메뉴 건너뛰기




Volumn 88, Issue 1-2, 2012, Pages 157-208

Statistical topic models for multi-label document classification

Author keywords

Dependency LDA; Document modeling; Graphical models; LDA; Multi label classification; Probabilistic generative models; Text classification; Topic models

Indexed keywords

DEPENDENCY-LDA; DOCUMENT MODELING; GENERATIVE MODEL; GRAPHICAL MODEL; LDA; MULTI-LABEL; TEXT CLASSIFICATION; TOPIC MODEL;

EID: 84865237508     PISSN: 08856125     EISSN: 15730565     Source Type: Journal    
DOI: 10.1007/s10994-011-5272-5     Document Type: Article
Times cited : (292)

References (51)
  • 1
    • 84865268194 scopus 로고    scopus 로고
    • June 2010. URL
    • The EUR-Lex repository, June 2010. URL http://www.ke.tu-darmstadt.de/ resources/eurlex/eurlex.html.
    • The EUR-Lex Repository
  • 2
    • 24044435942 scopus 로고    scopus 로고
    • Reducing multiclass to binary: A unifying approach for margin classifiers
    • Allwein, E. L., Schapire, R. E., & Singer, Y. (2001). Reducing multiclass to binary: A unifying approach for margin classifiers. Journal of Machine Learning Research, 1, 113-141. (Pubitemid 33738778)
    • (2001) Journal of Machine Learning Research , vol.1 , Issue.2 , pp. 113-141
    • Allwein, E.L.1    Schapire, R.E.2    Singer, Y.3
  • 3
    • 85161981998 scopus 로고    scopus 로고
    • Supervised topic models
    • J. C. Platt, D Koller Y Singer & S Roweis (Eds D Koller Y Singer & S Roweis (Eds) Advances in neural information processing sys128) Cambridge: MIT Press
    • Blei, D., & McAuliffe, J. (2008). Supervised topic models. In J. C. Platt, D. Koller, Y. Singer, & S. Roweis (Eds.), Advances in neural information processing systems 20 (pp. 121-128). Cambridge: MIT Press.
    • (2008) Advances in Neural Information Processing Systems , vol.20 , pp. 121
    • Blei, D.1    McAuliffe, J.2
  • 6
    • 76849117578 scopus 로고    scopus 로고
    • The nested Chinese restaurant process and Bayesian nonparametric inference of topic hierarchies
    • Blei, D. M., Griffiths, T. L., & Jordan, M. I. (2010). The nested Chinese restaurant process and Bayesian nonparametric inference of topic hierarchies. Journal of the ACM, 57, 7:1-7:30.
    • (2010) Journal of the ACM , vol.577 , Issue.1-7 , pp. 30
    • Blei, D.M.1    Griffiths, T.L.2    Jordan, M.I.3
  • 8
    • 0142228873 scopus 로고    scopus 로고
    • A family of additive online algorithms for category ranking
    • Crammer, K., & Singer, Y. (2003). A family of additive online algorithms for category ranking. Journal of Machine Learning Research, 3, 1025-1058.
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 1025-1058
    • Crammer, K.1    Singer, Y.2
  • 12
    • 36849045249 scopus 로고    scopus 로고
    • Semi-supervised classification with hybrid generative/discriminative methods
    • DOI 10.1145/1281192.1281225, KDD-2007: Proceedings of the Thirteenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
    • Druck, G., Pal, C., McCallum, A., & Zhu, X. (2007). Semi-supervised classification with hybrid generative/discriminative methods. In KDD'07: proceedings of the 13th ACM SIGKDD international conference on knowledge discovery and data mining (pp. 280-289). New York: ACM. (Pubitemid 350229215)
    • (2007) Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining , pp. 280-289
    • Druck, G.1    Pal, C.2    McCallum, A.3    Zhu, X.4
  • 16
    • 2942731012 scopus 로고    scopus 로고
    • An extensive empirical study of feature selection metrics for text classification
    • Forman, G. (2003). An extensive empirical study of feature selection metrics for text classification. Journal of Machine Learning Research, 3, 1289-1305.
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 1289-1305
    • Forman, G.1
  • 18
    • 33745767102 scopus 로고    scopus 로고
    • Collective multi-label classification
    • DOI 10.1145/1099554.1099591, CIKM'05 - Proceedings of the 14th ACM International Conference on Information and Knowledge Management
    • Ghamrawi, N., & McCallum, A. (2005). Collective multi-label classification. In CIKM'05: proceedings of the 14th ACM international conference on information and knowledge management (pp. 195-200). New York: ACM. (Pubitemid 44022130)
    • (2005) International Conference on Information and Knowledge Management, Proceedings , pp. 195-200
    • Ghamrawi, N.1    McCallum, A.2
  • 22
    • 78751507384 scopus 로고    scopus 로고
