-
1
-
-
18744367558
-
Hierarchical document categorization with support vector machines
-
New York, NY, USA
-
L. Cai and T. Hofmann. Hierarchical document categorization with support vector machines. In CIKM '04: Proceedings of the thirteenth ACM international conference on Information and knowledge management, pages 78-87, New York, NY, USA, 2004.
-
(2004)
CIKM '04: Proceedings of the Thirteenth ACM International Conference on Information and Knowledge Management
, pp. 78-87
-
-
Cai, L.1
Hofmann, T.2
-
2
-
-
33749254096
-
An empirical comparison of supervised learning algorithms
-
New York, NY, USA, ACM
-
R. Caruana and A. Niculescu-Mizil. An empirical comparison of supervised learning algorithms. In ICML '06: Proceedings of the 23rd international conference on Machine learning, pages 161-168, New York, NY, USA, 2006. ACM.
-
(2006)
ICML '06: Proceedings of the 23rd International Conference on Machine Learning
, pp. 161-168
-
-
Caruana, R.1
Niculescu-Mizil, A.2
-
3
-
-
0000776545
-
Scalable feature selection, classification and signature generation for organizing large text databases into hierarchical topic taxonomies
-
S. Chakrabarti, B. Dom, R. Agrawal, and P. Raghavan. Scalable feature selection, classification and signature generation for organizing large text databases into hierarchical topic taxonomies. The VLDB Journal, 7(3):163-178, 1998.
-
(1998)
The VLDB Journal
, vol.7
, Issue.3
, pp. 163-178
-
-
Chakrabarti, S.1
Dom, B.2
Agrawal, R.3
Raghavan, P.4
-
4
-
-
0033656184
-
Hierarchical classification of web content
-
New York, NY, USA
-
S. Dumais and H. Chen. Hierarchical classification of web content. In SIGIR '00: Proceedings of the 23rd annual international ACM SIGIR conference on Research and development in information retrieval, pages 256-263, New York, NY, USA, 2000.
-
(2000)
SIGIR '00: Proceedings of the 23rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval
, pp. 256-263
-
-
Dumais, S.1
Chen, H.2
-
5
-
-
12144288329
-
Is combining classifiers with stacking better than selecting the best one?
-
S. Džeroski and B. Ženko. Is combining classifiers with stacking better than selecting the best one? Mach. Learn., 54(3):255-273, 2004.
-
(2004)
Mach. Learn.
, vol.54
, Issue.3
, pp. 255-273
-
-
Džeroski, S.1
Ženko, B.2
-
6
-
-
50949133669
-
LIBLINEAR: A library for large linear classification
-
R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. LIBLINEAR: A library for large linear classification. Journal of Machine Learning Research, 9:1871-1874, 2008.
-
(2008)
Journal of Machine Learning Research
, vol.9
, pp. 1871-1874
-
-
Fan, R.-E.1
Chang, K.-W.2
Hsieh, C.-J.3
Wang, X.-R.4
Lin, C.-J.5
-
8
-
-
33745767102
-
Collective multi-label classification
-
New York, NY, USA, ACM Press
-
N. Ghamrawi and A. McCallum. Collective multi-label classification. In CIKM '05: Proceedings of the 14th ACM international conference on Information and knowledge management, pages 195-200, New York, NY, USA, 2005. ACM Press.
-
(2005)
CIKM '05: Proceedings of the 14th ACM International Conference on Information and Knowledge Management
, pp. 195-200
-
-
Ghamrawi, N.1
McCallum, A.2
-
9
-
-
33845536164
-
The class imbalance problem: A systematic study
-
N. Japkowicz and S. Stephen. The class imbalance problem: A systematic study. Intell. Data Anal., 6(5):429-449, 2002.
-
(2002)
Intell. Data Anal.
, vol.6
, Issue.5
, pp. 429-449
-
-
Japkowicz, N.1
Stephen, S.2
-
10
-
-
65449189832
-
Extracting shared subspace for multi-label classification
-
New York, NY, USA, ACM
-
S. Ji, L. Tang, S. Yu, and J. Ye. Extracting shared subspace for multi-label classification. In KDD '08: Proceeding of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 381-389, New York, NY, USA, 2008. ACM.
