메뉴 건너뛰기




Volumn , Issue , 2013, Pages 13-23

Multi-label learning with millions of labels: Recommending advertiser bid phrases for web pages

Author keywords

Bid phrase recommendation; Large scale learning; Multi label learning; Random forests; Semi supervised learning

Indexed keywords

BID PHRASE RECOMMENDATION; LARGE-SCALE LEARNING; MULTI-LABEL LEARNING; RANDOM FORESTS; SEMI-SUPERVISED LEARNING;

EID: 84893108239     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (288)

References (48)
  • 1
    • 36849051856 scopus 로고    scopus 로고
    • Keyword generation for search engine advertising using semantic similarity between terms
    • V. Abhishek and K. Hosanagar. Keyword generation for search engine advertising using semantic similarity between terms. In ICEC, pages 89-94, 2007.
    • (2007) ICEC , pp. 89-94
    • Abhishek, V.1    Hosanagar, K.2
  • 2
    • 84859166305 scopus 로고    scopus 로고
    • Simrank++: Query rewriting through link analysis of the click graph
    • I. Antonellis, H. G. Molina, and C. C. Chang. Simrank++: query rewriting through link analysis of the click graph. VLDBE, 1(1):408-421, 2008.
    • (2008) VLDBE , vol.1 , Issue.1 , pp. 408-421
    • Antonellis, I.1    Molina, H.G.2    Chang, C.C.3
  • 3
    • 85162050606 scopus 로고    scopus 로고
    • Label embedding trees for large multi-class tasks
    • S. Bengio, J. Weston, and D. Grangier. Label embedding trees for large multi-class tasks. In NIPS, 2010.
    • (2010) NIPS
    • Bengio, S.1    Weston, J.2    Grangier, D.3
  • 5
    • 80053440655 scopus 로고    scopus 로고
    • Multilabel classification on tree- and dag-structured hierarchies
    • W. Bi and J. T. Kwok. Multilabel classification on tree- and dag-structured hierarchies. In ICML, 2011.
    • (2011) ICML
    • Bi, W.1    Kwok, J.T.2
  • 6
    • 0002343269 scopus 로고    scopus 로고
    • Top-down induction of clustering trees
    • H. Blockeel, L. D. Raedt, and J. Ramon. Top-down induction of clustering trees. In ICML, pages 55-63, 1998.
    • (1998) ICML , pp. 55-63
    • Blockeel, H.1    Raedt, L.D.2    Ramon, J.3
  • 8
    • 3042597440 scopus 로고    scopus 로고
    • Learning multi-label scene classification
    • M. Boutell, J. Luo, X. Shen, and C. Brown. Learning multi-label scene classification. Pattern Recognition, 37(9):1757-1771, 2004.
    • (2004) Pattern Recognition , vol.37 , Issue.9 , pp. 1757-1771
    • Boutell, M.1    Luo, J.2    Shen, X.3    Brown, C.4
  • 9
  • 11
    • 84857617983 scopus 로고    scopus 로고
    • A survey of automatic query expansion in information retrieval
    • C. Carpineto and G. Romano. A survey of automatic query expansion in information retrieval. CSUR, 44(1):1:1-1:50, 2012.
    • (2012) CSUR , vol.44 , Issue.1 , pp. 111-150
    • Carpineto, C.1    Romano, G.2
  • 12
    • 29644434908 scopus 로고    scopus 로고
    • Incremental algorithms for hierarchical classification
    • N. Cesa-Bianchi, C. Gentile, and L. Zaniboni. Incremental algorithms for hierarchical classification. JMLR, 7, 2006.
    • (2006) JMLR , vol.7
    • Cesa-Bianchi, N.1    Gentile, C.2    Zaniboni, L.3
  • 13
    • 52649118114 scopus 로고    scopus 로고
    • Semi-supervised multi-label learning by solving a sylvester equation
    • G. Chen, Y. Song, F. Wang, and C. Zhang. Semi-supervised multi-label learning by solving a sylvester equation. In SDM, pages 410-419, 2008.
    • (2008) SDM , pp. 410-419
    • Chen, G.1    Song, Y.2    Wang, F.3    Zhang, C.4
  • 15
    • 84943242305 scopus 로고    scopus 로고
    • Knowledge discovery in multi-label phenotype data
    • A. Clare and R. D. King. Knowledge discovery in multi-label phenotype data. In PKDD, pages 42-53, 2001.
    • (2001) PKDD , pp. 42-53
    • Clare, A.1    King, R.D.2
  • 16
    • 85030321143 scopus 로고    scopus 로고
    • Mapreduce: Simplified data processing on large clusters
    • J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters. In OSDI, 2004.
    • (2004) OSDI
    • Dean, J.1    Ghemawat, S.2
  • 17
    • 84893085273 scopus 로고    scopus 로고
    • Multiclass-multilabel classification with more classes than examples
