002) Information Fusion , vol.3 , pp. 299-312
    • Fürnkranz, J.1
  • 22
    • 14344255188 scopus 로고    scopus 로고
    • A MFoM learning approach to robust multiclass multi-label text categorization
    • Alberta, Canada
    • Gao, S., W. Wu, C.-H. Lee, and T.-S. Chua. 2004. A MFoM learning approach to robust multiclass multi-label text categorization. In: Proc. Int'l Conf. on Machine Learning (ICML'04), 329-336, Alberta, Canada.
    • (2004) Proc. Int'l Conf. on Machine Learning (ICML'04) , pp. 329-336
    • Gao, S.1    Wu, W.2    Lee, C.-H.3    Chua, T.-S.4
  • 25
    • 84957069814 scopus 로고    scopus 로고
    • Text categorization with support vector machines: Learning with many relevant features
    • eds. C. Nédellec and C. Rouveirol, Chemnitz, DE, Heidelberg, DE: Springer Verlag
    • Joachims, T. 1998. Text categorization with support vector machines: learning with many relevant features. In: Proc. European Conf. on Machine Learning (ECML'98), eds. C. Nédellec and C. Rouveirol 137-142. Number 1398, Chemnitz, DE, Heidelberg, DE: Springer Verlag.
    • (1998) Proc. European Conf. on Machine Learning (ECML'98) , Issue.1398 , pp. 137-142
    • Joachims, T.1
  • 26
    • 46149086948 scopus 로고    scopus 로고
    • A reduction technique for nearest-neighbor classification: Small groups of examples
    • Kubat, M. and J. M. Cooperson. 2001. A reduction technique for nearest-neighbor classification: Small groups of examples. Intelligent Data Analysis 5:463-476.
    • (2001) Intelligent Data Analysis , vol.5 , pp. 463-476
    • Kubat, M.1    Cooperson, J.M.2
  • 30
    • 12744267752 scopus 로고    scopus 로고
    • An adaptive k-nearest neighbor text categorization strategy
    • New York, New York, USA
    • Li, B., Q. Lu, and S. Yu. 2004. An adaptive k-nearest neighbor text categorization strategy. ACM Trans. on Asian Language Information Processing (TALIP) 3:215-226, New York, New York, USA.
    • (2004) ACM Trans. on Asian Language Information Processing (TALIP) , vol.3 , pp. 215-226
    • Li, B.1    Lu, Q.2    Yu, S.3
  • 32
    • 84947791171 scopus 로고    scopus 로고
    • Multiple classifier combination for character recognition: Revisiting the majority voting system and its variations
    • Rahman, A. F. R., H. Alam, and M. C. Fairhurst. 2002. Multiple classifier combination for character recognition: Revisiting the majority voting system and its variations. Lecture Notes in Computer Science 2423.
    • (2002) Lecture Notes in Computer Science , pp. 2423
    • Rahman, A.F.R.1    Alam, H.2    Fairhurst, M.C.3
  • 35
    • 0242659655 scopus 로고    scopus 로고
    • Hierarchical text categorization using neural networks
    • Ruiz, M. E. and P. Srinivasan. 2002. Hierarchical text categorization using neural networks. Information Retrieval 5:87-118.
    • (2002) Information Retrieval , vol.5 , pp. 87-118
    • Ruiz, M.E.1    Srinivasan, P.2
  • 37
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • Schapire, R. E. 1990. The strength of weak learnability. Machine Learning 5:197-227.
    • (1990) Machine Learning , vol.5 , pp. 197-227
    • Schapire, R.E.1
  • 38
    • 0033281701 scopus 로고    scopus 로고
    • Improved boosting using confidence-rated predictions
    • Schapire, R. E. and Y. Singer. 1999. Improved boosting using confidence-rated predictions. Machine Learning 37:297-336.
    • (1999) Machine Learning , vol.37 , pp. 297-336
    • Schapire, R.E.1    Singer, Y.2
  • 39
    • 0033905095 scopus 로고    scopus 로고
    • BoosTexter: A boosting-based system for text categorization
    • Schapire, R. E. and Y. Singer. 2000. BoosTexter: A boosting-based system for text categorization. Machine Learning 39:135-168.
    • (2000) Machine Learning , vol.39 , pp. 135-168
    • Schapire, R.E.1    Singer, Y.2
  • 41
    • 0036394159 scopus 로고    scopus 로고
    • How weak categorizers based upon different principles strengthen performance
    • Uren, V. S. and T. R. Addis. 2002. How weak categorizers based upon different principles strengthen performance. The Computer Journal 45:511-524.
    • (2002) The Computer Journal , vol.45 , pp. 511-524
    • Uren, V.S.1    Addis, T.R.2
  • 46
    • 27144441097 scopus 로고    scopus 로고
    • An evaluation of statistical approaches to text categorization
    • Yang, Y. 1999. An evaluation of statistical approaches to text categorization. Information Retrieval 1:69-90.
    • (1999) Information Retrieval , vol.1 , pp. 69-90
    • Yang, Y.1
  • 47
    • 0028461554 scopus 로고
    • An example-based mapping method for text categorization and retrieval
    • Yang, Y. and C. G. Chute. 1994. An example-based mapping method for text categorization and retrieval. ACM Trans. on Information Systems (TOIS) 12:252-277.
    • (1994) ACM Trans. on Information Systems (TOIS) , vol.12 , pp. 252-277
    • Yang, Y.1    Chute, C.G.2
  • 48
    • 33750260525 scopus 로고    scopus 로고
    • A k-nearest neighbor based algorithm for multi-label classification
    • Beijing, China
    • Zhang, M.-L. and Z.-H. Zhou. 2005. A k-nearest neighbor based algorithm for multi-label classification. In: The 1st IEEE Int'l Conf. on Granular Computing (GrC'05), Volume 2, Beijing, China, 718-721.
    • (2005) The 1st IEEE Int'l Conf. on Granular Computing (GrC'05) , vol.2 , pp. 718-721
    • Zhang, M.-L.1    Zhou, Z.-H.2
  • 49
    • 33748366796 scopus 로고    scopus 로고
    • Multilabel neural networks with application to functional genomics and text categorization
    • Zhang, M.-L. and Z.-H. Zhou. 2006. Multilabel neural networks with application to functional genomics and text categorization. IEEE Trans. on Knowledge and Data Engineering, 1338-1351.
    • (2006) IEEE Trans. on Knowledge and Data Engineering , pp. 1338-1351
    • Zhang, M.-L.1    Zhou, Z.-H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.