-
(2008)
KDD '08: Proceeding of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 381-389
-
-
Ji, S.1
Tang, L.2
Yu, S.3
Ye, J.4
-
11
-
-
84957069814
-
Text categorization with support vector machines: Learning with many relevant features
-
C. Nédellec and C. Rouveirol, editors, Heidelberg et al.
-
T. Joachims. Text categorization with support vector machines: learning with many relevant features. In C. Nédellec and C. Rouveirol, editors, Proceedings of ECML-98, 10th European Conference on Machine Learning, pages 137-142, Heidelberg et al., 1998.
-
(1998)
Proceedings of ECML-98, 10th European Conference on Machine Learning
, pp. 137-142
-
-
Joachims, T.1
-
13
-
-
65449123919
-
A sequential dual method for large scale multi-class linear svms
-
S. S. Keerthi, S. Sundararajan, K.-W. Chang, C.-J. Hsieh, and C.-J. Lin. A sequential dual method for large scale multi-class linear svms. In KDD, pages 408-416, 2008.
-
(2008)
KDD
, pp. 408-416
-
-
Keerthi, S.S.1
Sundararajan, S.2
Chang, K.-W.3
Hsieh, C.-J.4
Lin, C.-J.5
-
14
-
-
0002346866
-
Hierarchically classifying documents using very few words
-
San Francisco, CA, USA, Morgan Kaufmann Publishers Inc
-
D. Koller and M. Sahami. Hierarchically classifying documents using very few words. In ICML '97: Proceedings of the Fourteenth International Conference on Machine Learning, pages 170-178, San Francisco, CA, USA, 1997. Morgan Kaufmann Publishers Inc.
-
(1997)
ICML '97: Proceedings of the Fourteenth International Conference on Machine Learning
, pp. 170-178
-
-
Koller, D.1
Sahami, M.2
-
15
-
-
84876811202
-
Rcv1: A new benchmark collection for text categorization research
-
D. D. Lewis, Y. Yang, T. G. Rose, and F. Li. Rcv1: A new benchmark collection for text categorization research. J. Mach. Learn. Res., 5:361-397, 2004.
-
(2004)
J. Mach. Learn. Res.
, vol.5
, pp. 361-397
-
-
Lewis, D.D.1
Yang, Y.2
Rose, T.G.3
Li, F.4
-
16
-
-
33745776526
-
Support vector machines classification with a very large-scale taxonomy
-
T.-Y. Liu, Y. Yang, H. Wan, H.-J. Zeng, Z. Chen, and W.-Y. Ma. Support vector machines classification with a very large-scale taxonomy. SIGKDD Explor. Newsl., 7(1):36-43, 2005.
-
(2005)
SIGKDD Explor. Newsl.
, vol.7
, Issue.1
, pp. 36-43
-
-
Liu, T.-Y.1
Yang, Y.2
Wan, H.3
Zeng, H.-J.4
Chen, Z.5
Ma, W.-Y.6
-
17
-
-
33750409802
-
An experimental study on large-scale web categorization
-
New York, NY, USA, ACM
-
T.-Y. Liu, Y. Yang, H. Wan, Q. Zhou, B. Gao, H.-J. Zeng, Z. Chen, and W.-Y. Ma. An experimental study on large-scale web categorization. In WWW '05: Special interest tracks and posters of the 14th international conference on World Wide Web, pages 1106-1107, New York, NY, USA, 2005. ACM.
-
(2005)
WWW '05: Special Interest Tracks and Posters of the 14th International Conference on World Wide Web
, pp. 1106-1107
-
-
Liu, T.-Y.1
Yang, Y.2
Wan, H.3
Zhou, Q.4
Gao, B.5
Zeng, H.-J.6
Chen, Z.7
Ma, W.-Y.8
-
18
-
-
0002332781
-
Improving text classification by shrinkage in a hierarchy of classes
-
San Francisco, CA, USA, Morgan Kaufmann Publishers Inc
-
A. McCallum, R. Rosenfeld, T. M. Mitchell, and A. Y. Ng. Improving text classification by shrinkage in a hierarchy of classes. In ICML '98: Proceedings of the Fifteenth International Conference on Machine Learning, pages 359-367, San Francisco, CA, USA, 1998. Morgan Kaufmann Publishers Inc.
