메뉴 건너뛰기




Volumn , Issue , 2011, Pages 2801-2808

Multi-label learning with incomplete class assignments

Author keywords

[No Author keywords available]

Indexed keywords

LEARNING SYSTEMS; PATTERN RECOGNITION; TRAINING AIRCRAFT;

EID: 80052884721     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2011.5995734     Document Type: Conference Paper
Times cited : (243)

References (33)
  • 1
    • 2342458706 scopus 로고    scopus 로고
    • Rcv1: A new benchmark collection for text categorization research
    • F. Alizadeh and D. Goldfarb. Rcv1: A new benchmark collection for text categorization research. Mathematical Programming, 95:3-51, 2003.
    • (2003) Mathematical Programming , vol.95 , pp. 3-51
    • Alizadeh, F.1    Goldfarb, D.2
  • 2
    • 77953189888 scopus 로고    scopus 로고
    • Efficient multi-label ranking for multi-class learning: Application to object recognition
    • S. Bucak, P. K. Mallapragada, R. Jin, and A. K. Jain. Efficient multi-label ranking for multi-class learning: Application to object recognition. In Proc. of ICCV, 2009.
    • (2009) Proc. of ICCV
    • Bucak, S.1    Mallapragada, P.K.2    Jin, R.3    Jain, A.K.4
  • 3
    • 52649118114 scopus 로고    scopus 로고
    • Semi-supervised multi-label learning by solving a sylvester equation
    • G. Chen, Y. Song, F. Wang, and C. Zhang. Semi-supervised multi-label learning by solving a sylvester equation. In Proc. SDM, pages 410-419, 2008.
    • (2008) Proc. SDM , pp. 410-419
    • Chen, G.1    Song, Y.2    Wang, F.3    Zhang, C.4
  • 5
    • 0036568032 scopus 로고    scopus 로고
    • On the learnability and design of output codes for multiclass problems
    • K. Crammer and Y. Singer. On the learnability and design of output codes for multiclass problems. Machine Learning, 47(2):201-233, 2002.
    • (2002) Machine Learning , vol.47 , Issue.2 , pp. 201-233
    • Crammer, K.1    Singer, Y.2
  • 6
    • 84898970009 scopus 로고    scopus 로고
    • Log-linear models for label ranking
    • O. Dekel, C. Manning, and Y. Singer. Log-linear models for label ranking. In Proc. of NIPS, pages 497-504, 2004.
    • (2004) Proc. of NIPS , pp. 497-504
    • Dekel, O.1    Manning, C.2    Singer, Y.3
  • 9
    • 77956002586 scopus 로고    scopus 로고
    • Harvesting large-scale weakly-tagged image databases from the web
    • J. Fan, Y. Shen, N. Zhou, and Y. Gao. Harvesting large-scale weakly-tagged image databases from the web. In Proc. of CVPR, 2010.
    • (2010) Proc. of CVPR
    • Fan, J.1    Shen, Y.2    Zhou, N.3    Gao, Y.4
  • 10
  • 11
    • 77953202699 scopus 로고    scopus 로고
    • Tagprop: Discriminative metric learning in nearest neighbor models for image auto-annotation
    • M. Guillaumin, T. Mensink, J. Verbeek, and C. Schmid. Tagprop: Discriminative metric learning in nearest neighbor models for image auto-annotation. In Proc. of ICCV, 2009.
    • (2009) Proc. of ICCV
    • Guillaumin, M.1    Mensink, T.2    Verbeek, J.3    Schmid, C.4
  • 12
    • 77956006653 scopus 로고    scopus 로고
    • Multimodal semi-supervised learning for image classification
    • M. Guillaumin, J. Verbeek, and C. Schmid. Multimodal semi-supervised learning for image classification. In Proc. of CVPR, 2010.
    • (2010) Proc. of CVPR
    • Guillaumin, M.1    Verbeek, J.2    Schmid, C.3
  • 13
    • 1942450175 scopus 로고    scopus 로고
    • Constraint classification for multiclass classification and ranking
    • S. Har-Peled, D. Roth, and D. Zimak. Constraint classification for multiclass classification and ranking. In Proc. of NIPS, pages 809-816, 2002.
    • (2002) Proc. of NIPS , pp. 809-816
    • Har-Peled, S.1    Roth, D.2    Zimak, D.3
  • 14
    • 85073075960 scopus 로고    scopus 로고
    • Learning hybrid models for image annotation with partially labeled data
    • X. He and R. S. Zemel. Learning hybrid models for image annotation with partially labeled data. In Proc. of NIPS, 2008.
    • (2008) Proc. of NIPS
    • He, X.1    Zemel, R.S.2
  • 15
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multiclass support vector machines
    • C.-W. Hsu and C.-J. Lin. A comparison of methods for multiclass support vector machines. IEEE Transactions on Neural Networks, 13(2):415-425, 2002.
    • (2002) IEEE Transactions on Neural Networks , vol.13 , Issue.2 , pp. 415-425
    • Hsu, C.-W.1    Lin, C.-J.2
  • 17
    • 65449189832 scopus 로고    scopus 로고
    • Extracting shared subspace for multi-label classification
