-
1
-
-
67949108237
-
A tutorial on multi-label classification techniques
-
Springer
-
A. C. P. L. F. Carvalho and A. A. Freitas, " A Tutorial on Multi-label Classification Techniques," in Studies in Computational Intelligence, vol. 5, Springer, 2009, pp. 177-195.
-
(2009)
Studies in Computational Intelligence
, vol.5
, pp. 177-195
-
-
Carvalho, A.C.P.L.F.1
Freitas, A.A.2
-
2
-
-
77956163078
-
Mining multi-label data
-
2nd ed Springer
-
G. Tsoumakas, I. Katakis, and I. Vlahavas, " Mining Multi-Label Data," in Data Mining and Knowledge Discovery Handbook, 2nd ed., Springer, 2010, pp. 667-685.
-
(2010)
Data Mining and Knowledge Discovery Handbook
, pp. 667-685
-
-
Tsoumakas, G.1
Katakis, I.2
Vlahavas, I.3
-
3
-
-
33947681316
-
ML-KNN: A lazy learning approach to multi-label learning
-
M. L. Zhang and Z. H. Zhou, " ML-KNN: A lazy learning approach to multi-label learning," Pattern Recognition, vol. 40, no. 7, 2007.
-
(2007)
Pattern Recognition
, vol.40
, Issue.7
-
-
Zhang, M.L.1
Zhou, Z.H.2
-
4
-
-
70349968175
-
Classifier chains for multi-label classification
-
Bled, Slovenia
-
J. Read, B. Pfahringer, G. Holmes, and E. Frank, " Classifier Chains for Multi-label Classification," in Proc. of the ECML/PKDD 2009, Bled, Slovenia, 2009, pp. 254-269.
-
(2009)
Proc. of the ECML/PKDD 2009
, pp. 254-269
-
-
Read, J.1
Pfahringer, B.2
Holmes, G.3
Frank, E.4
-
5
-
-
83155175374
-
Classifier chains for multi-label classification
-
J. Read, B. Pfahringer, G. Holmes, and E. Frank, " Classifier Chains for Multi-Label Classification," Machine Learning, vol. 85, no. 3, pp. 333-359, 2011.
-
(2011)
Machine Learning
, vol.85
, Issue.3
, pp. 333-359
-
-
Read, J.1
Pfahringer, B.2
Holmes, G.3
Frank, E.4
-
6
-
-
77956522919
-
Bayes optimal multilabel classification via probabilistic classifier chains
-
Haifai
-
K. Dembczynski, W. Cheng, and E. Hullermeier, " Bayes Optimal Multilabel Classification via Probabilistic Classifier Chains," in Proc. of the 27th International Conference on Machine Learning, Haifai, 2010, pp. 279-286.
-
(2010)
Proc. of the 27th International Conference on Machine Learning
, pp. 279-286
-
-
Dembczynski, K.1
Cheng, W.2
Hullermeier, E.3
-
7
-
-
84881047364
-
Bayesian chain classifiers for multidimensional classification
-
Barcelona, Spain
-
J. H. Zaragoza, L. E. Sucar, E. F. Morales, C. Bielza, and P. Larraaga, "Bayesian chain classifiers for multidimensional classification," in IJCAI 11 Proc. of the 22nd international joint conference on Artificial Intelligence, Barcelona, Spain, 2011, pp. 2192-2197.
-
(2011)
IJCAI 11 Proc. of the 22nd International Joint Conference on Artificial Intelligence
, pp. 2192-2197
-
-
Zaragoza, J.H.1
Sucar, L.E.2
Morales, E.F.3
Bielza, C.4
Larraaga, P.5
-
8
-
-
84874707478
-
Hybrid binary-chain multi-label classifiers
-
Gr anada, Spain
-
P. Hernandez-Leal, F. Orihuela-Espina, L. E. Sucar, and E. F. Morales, " Hybrid Binary-Chain Multi-label Classifiers," in Proc. of the The 6th European Workshop on Probabilistic Graphical Models, Gr anada, Spain, 2012.
-
(2012)
Proc. of the the 6th European Workshop on Probabilistic Graphical Models
-
-
Hernandez-Leal, P.1
Orihuela-Espina, F.2
Sucar, L.E.3
Morales, E.F.4
-
9
-
-
84890467771
-
Efficient monte carlo optimization for multi-label classifier chains
-
Vancouver, Canada
-
J. Read, L. Martino, and D. Luengo, " Efficient Monte Carlo Optimization for Multi-label Classifier Chains," in Proc. of The 38th International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2013), Vancouver, Canada, 2013.
-
(2013)
Proc. of the 38th International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2013)
-
-
Read, J.1
Martino, L.2
Luengo, D.3
-
10
-
-
84879304113
-
Beam search algorithms for multilabel learning
-
A. Kumar, S. Vembu, A. K. Menon, and C. Elkan, " Beam search algorithms for multilabel learning," Machine Learning, vol. 92, no. 1, pp. 65-89, 2013.
