-
1
-
-
34248538826
-
-
ARCADE Sentence track metrics. http://www.lpl.univ-aix.fr/projects/arcade/2nd/sent/metrics.html.
-
-
-
-
2
-
-
34248516114
-
-
Dourson, S. (2004). The 40 Inventive Principles of TRIZ applied to finance. The TRIZ Journal, October Issues.
-
-
-
-
5
-
-
34248510485
-
-
40 Invention principles with examples. http://www.oxfordcreativity.co.uk/.
-
-
-
-
6
-
-
34248505320
-
-
Gey, F. C., Buckland, M., Chen, C., & Larson, R. (2001). Entry vocabulary - a technology to enhance digital search. In: Proceedings of the First International Conference on Human Language Technology, (pp. 91-95).
-
-
-
-
7
-
-
34248509556
-
-
He, C., & Loh, H. T. (2005). Similarity between TRIZ Principles. The TRIZ Journal, September Issue.
-
-
-
-
8
-
-
34248507648
-
-
Hipple, J. (2005). 40 Inventive Principles with Examples for Chemical Engineering. The TRIZ Journal, June Issues.
-
-
-
-
10
-
-
34248534945
-
-
Larkey, L. S. (1998). Some issues in the automatic classification of US patents. AAAi-98 working notes.
-
-
-
-
11
-
-
0033279503
-
A patent search and classification systems
-
Fox E.A., and Rowe N. (Eds), ACM Press, New York, US
-
Larkey L.S. A patent search and classification systems. In: Fox E.A., and Rowe N. (Eds). Proceedings of DL-99. Fourth ACM conference on digital libraries (1999), ACM Press, New York, US 179-187
-
(1999)
Proceedings of DL-99. Fourth ACM conference on digital libraries
, pp. 179-187
-
-
Larkey, L.S.1
-
12
-
-
33745789237
-
-
Liu, Y., An, A., & Huang, X. (2006). Boosting Prediction Accuracy on Imbalanced Datasets with SVM Ensembles. The 10th Pacific-Asia Conference on Knowledge Discovery and Data Mining (pp. 107-118).
-
-
-
-
13
-
-
30844440271
-
Automatic classification of patent documents for TRIZ users
-
Loh H.T., He C., and Shen L.X. Automatic classification of patent documents for TRIZ users. World Patent Information 28 (2006) 6-13
-
(2006)
World Patent Information
, vol.28
, pp. 6-13
-
-
Loh, H.T.1
He, C.2
Shen, L.X.3
-
14
-
-
34248552368
-
-
Maicher, L., & Witschel, H. F. (2004). Merging of Distributed Topic Maps based on the Subject Identity Measure (SIM). In: Proceedings of LIT'04 (pp. 229-238).
-
-
-
-
15
-
-
34248544061
-
-
Mann, D. (2002). Evolving the Inventive Principles. The TRIZ Journal, August Issues.
-
-
-
-
16
-
-
34248541713
-
-
Mann, D. (2004). Comparing the Classic and New Contradiction Matrix-Part 1-Zooming out. The TRIZ Journal, April Issues.
-
-
-
-
17
-
-
34248534944
-
-
Mann, D., & Cathain, C. O. (2001). 40 Inventive (Architecture) Principles with Examples. The TRIZ Journal, July Issues.
-
-
-
-
18
-
-
34248521332
-
-
Retseptor, G. (2003). 40 Inventive Principles in Quality Management. The TRIZ Journal, March Issues.
-
-
-
-
19
-
-
34248533025
-
-
Schneider, J. (1997). Cross Validation. http://www.cs.cmu.edu/~schneide/tut5/node42.html.
-
-
-
-
20
-
-
34248565285
-
-
Sebastiani, Fabrizio. (1999). A Tutorial on Automated Text Categorisation. Istituto di Elaborazione dell'Informazione Consiglio Nazionale delle Ricerche Via S. Maria, Pisa, Italy, pp. 46-56126.
-
-
-
-
22
-
-
34248510484
-
-
Tate, K., & Domb, E. (1997). 40 inventive Principles with examples. The TRIZ Journal, July Issues.
-
-
-
-
24
-
-
34248538825
-
-
Warren S., & Cary, N. C. (2002). What are cross-validation and bootstrapping? http://www.faqs.org/faqs/ai-faq/neural-nets/part3/section-12.html.
-
-
-
-
25
-
-
1442335145
-
Using text classification and multiple concepts to answer e-mails
-
Weng S.S., and Liu C.K. Using text classification and multiple concepts to answer e-mails. Expert Systems with Applications 26 (2004) 529-543
-
(2004)
Expert Systems with Applications
, vol.26
, pp. 529-543
-
-
Weng, S.S.1
Liu, C.K.2
-
26
-
-
34248514189
-
-
Williams, T., & Domb, E. (1998). Reversability of the 40 Principles of Problem Solving. The TRIZ Journal, May Issues.
-
-
-
-
27
-
-
85024373635
-
-
Yang, Y., & Liu, X. (1999). A re-examination of text categorization methods. In SIGIR-99.
-
-
-
-
28
-
-
34248505318
-
-
Yang, Y., & Pedersen, J. O. (1997). A comparative study on feature selection in text categorization. Proc. of the 14th International Conference on Machine Learning ICML97 (pp. 412-420).
-
-
-
|