    • S. Ji, L. Tang, S. Yu, and J. Ye. Extracting shared subspace for multi-label classification. In Proc. of SIGKDD, 2008.
    • (2008) Proc. of SIGKDD
    • Ji, S.1    Tang, L.2    Yu, S.3    Ye, J.4
  • 19
    • 56449104477 scopus 로고    scopus 로고
    • Efficient bandit algorithms for online multiclass prediction
    • S. M. Kakade, S. Shalev-Shwartz, and A. Tewari. Efficient bandit algorithms for online multiclass prediction. In Proc. of ICML, 2008.
    • (2008) Proc. of ICML
    • Kakade, S.M.1    Shalev-Shwartz, S.2    Tewari, A.3
  • 20
    • 77955990360 scopus 로고    scopus 로고
    • Object recognition as ranking holistic figure-ground hypotheses
    • F. Li, J. Carreira, and C. Sminchisescu. Object recognition as ranking holistic figure-ground hypotheses. In Proc. of CVPR, 2010.
    • (2010) Proc. of CVPR
    • Li, F.1    Carreira, J.2    Sminchisescu, C.3
  • 21
    • 70350647018 scopus 로고    scopus 로고
    • Semi-supervised multi-label learning by constrained non-negative matrix factorization
    • Y. Liu, R. Jin, and L. Yang. Semi-supervised multi-label learning by constrained non-negative matrix factorization. In Proc. of AAAI, 2006.
    • (2006) Proc. of AAAI
    • Liu, Y.1    Jin, R.2    Yang, L.3
  • 22
    • 80052905651 scopus 로고    scopus 로고
    • Semantic hierarchies for visual object recognition
    • M. Marszalek and C. Schmid. Semantic hierarchies for visual object recognition. In Proc. of CVPR.
    • Proc. of CVPR
    • Marszalek, M.1    Schmid, C.2
  • 23
    • 65449122438 scopus 로고    scopus 로고
    • Classification with partial labels
    • N. Nguyen and R. Caruana. Classification with partial labels. In Proc. of KDD, 2008.
    • (2008) Proc. of KDD
    • Nguyen, N.1    Caruana, R.2
  • 24
    • 80052870985 scopus 로고    scopus 로고
    • Expectation maximization for weakly labeled data
    • A. Pentland. Expectation maximization for weakly labeled data. In Proc. of ICML, 2001.
    • (2001) Proc. of ICML
    • Pentland, A.1
  • 26
    • 0003243224 scopus 로고    scopus 로고
    • Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods
    • MIT Press
    • J. C. Platt. Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. In Advances in Large Margin Classifiers, pages 61-74. MIT Press, 1999.
    • (1999) Advances in Large Margin Classifiers , pp. 61-74
    • Platt, J.C.1
  • 27
    • 33745800276 scopus 로고    scopus 로고
    • Efficient learning of label ranking by soft projections onto polyhedra
    • S. Shalev-Shwartz and Y. Singer. Efficient learning of label ranking by soft projections onto polyhedra. Journal of Machine Learning Research, 7:1567-1599, 2006.
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1567-1599
    • Shalev-Shwartz, S.1    Singer, Y.2
  • 28
    • 0033296299 scopus 로고    scopus 로고
    • Using sedumi 1. 02, a matlab toolbox for optimization over symmetric cones
    • J. F. Sturm. Using sedumi 1. 02, a matlab toolbox for optimization over symmetric cones. Optimization Methods and Software, 11-12:625-653, 1999.
    • (1999) Optimization Methods and Software , vol.11-12 , pp. 625-653
    • Sturm, J.F.1
  • 29
    • 84958141402 scopus 로고    scopus 로고
    • Parametric mixture models for multilabeled text
    • N. Ueda and K. Saito. Parametric mixture models for multilabeled text. In Proc. of NIPS, 2002.
    • (2002) Proc. of NIPS
    • Ueda, N.1    Saito, K.2
  • 30
    • 50649115912 scopus 로고    scopus 로고
    • Learning the discriminative powerinvariance trade-off
    • M. Varma and D. Ray. Learning the discriminative powerinvariance trade-off. In Proc. of ICCV, 2007.
    • (2007) Proc. of ICCV
    • Varma, M.1    Ray, D.2
  • 32
    • 80052680363 scopus 로고    scopus 로고
    • A potential-based framework for online milti-class learning with partial feedback
    • S. Wang, R. Jin, and H. Valizadegan. A potential-based framework for online milti-class learning with partial feedback. In Proc. of AISTATS, 2010.
    • (2010) Proc. of AISTATS
    • Wang, S.1    Jin, R.2    Valizadegan, H.3
  • 33
    • 33645035051 scopus 로고    scopus 로고
    • Model selection and estimation in regression with grouped variables
    • M. Yuan and Y. Lin. Model selection and estimation in regression with grouped variables. J. Royal. Statist. Soc B., 68:49-67, 2006.
    • (2006) J. Royal. Statist. Soc B. , vol.68 , pp. 49-67
    • Yuan, M.1    Lin, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.