-
(2013)
Machine Learning
, vol.92
, Issue.1
, pp. 65-89
-
-
Kumar, A.1
Vembu, S.2
Menon, A.K.3
Elkan, C.4
-
12
-
-
84861617363
-
An extensive experimental comparison of methods for multi-label learning
-
G. Madjarov, D. Kocev, D. Gjorgjevikj, and D. Saso, " An Extensive Experimental Comparison of Methods for Multi-Label Learning," Pattern Recognition, vol. 45, 2012.
-
(2012)
Pattern Recognition
, vol.45
-
-
Madjarov, G.1
Kocev, D.2
Gjorgjevikj, D.3
Saso, D.4
-
16
-
-
69449097857
-
Taxonomy for characterizing ensemble methods in classification tasks: A review and annotated bibliography
-
L. Rokach, "Taxonomy for characterizing ensemble methods in classification tasks: A review and annotated bibliography, " Computational Statistics & Data Analysis, vol. 53, no. 12, pp. 4046-4072, 2009.
-
(2009)
Computational Statistics & Data Analysis
, vol.53
, Issue.12
, pp. 4046-4072
-
-
Rokach, L.1
-
18
-
-
84948104699
-
Integrating classification and association rule mining
-
New York, USA
-
B. Liu, W. Hsu, and Y. Ma, " Integrating Classification and Association Rule Mining," in Proc. of the ACM SIGKDD International Conf. on Knowled ge Discovery and Data Mining, New York, USA, 1998, pp. 80-86.
-
(1998)
Proc. of the ACM SIGKDD International Conf. on Knowled Ge Discovery and Data Mining
, pp. 80-86
-
-
Liu, B.1
Hsu, W.2
Ma, Y.3
-
21
-
-
84943242305
-
Knowledge discovery in multi-label phenotype data
-
A. J. Clare and R. D. King, " Knowledge discovery in multi-label phenotype data," LNAI 2168, 2001.
-
(2001)
LNAI
, vol.2168
-
-
Clare, A.J.1
King, R.D.2
-
22
-
-
79955550286
-
Multi-dimensional classification with Bayesian networks
-
C. Bielza, G. Li, and P. Larraaga, " Multi-dimensional classification with Bayesian networks," International Journal of Approximate Reasoning, vol. 52, no. 6, pp. 705-727, 2011.
-
(2011)
International Journal of Approximate Reasoning
, vol.52
, Issue.6
, pp. 705-727
-
-
Bielza, C.1
Li, G.2
Larraaga, P.3
-
23
-
-
84957069814
-
Text categorization with suport vector machines: Learning with many relevant features
-
Germany
-
T. Joachims, "Text Categorization with Suport Vector Machines: Learning with Many Relevant Features, " in Proc. of the 10th European Conf. on Machine Learning, Germany, 1998, pp. 137-142.
-
(1998)
Proc. of the 10th European Conf. on Machine Learning
, pp. 137-142
-
-
Joachims, T.1
-
24
-
-
80052236046
-
Mulan: A java library for multi-label learning
-
G. Tsoumakas, E. Spyromitros, J. Vilcek, and I. Vlahavas, " Mulan: A Java Library for Multi-Label Learning," Journal of Machine Learning Research, vol. 12, pp. 2411-2414, 2011.
-
(2011)
Journal of Machine Learning Research
, vol.12
, pp. 2411-2414
-
-
Tsoumakas, G.1
Spyromitros, E.2
Vilcek, J.3
Vlahavas, I.4
-
26
-
-
78751538665
-
Genetic algorithm with local search for community mining in complex networks
-
D. Jin, D. He, D. Liu, and C. Baquero, " Genetic Algorithm with Local Search for Community Mining in Complex Networks," in Proc. of the 2010 22nd IEEE Inte rnational Conference on Tools with Artificial Intelligence, 2010.
-
(2010)
Proc. of the 2010 22nd IEEE Inte Rnational Conference on Tools with Artificial Intelligence
-
-
Jin, D.1
He, D.2
Liu, D.3
Baquero, C.4
-
29
-
-
84875096888
-
Balancing learning a nd overfitting in genetic programming with interleaved sampling of training data
-
Vienna, Austria
-
I. Gonalves and S. Silva, "Balancing Learning a nd Overfitting in Genetic Programming with Interleaved Sampling of Training Data," in Proc. of EuroGP 2013, Vienna, Austria, 2013, pp. 73-84.
-
(2013)
Proc. of EuroGP 2013
, pp. 73-84
-
-
Gonalves, I.1
Silva, S.2
-
30
-
-
22844456607
-
The role of occams razor in knowledge discovery
-
P. Domingos, "The Role of Occams Razor in Knowledge Discovery," Data Mining and Knowledge Discovery, vol. 3, pp. 409-425, 1999.
-
(1999)
Data Mining and Knowledge Discovery
, vol.3
, pp. 409-425
-
-
Domingos, P.1
-
34
-
-
0031276011
-
Bayesia n network classifiers
-
N. Friedman, D. Geiger, and M. Goldszmidt, "Bayesia n Network Classifiers," Machine Learning, vol. 29, 1997.
-
(1997)
Machine Learning
, vol.29
-
-
Friedman, N.1
Geiger, D.2
Goldszmidt, M.3
|