메뉴 건너뛰기




Volumn , Issue , 2012, Pages 525-533

Multi-label hypothesis reuse

Author keywords

hypothesis reuse; label relationship; multi label learning

Indexed keywords

BASE LEARNERS; BOOSTING APPROACH; CO-OCCURRENCE; HYPOTHESIS REUSE; MULTI-LABEL; PRIOR KNOWLEDGE; REAL-WORLD TASK; REUSE MECHANISM;

EID: 84866035306     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2339530.2339615     Document Type: Conference Paper
Times cited : (92)

References (30)
  • 1
    • 3042597440 scopus 로고    scopus 로고
    • Learning multi-label scene classification
    • M. R. Boutell, J. Luo, X. Shen, and C. M. Brown. Learning multi-label scene classification. Pattern Recognition, 37(9):1757-1771, 2004.
    • (2004) Pattern Recognition , vol.37 , Issue.9 , pp. 1757-1771
    • Boutell, M.R.1    Luo, J.2    Shen, X.3    Brown, C.M.4
  • 2
    • 85162047207 scopus 로고    scopus 로고
    • Filterboost: Regression and classification on large datasets
    • MIT Press, Cambridge, MA
    • J. K. Bradley and R. E. Schapire. Filterboost: regression and classification on large datasets. In Advances in Neural Information Processing Systems 20, pages 185-192. MIT Press, Cambridge, MA, 2008.
    • (2008) Advances in Neural Information Processing Systems , vol.20 , pp. 185-192
    • Bradley, J.K.1    Schapire, R.E.2
  • 7
    • 67949108237 scopus 로고    scopus 로고
    • A tutorial on multi-label classification techniques
    • A. Abraham, A.-E. Hassanien, and V. Snael, editors, Springer
    • A. de Carvalho and A. Freitas. A tutorial on multi-label classification techniques. In A. Abraham, A.-E. Hassanien, and V. Snael, editors, Foundations of Computational Intelligence, Vol.5, pages 177-195. Springer, 2009.
    • (2009) Foundations of Computational Intelligence , vol.5 , pp. 177-195
    • De Carvalho, A.1    Freitas, A.2
  • 8
    • 76649137444 scopus 로고    scopus 로고
    • A kernel method for multi-labelled classification
    • MIT Press, Cambridge, MA
    • A. Elisseeff and J. Weston. A kernel method for multi-labelled classification. In Advances in Neural Information Processing Systems 14, pages 681-687. MIT Press, Cambridge, MA, 2002.
    • (2002) Advances in Neural Information Processing Systems , vol.14 , pp. 681-687
    • Elisseeff, A.1    Weston, J.2
  • 9
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Y. Freund and R. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1):119-139, 1997.
    • (1997) Journal of Computer and System Sciences , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.2
  • 18
    • 83155175374 scopus 로고    scopus 로고
    • Classifier chains for multi-label classification
    • J. Read, B. Pfahringer, G. Holmes, and E. Frank. Classifier chains for multi-label classification. Machine Learning, 85(3):333-359, 2011.
    • (2011) Machine Learning , vol.85 , Issue.3 , pp. 333-359
    • Read, J.1    Pfahringer, B.2    Holmes, G.3    Frank, E.4
  • 20
    • 0033281701 scopus 로고    scopus 로고
    • Improved boosting algorithms using confidence-rated prediction
    • R. E. Schapire and Y. Singer. Improved boosting algorithms using confidence-rated prediction. Machine Learning, 37(3):297-336, 1999.
    • (1999) Machine Learning , vol.37 , Issue.3 , pp. 297-336
    • Schapire, R.E.1    Singer, Y.2
  • 21
    • 0033905095 scopus 로고    scopus 로고
    • BoosTexter: A boosting-based system for text categorization
    • R. E. Schapire and Y. Singer. BoosTexter: A boosting-based system for text categorization. Machine Learning, 39(2-3):135-168, 2000.
    • (2000) Machine Learning , vol.39 , Issue.2-3 , pp. 135-168
    • Schapire, R.E.1    Singer, Y.2
  • 22
    • 0002442796 scopus 로고    scopus 로고
    • Machine learning in automated text categorization
    • F. Sebastiani. Machine learning in automated text categorization. ACM Computing Surveys, 34(1):1-47, 2002.
    • (2002) ACM Computing Surveys , vol.34 , Issue.1 , pp. 1-47
    • Sebastiani, F.1
  • 25
    • 84898954552 scopus 로고    scopus 로고
    • Parametric mixture models for multi-labeled text
    • MIT Press, Cambridge, MA
    • N. Ueda and K. Saito. Parametric mixture models for multi-labeled text. In Advances in Neural Information Processing Systems 15, pages 721-728. MIT Press, Cambridge, MA, 2003.
    • (2003) Advances in Neural Information Processing Systems , vol.15 , pp. 721-728
    • Ueda, N.1    Saito, K.2
  • 29
    • 33947681316 scopus 로고    scopus 로고
    • ML-kNN: A lazy learning approach to multi-label learning
    • M.-L. Zhang and Z.-H. Zhou. ML-kNN: A lazy learning approach to multi-label learning. Pattern Recognition, 40(7):2038-2048, 2007.
    • (2007) Pattern Recognition , vol.40 , Issue.7 , pp. 2038-2048
    • Zhang, M.-L.1    Zhou, Z.-H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.