-
(1998)
ICML '98: Proceedings of the Fifteenth International Conference on Machine Learning
, pp. 359-367
-
-
McCallum, A.1
Rosenfeld, R.2
Mitchell, T.M.3
Ng, A.Y.4
-
20
-
-
56749117943
-
Defense of one-vs-all classification
-
R. Rifkin and A. Klautau. In defense of one-vs-all classification. JMLR, 5:101-141, 2004.
-
(2004)
JMLR
, vol.5
, pp. 101-141
-
-
Rifkin, R.1
Klautau, A.2
-
21
-
-
33745768424
-
Kernel-based learning of hierarchical multilabel classification models
-
J. Rousu, C. Saunders, S. Szedmak, and J. Shawe-Taylor. Kernel-based learning of hierarchical multilabel classification models. J. Mach. Learn. Res., 7:1601-1626, 2006.
-
(2006)
J. Mach. Learn. Res.
, vol.7
, pp. 1601-1626
-
-
Rousu, J.1
Saunders, C.2
Szedmak, S.3
Shawe-Taylor, J.4
-
23
-
-
39149100915
-
Topic taxonomy adaptation for group profiling
-
L. Tang, H. Liu, J. Zhang, N. Agarwal, and J. J. Salerno. Topic taxonomy adaptation for group profiling. ACM Trans. Knowl. Discov. Data, 1(4):1-28, 2008.
-
(2008)
ACM Trans. Knowl. Discov. Data
, vol.1
, Issue.4
, pp. 1-28
-
-
Tang, L.1
Liu, H.2
Zhang, J.3
Agarwal, N.4
Salerno, J.J.5
-
25
-
-
14344250451
-
Support vector machine learning for interdependent and structured output spaces
-
New York, NY, USA, ACM
-
I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun. Support vector machine learning for interdependent and structured output spaces. In ICML '04: Proceedings of the twenty-first international conference on Machine learning, page 104, New York, NY, USA, 2004. ACM.
-
(2004)
ICML '04: Proceedings of the Twenty-first International Conference on Machine Learning
, pp. 104
-
-
Tsochantaridis, I.1
Hofmann, T.2
Joachims, T.3
Altun, Y.4
-
27
-
-
52949089060
-
Random k-labelsets: An ensemble method for multi-label classification
-
G. Tsoumakas and K. Ioannis. Random k-labelsets: An ensemble method for multi-label classification. In ECML, 2007.
-
(2007)
ECML
-
-
Tsoumakas, G.1
Ioannis, K.2
-
28
-
-
84958141402
-
Parametric mixture models for multi-labeled text
-
N. Ueda and K. Saito. Parametric mixture models for multi-labeled text. In NIPS, pages 721-728, 2002.
-
(2002)
NIPS
, pp. 721-728
-
-
Ueda, N.1
Saito, K.2
-
30
-
-
0034785186
-
A study of thresholding strategies for text categorization
-
New York, NY, USA, ACM
-
Y. Yang. A study of thresholding strategies for text categorization. In SIGIR '01: Proceedings of the 24th annual international ACM SIGIR conference on Research and development in information retrieval, pages 137-145, New York, NY, USA, 2001. ACM.
-
(2001)
SIGIR '01: Proceedings of the 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval
, pp. 137-145
-
-
Yang, Y.1
-
31
-
-
84885640929
-
Multi-label informed latent semantic indexing
-
New York, NY, USA, ACM
-
K. Yu, S. Yu, and V. Tresp. Multi-label informed latent semantic indexing. In SIGIR '05: Proceedings of the 28th annual international ACM SIGIR conference on Research and development in information retrieval, pages 258-265, New York, NY, USA, 2005. ACM.
-
(2005)
SIGIR '05: Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval
, pp. 258-265
-
-
Yu, K.1
Yu, S.2
Tresp, V.3
-
33
-
-
33947681316
-
Ml-KNN: A lazy learning approach to multi-label learning
-
M.-L. Zhang and Z.-H. Zhou. Ml-knn: A lazy learning approach to multi-label learning. Pattern Recogn., 40(7):2038-2048, 2007.
-
(2007)
Pattern Recogn.
, vol.40
, Issue.7
, pp. 2038-2048
-
-
Zhang, M.-L.1
Zhou, Z.-H.2
-
34
-
-
84885572482
-
Multi-labelled classification using maximum entropy method
-
S. Zhu, X. Ji, W. Xu, and Y. Gong. Multi-labelled classification using maximum entropy method. In SIGIR, 2005.
-
(2005)
SIGIR
-
-
Zhu, S.1
Ji, X.2
Xu, W.3
Gong, Y.4
|