메뉴 건너뛰기




Volumn 8073 LNAI, Issue , 2013, Pages 150-160

A first approach to deal with imbalance in multi-label datasets

Author keywords

Imbalanced Datasets; Measures; Multi label Classification; Preprocessing

Indexed keywords

IMBALANCED DATA-SETS; MEASURES; MULTI-CLASS CLASSIFICATION; MULTI-LABEL; MULTI-LABEL CLASSIFICATIONS; PRE-PROCESSING METHOD; PREPROCESSING; PROCESS OF LEARNING;

EID: 84884913245     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-40846-5_16     Document Type: Conference Paper
Times cited : (81)

References (26)
  • 2
    • 33748366796 scopus 로고    scopus 로고
    • Multilabel Neural Networks with Applications to Functional Genomics and Text Categorization
    • Zhang, M.-L.: Multilabel Neural Networks with Applications to Functional Genomics and Text Categorization. IEEE Trans. Knowl. Data Eng. 18(10), 1338-1351 (2006)
    • (2006) IEEE Trans. Knowl. Data Eng. , vol.18 , Issue.10 , pp. 1338-1351
    • Zhang, M.-L.1
  • 4
    • 27144549260 scopus 로고    scopus 로고
    • Editorial: Special issue on learning from imbalanced data sets
    • Chawla, N.V., Japkowicz, N., Kotcz, A.: Editorial: special issue on learning from imbalanced data sets. SIGKDD Explor. Newsl. 6(1), 1-6 (2004)
    • (2004) SIGKDD Explor. Newsl. , vol.6 , Issue.1 , pp. 1-6
    • Chawla, N.V.1    Japkowicz, N.2    Kotcz, A.3
  • 5
    • 84855780778 scopus 로고    scopus 로고
    • Multilabel classification using heterogeneous ensemble of multi-label classifiers
    • Tahir, M.A., Kittler, J., Bouridane, A.: Multilabel classification using heterogeneous ensemble of multi-label classifiers. Pattern Recognit. Letters 33(5), 513-523 (2012)
    • (2012) Pattern Recognit. Letters , vol.33 , Issue.5 , pp. 513-523
    • Tahir, M.A.1    Kittler, J.2    Bouridane, A.3
  • 6
    • 84861810464 scopus 로고    scopus 로고
    • Inverse random under sampling for class imbalance problem and its application to multi-label classification
    • Tahir, M.A., Kittler, J., Yan, F.: Inverse random under sampling for class imbalance problem and its application to multi-label classification. Pattern Recognit. 45(10), 3738-3750 (2012)
    • (2012) Pattern Recognit. , vol.45 , Issue.10 , pp. 3738-3750
    • Tahir, M.A.1    Kittler, J.2    Yan, F.3
  • 7
    • 84862027781 scopus 로고    scopus 로고
    • Imbalanced multi-modal multi-label learning for subcellular localization prediction of human proteins with both single and multiple sites
    • He, J., Gu, H., Liu,W.: Imbalanced multi-modal multi-label learning for subcellular localization prediction of human proteins with both single and multiple sites. PloS One 7(6), 7155 (2012)
    • (2012) PloS One , vol.7 , Issue.6 , pp. 7155
    • He, J.1    Gu, H.2    Liu, W.3
  • 8
    • 33646536577 scopus 로고    scopus 로고
    • Protein Classification with Multiple Algorithms
    • Bozanis, P., Houstis, E.N. (eds.) PCI 2005. Springer, Heidelberg
    • Diplaris, S., Tsoumakas, G., Mitkas, P.A., Vlahavas, I.: Protein Classification with Multiple Algorithms. In: Bozanis, P., Houstis, E.N. (eds.) PCI 2005. LNCS, vol. 3746, pp. 448-456. Springer, Heidelberg (2005)
    • (2005) LNCS , vol.3746 , pp. 448-456
    • Diplaris, S.1    Tsoumakas, G.2    Mitkas, P.A.3    Vlahavas, I.4
  • 9
    • 7444230008 scopus 로고    scopus 로고
    • Discriminative Methods for Multi-Labeled Classification
    • Dai, H., Srikant, R., Zhang, C. (eds.) PAKDD 2004. Springer, Heidelberg
    • Godbole, S., Sarawagi, S.: Discriminative Methods for Multi-Labeled Classification. In: Dai, H., Srikant, R., Zhang, C. (eds.) PAKDD 2004. LNCS (LNAI), vol. 3056, pp. 22-30. Springer, Heidelberg (2004)
    • (2004) LNCS (LNAI) , vol.3056 , pp. 22-30
    • Godbole, S.1    Sarawagi, S.2
  • 11
    • 3042597440 scopus 로고    scopus 로고
    • Learning multi-label scene classification
    • Boutell, M., Luo, J., Shen, X., Brown, C.: Learning multi-label scene classification. Pattern Recognit. 37(9), 1757-1771 (2004)
