메뉴 건너뛰기




Volumn , Issue , 2009, Pages 1107-1116

Scalable learning of collective behavior based on sparse social dimensions

Author keywords

Behavior prediction; Edge centric clustering; Relational learning; Social dimensions; Social media

Indexed keywords

BEHAVIOR PREDICTION; CLUSTERING SCHEME; COLLECTIVE BEHAVIOR; FACEBOOK; PREDICTION PERFORMANCE; RELATIONAL LEARNING; SCALABILITY ISSUE; SCALABLE METHODS; SOCIAL DIMENSIONS; SOCIAL MEDIA; SOCIAL NETWORKS; YOUTUBE;

EID: 74549120273     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1645953.1646094     Document Type: Conference Paper
Times cited : (228)

References (24)
  • 1
    • 0016557674 scopus 로고
    • Multidimensional binary search trees used for associative searching
    • J. Bentley. Multidimensional binary search trees used for associative searching. Comm. ACM, 1975.
    • (1975) Comm. ACM
    • Bentley, J.1
  • 7
    • 33745960212 scopus 로고    scopus 로고
    • Fast and exact out-of-core and distributed k-means clustering
    • R. Jin, A. Goswami, and G. Agrawal. Fast and exact out-of-core and distributed k-means clustering. Knowl. Inf. Syst., 10(1):17-40, 2006.
    • (2006) Knowl. Inf. Syst , vol.10 , Issue.1 , pp. 17-40
    • Jin, R.1    Goswami, A.2    Agrawal, G.3
  • 9
    • 70350647018 scopus 로고    scopus 로고
    • Semi-supervised multi-label learning by constrained non-negative matrix factorization
    • Y. Liu, R. Jin, and L. Yang. Semi-supervised multi-label learning by constrained non-negative matrix factorization. In AAAI, 2006.
    • (2006) AAAI
    • Liu, Y.1    Jin, R.2    Yang, L.3
  • 11
    • 34249102504 scopus 로고    scopus 로고
    • Classification in networked data: A toolkit and a univariate case study
    • S. A. Macskassy and F. Provost. Classification in networked data: A toolkit and a univariate case study. J. Mach. Learn. Res., 8:935-983, 2007.
    • (2007) J. Mach. Learn. Res , vol.8 , pp. 935-983
    • Macskassy, S.A.1    Provost, F.2
  • 14
    • 24744469980 scopus 로고    scopus 로고
    • Power laws, Pareto distributions and Zipf's law
    • M. Newman. Power laws, Pareto distributions and Zipf's law. Contemporary physics, 46(5):323-352, 2005.
    • (2005) Contemporary physics , vol.46 , Issue.5 , pp. 323-352
    • Newman, M.1
  • 17
    • 74549205079 scopus 로고    scopus 로고
    • On-line em algorithm for the normalized gaussian network
    • M. Sato and S. Ishii. On-line em algorithm for the normalized gaussian network. Neural Computation, 1999.
    • (1999) Neural Computation
    • Sato, M.1    Ishii, S.2
  • 22
    • 85018194022 scopus 로고    scopus 로고
    • G. L. Zacharias, J. MacMillan, and S. B. V. Hemel, editors, The National Academies Press
    • G. L. Zacharias, J. MacMillan, and S. B. V. Hemel, editors. Behavioral Modeling and Simulation: From Individuals to Societies. The National Academies Press, 2008.
    • (2008) Behavioral Modeling and Simulation: From Individuals to Societies
  • 24
    • 1942484430 scopus 로고    scopus 로고
    • Semi-supervised learning using gaussian fields and harmonic functions
    • X. Zhu, Z. Ghahramani, and J. Lafferty. Semi-supervised learning using gaussian fields and harmonic functions. In ICML, 2003.
    • (2003) ICML
    • Zhu, X.1    Ghahramani, Z.2    Lafferty, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.