    • Obtaining bipartitions from score vectors for multi-label classification
    • Washington: IEEE Comput. Soc. ISBN 978-0-7695-4263-8. doi:http://dx.doi.org/10.1109/ICTAI.2010.65. URL
    • Ioannou, M., Sakkas, G., Tsoumakas, G., & Vlahavas, I. (2010). Obtaining bipartitions from score vectors for multi-label classification. In Proceedings of the 2010 22nd IEEE international conference on tools with artificial intelligence -Volume 01, ICTAI'10 (pp. 409-416). Washington: IEEE Comput. Soc. ISBN 978-0-7695-4263-8. doi:http://dx.doi.org/10.1109/ICTAI.2010. 65. URL http://dx.doi.org/10.1109/ICTAI.2010.65.
    • (2010) Proceedings of the 2010 22nd IEEE International Conference on tools with Artificial Intelligence ICTAI'10 , vol.1 , pp. 409-416
    • Ioannou, M.1    Sakkas, G.2    Tsoumakas, G.3    Vlahavas, I.4
  • 23
    • 33845536164 scopus 로고    scopus 로고
    • The class imbalance problem: A systematic study
    • Japkowicz, N., & Stephen, S. (2002). The class imbalance problem: A systematic study. Intelligent Data Analysis, 6(5), 429-449.
    • (2002) Intelligent Data Analysis , vol.6 , Issue.5 , pp. 429-449
    • Japkowicz, N.1    Stephen, S.2
  • 25
    • 79957489009 scopus 로고    scopus 로고
    • DiscLDA: Discriminative learning for dimensionality reduction and classification
    • Lacoste-Julien, S., Sha, F., & Jordan, M. I. (2008). DiscLDA: discriminative learning for dimensionality reduction and classification. In NIPS (pp. 897-904).
    • (2008) NIPS , pp. 897-904
    • Lacoste-Julien, S.1    Sha, F.2    Jordan, M.I.3
  • 30
    • 0003223784 scopus 로고    scopus 로고
    • Multi-label text classification with a mixture model trained by EM
    • McCallum, A. K. (1999). Multi-label text classification with a mixture model trained by EM. In AAAI 99 workshop on text learning.
    • (1999) AAAI 99 workshop on text learning
    • McCallum, A.K.1
  • 35
    • 70349968175 scopus 로고    scopus 로고
    • Classifier chains for multi-label classification
    • Read, J., Pfahringer, B., Holmes, G., & Frank, E. (2009). Classifier chains for multi-label classification. In ECML/PKDD (2) (pp. 254-269).
    • (2009) ECML/PKDD , vol.2 , pp. 254-269
    • Read, J.1    Pfahringer, B.2    Holmes, G.3    Frank, E.4
  • 39
    • 77958006898 scopus 로고    scopus 로고
    • On word frequency information and negative evidence in naive Bayes text classification
    • Schneider, K.-M. (2004). On word frequency information and negative evidence in naive Bayes text classification. In España for natural language processing, EsTAL.
    • (2004) España for Natural Language Processing, EsTAL
    • Schneider, K.-M.1
  • 40
    • 0002442796 scopus 로고    scopus 로고
    • Machine learning in automated text categorization
    • Sebastiani, F. (2002). Machine learning in automated text categorization. ACM Computing Surveys, 34(1), 1-47.
    • (2002) ACM Computing Surveys , vol.34 , Issue.1 , pp. 1-47
    • Sebastiani, F.1
  • 44
    • 84958141402 scopus 로고    scopus 로고
    • Parametric mixture models for multi-labeled text
    • Ueda, N., & Saito, K. (2002). Parametric mixture models for multi-labeled text. In NIPS (pp. 721-728).
    • (2002) NIPS , pp. 721-728
    • Ueda, N.1    Saito, K.2
  • 46
    • 27144441097 scopus 로고    scopus 로고
    • An evaluation of statistical approaches to text categorization
    • Yang, Y. (1999). An evaluation of statistical approaches to text categorization. Information Retrieval, 1(1-2), 69-90.
    • (1999) Information Retrieval , vol.1 , Issue.1-2 , pp. 69-90
    • Yang, Y.1
  • 47
    • 0034785186 scopus 로고    scopus 로고
    • A study on thresholding strategies for text categorization
    • Yang, Y. (2001). A study of thresholding strategies for text categorization. In SIGIR'01: proceedings of the 24th annual international ACM SIGIR conference on research and development in information retrieval (pp. 137-145). New York: ACM. (Pubitemid 32951066)
    • (2001) SIGIR Forum (ACM Special Interest Group on Information Retrieval) , pp. 137-145
    • Yang, Y.1
  • 50
    • 67650995440 scopus 로고    scopus 로고
    • Feature selection for multi-label naive Bayes classification
    • Zhang, M.-L., Peña, J. M., & Robles, V. (2009). Feature selection for multi-label naive Bayes classification. Information Science, 179(19), 3218-3229.
    • (2009) Information Science , vol.179 , Issue.19 , pp. 3218-3229
    • Zhang, M.-L.1    Peña, J.M.2    Robles, V.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.