    • (2004) Pattern Recognit. , vol.37 , Issue.9 , pp. 1757-1771
    • Boutell, M.1    Luo, J.2    Shen, X.3    Brown, C.4
  • 12
    • 84943242305 scopus 로고    scopus 로고
    • Knowledge Discovery in Multi-label Phenotype Data
    • Principles of Data Mining and Knowledge Discovery
    • Clare, A., King, R.D.: Knowledge discovery in multi-label phenotype data. In: Siebes, A., De Raedt, L. (eds.) PKDD 2001. LNCS (LNAI), vol. 2168, pp. 42-53. Springer, Heidelberg (2001) (Pubitemid 33331849)
    • (2001) LECTURE NOTES IN COMPUTER SCIENCE , Issue.2168 , pp. 42-53
    • Clare, A.1    King, R.D.2
  • 13
    • 33947681316 scopus 로고    scopus 로고
    • ML-KNN: A lazy learning approach to multi-label learning
    • Zhang, M., Zhou, Z.: ML-KNN: A lazy learning approach to multi-label learning. Pattern Recognit. 40(7), 2038-2048 (2007)
    • (2007) Pattern Recognit. , vol.40 , Issue.7 , pp. 2038-2048
    • Zhang, M.1    Zhou, Z.2
  • 14
    • 62649132781 scopus 로고    scopus 로고
    • Ml-rbf: RBF Neural Networks for Multi-label Learning
    • Zhang, M.-L.: Ml-rbf: RBF Neural Networks for Multi-label Learning. Neural Process. Lett. 29, 61-74 (2009)
    • (2009) Neural Process. Lett. , vol.29 , pp. 61-74
    • Zhang, M.-L.1
  • 15
    • 76649137444 scopus 로고    scopus 로고
    • A Kernel Method for Multi-Labelled Classification
    • MIT Press
    • Elisseeff, A., Weston, J.: A Kernel Method for Multi-Labelled Classification. In: Adv. Neural Inf. Processing Systems 14, vol. 14, pp. 681-687. MIT Press (2001)
    • (2001) Adv. Neural Inf. Processing Systems 14 , vol.14 , pp. 681-687
    • Elisseeff, A.1    Weston, J.2
  • 16
    • 33845536164 scopus 로고    scopus 로고
    • The class imbalance problem: A systematic study
    • Japkowicz, N., Stephen, S.: The class imbalance problem: A systematic study. Intell. Data Anal. 6(5), 429-449 (2002)
    • (2002) Intell. Data Anal. , vol.6 , Issue.5 , pp. 429-449
    • Japkowicz, N.1    Stephen, S.2
  • 18
    • 0035283313 scopus 로고    scopus 로고
    • Robust classification for imprecise environments
    • Provost, F., Fawcett, T.: Robust classification for imprecise environments. Machine Learning 42, 203-231 (2001)
    • (2001) Machine Learning , vol.42 , pp. 203-231
    • Provost, F.1    Fawcett, T.2
  • 22
    • 38049123909 scopus 로고    scopus 로고
    • Random k-labelsets: An ensemble method for multilabel classification
    • Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) ECML 2007. Springer, Heidelberg
    • Tsoumakas, G., Vlahavas, I.: Random k-labelsets: An ensemble method for multilabel classification. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) ECML 2007. LNCS (LNAI), vol. 4701, pp. 406-417. Springer, Heidelberg (2007)
    • (2007) LNCS (LNAI) , vol.4701 , pp. 406-417
    • Tsoumakas, G.1    Vlahavas, I.2
  • 24
    • 80052397506 scopus 로고    scopus 로고
    • On the stratification of multi-label data
    • Gunopulos, D., Hofmann, T., Malerba, D., Vazirgiannis, M. (eds.) ECML PKDD 2011, Part III. Springer, Heidelberg
    • Sechidis, K., Tsoumakas, G., Vlahavas, I.: On the stratification of multi-label data. In: Gunopulos, D., Hofmann, T., Malerba, D., Vazirgiannis, M. (eds.) ECML PKDD 2011, Part III. LNCS, vol. 6913, pp. 145-158. Springer, Heidelberg (2011)
    • (2011) LNCS , vol.6913 , pp. 145-158
    • Sechidis, K.1    Tsoumakas, G.2    Vlahavas, I.3
  • 26
    • 68949141664 scopus 로고    scopus 로고
    • Combining instance-based learning and logistic regression for multilabel classification
    • Cheng, W., Hüllermeier, E.: Combining instance-based learning and logistic regression for multilabel classification. Mach. Learn. 76(2-3), 211-225 (2009)
    • (2009) Mach. Learn. , vol.76 , Issue.2-3 , pp. 211-225
    • Cheng, W.1    Hüllermeier, E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.