메뉴 건너뛰기




Volumn , Issue , 2009, Pages 211-220

Large scale multi-label classification via MetaLabeler

Author keywords

Hierarchical classification; Large scale; Meta model; MetaLabeler; Multi label classification; Query categorization

Indexed keywords

HIERARCHICAL CLASSIFICATION; LARGE SCALE; META MODEL; METALABELER; MULTI-LABEL; QUERY CATEGORIZATION;

EID: 79951752250     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1526709.1526738     Document Type: Conference Paper
Times cited : (198)

References (34)
  • 3
    • 0000776545 scopus 로고    scopus 로고
    • Scalable feature selection, classification and signature generation for organizing large text databases into hierarchical topic taxonomies
    • S. Chakrabarti, B. Dom, R. Agrawal, and P. Raghavan. Scalable feature selection, classification and signature generation for organizing large text databases into hierarchical topic taxonomies. The VLDB Journal, 7(3):163-178, 1998.
    • (1998) The VLDB Journal , vol.7 , Issue.3 , pp. 163-178
    • Chakrabarti, S.1    Dom, B.2    Agrawal, R.3    Raghavan, P.4
  • 5
    • 12144288329 scopus 로고    scopus 로고
    • Is combining classifiers with stacking better than selecting the best one?
    • S. Džeroski and B. Ženko. Is combining classifiers with stacking better than selecting the best one? Mach. Learn., 54(3):255-273, 2004.
    • (2004) Mach. Learn. , vol.54 , Issue.3 , pp. 255-273
    • Džeroski, S.1    Ženko, B.2
  • 9
    • 33845536164 scopus 로고    scopus 로고
    • The class imbalance problem: A systematic study
    • N. Japkowicz and S. Stephen. The class imbalance problem: A systematic study. Intell. Data Anal., 6(5):429-449, 2002.
    • (2002) Intell. Data Anal. , vol.6 , Issue.5 , pp. 429-449
    • Japkowicz, N.1    Stephen, S.2
  • 11
    • 84957069814 scopus 로고    scopus 로고
    • Text categorization with support vector machines: Learning with many relevant features
    • C. Nédellec and C. Rouveirol, editors, Heidelberg et al.
    • T. Joachims. Text categorization with support vector machines: learning with many relevant features. In C. Nédellec and C. Rouveirol, editors, Proceedings of ECML-98, 10th European Conference on Machine Learning, pages 137-142, Heidelberg et al., 1998.
    • (1998) Proceedings of ECML-98, 10th European Conference on Machine Learning , pp. 137-142
    • Joachims, T.1
  • 13
    • 65449123919 scopus 로고    scopus 로고
    • A sequential dual method for large scale multi-class linear svms
    • S. S. Keerthi, S. Sundararajan, K.-W. Chang, C.-J. Hsieh, and C.-J. Lin. A sequential dual method for large scale multi-class linear svms. In KDD, pages 408-416, 2008.
    • (2008) KDD , pp. 408-416
    • Keerthi, S.S.1    Sundararajan, S.2    Chang, K.-W.3    Hsieh, C.-J.4    Lin, C.-J.5
  • 15
    • 84876811202 scopus 로고    scopus 로고
    • Rcv1: A new benchmark collection for text categorization research
    • D. D. Lewis, Y. Yang, T. G. Rose, and F. Li. Rcv1: A new benchmark collection for text categorization research. J. Mach. Learn. Res., 5:361-397, 2004.
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 361-397
    • Lewis, D.D.1    Yang, Y.2    Rose, T.G.3    Li, F.4
  • 16
    • 33745776526 scopus 로고    scopus 로고
    • Support vector machines classification with a very large-scale taxonomy
    • T.-Y. Liu, Y. Yang, H. Wan, H.-J. Zeng, Z. Chen, and W.-Y. Ma. Support vector machines classification with a very large-scale taxonomy. SIGKDD Explor. Newsl., 7(1):36-43, 2005.
    • (2005) SIGKDD Explor. Newsl. , vol.7 , Issue.1 , pp. 36-43
    • Liu, T.-Y.1    Yang, Y.2    Wan, H.3    Zeng, H.-J.4    Chen, Z.5    Ma, W.-Y.6
  • 20
    • 56749117943 scopus 로고    scopus 로고
    • Defense of one-vs-all classification
    • R. Rifkin and A. Klautau. In defense of one-vs-all classification. JMLR, 5:101-141, 2004.
    • (2004) JMLR , vol.5 , pp. 101-141
    • Rifkin, R.1    Klautau, A.2
  • 21
    • 33745768424 scopus 로고    scopus 로고
    • Kernel-based learning of hierarchical multilabel classification models
    • J. Rousu, C. Saunders, S. Szedmak, and J. Shawe-Taylor. Kernel-based learning of hierarchical multilabel classification models. J. Mach. Learn. Res., 7:1601-1626, 2006.
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 1601-1626
    • Rousu, J.1    Saunders, C.2    Szedmak, S.3    Shawe-Taylor, J.4
  • 27
    • 52949089060 scopus 로고    scopus 로고
    • Random k-labelsets: An ensemble method for multi-label classification
    • G. Tsoumakas and K. Ioannis. Random k-labelsets: An ensemble method for multi-label classification. In ECML, 2007.
    • (2007) ECML
    • Tsoumakas, G.1    Ioannis, K.2
  • 28
    • 84958141402 scopus 로고    scopus 로고
    • Parametric mixture models for multi-labeled text
    • N. Ueda and K. Saito. Parametric mixture models for multi-labeled text. In NIPS, pages 721-728, 2002.
    • (2002) NIPS , pp. 721-728
    • Ueda, N.1    Saito, K.2
  • 33
    • 33947681316 scopus 로고    scopus 로고
    • Ml-KNN: A lazy learning approach to multi-label learning
    • M.-L. Zhang and Z.-H. Zhou. Ml-knn: A lazy learning approach to multi-label learning. Pattern Recogn., 40(7):2038-2048, 2007.
    • (2007) Pattern Recogn. , vol.40 , Issue.7 , pp. 2038-2048
    • Zhang, M.-L.1    Zhou, Z.-H.2
  • 34
    • 84885572482 scopus 로고    scopus 로고
    • Multi-labelled classification using maximum entropy method
    • S. Zhu, X. Ji, W. Xu, and Y. Gong. Multi-labelled classification using maximum entropy method. In SIGIR, 2005.
    • (2005) SIGIR
    • Zhu, S.1    Ji, X.2    Xu, W.3    Gong, Y.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.