    • O. Dekel and O. Shair. Multiclass-multilabel classification with more classes than examples. In AISTATS, 2010.
    • (2010) AISTATS
    • Dekel, O.1    Shair, O.2
  • 18
    • 85162353669 scopus 로고    scopus 로고
    • Fast and balanced: Efficient label tree learning for large scale object recognition
    • J. Deng, S. Satheesh, A. C. Berg, and F. Li. Fast and balanced: Efficient label tree learning for large scale object recognition. In NIPS, 2011.
    • (2011) NIPS
    • Deng, J.1    Satheesh, S.2    Berg, A.C.3    Li, F.4
  • 19
    • 2542631648 scopus 로고    scopus 로고
    • A kernel method for multi-labelled classification
    • A. Elisseeff and J. Weston. A kernel method for multi-labelled classification. In NIPS, pages 681-687, 2001.
    • (2001) NIPS , pp. 681-687
    • Elisseeff, A.1    Weston, J.2
  • 20
    • 84865226076 scopus 로고    scopus 로고
    • Efficient max-margin multi-label classification with applications to zero-shot learning
    • B. Hariharan, S. V. N. Vishwanathan, and M. Varma. Efficient max-margin multi-label classification with applications to zero-shot learning. ML, 2012.
    • (2012) ML
    • Hariharan, B.1    Vishwanathan, S.V.N.2    Varma, M.3
  • 21
    • 77956528679 scopus 로고    scopus 로고
    • Multi-label prediction via compressed sensing
    • D. Hsu, S. Kakade, J. Langford, and T. Zhang. Multi-label prediction via compressed sensing. In NIPS, 2009.
    • (2009) NIPS
    • Hsu, D.1    Kakade, S.2    Langford, J.3    Zhang, T.4
  • 22
    • 70350627315 scopus 로고    scopus 로고
    • Multi-label multiple kernel learning
    • S. Ji, L. Sun, R. Jin, and J. Ye. Multi-label multiple kernel learning. In NIPS, pages 777-784, 2008.
    • (2008) NIPS , pp. 777-784
    • Ji, S.1    Sun, L.2    Jin, R.3    Ye, J.4
  • 23
    • 78549246824 scopus 로고    scopus 로고
    • Keyword generation for search engine advertising
    • A. Joshi and R. Motwani. Keyword generation for search engine advertising. In ICDMW, pages 490-496, 2006.
    • (2006) ICDMW , pp. 490-496
    • Joshi, A.1    Motwani, R.2
  • 24
    • 84877734258 scopus 로고    scopus 로고
    • Multilabel classification using bayesian compressed sensing
    • A. Kapoor, R. Viswanathan, and P. Jain. Multilabel classification using bayesian compressed sensing. In NIPS, 2012.
    • (2012) NIPS
    • Kapoor, A.1    Viswanathan, R.2    Jain, P.3
  • 25
    • 38049132551 scopus 로고    scopus 로고
    • Ensembles of multi-objective decision trees
    • D. Kocev, C. Vens, J. Struyf, and S. Dzeroski. Ensembles of multi-objective decision trees. In ECML, pages 624 - 631, 2007.
    • (2007) ECML , pp. 624-631
    • Kocev, D.1    Vens, C.2    Struyf, J.3    Dzeroski, S.4
  • 27
    • 70350647018 scopus 로고    scopus 로고
    • Semi-supervised multi-label learning by constrained non-negative matrix factorization
    • Y. Liu, R. Jin, and L. Yang. Semi-supervised multi-label learning by constrained non-negative matrix factorization. In AAAI, 2006.
    • (2006) AAAI
    • Liu, Y.1    Jin, R.2    Yang, L.3
  • 28
    • 77950948821 scopus 로고    scopus 로고
    • Optimizing query rewrites for keyword-based advertising
    • A. Malekian, C.-C. Chang, R. Kumar, and G. Wang. Optimizing query rewrites for keyword-based advertising. In EC, pages 10-19, 2008.
    • (2008) EC , pp. 10-19
    • Malekian, A.1    Chang, C.-C.2    Kumar, R.3    Wang, G.4
  • 29
    • 79959425349 scopus 로고    scopus 로고
    • Born to trade: A genetically evolved keyword bidder for sponsored search
    • july
    • M. Munsey, J. Veilleux, S. Bikkani, A. Teredesai, and M. D. Cock. Born to trade: A genetically evolved keyword bidder for sponsored search. In CEC, pages 1-8, july 2010.
    • (2010) CEC , pp. 1-8
    • Munsey, M.1    Veilleux, J.2    Bikkani, S.3    Teredesai, A.4    Cock, M.D.5
  • 31
    • 77955032649 scopus 로고    scopus 로고
    • Planet: Massively parallel learning of tree ensembles with mapreduce
    • B. Panda, J. Herbach, S. Basu, and R. J. Bayardo. Planet: Massively parallel learning of tree ensembles with mapreduce. PVLDB, 2(2), 2009.
    • (2009) PVLDB , vol.2 , Issue.2
    • Panda, B.1    Herbach, J.2    Basu, S.3    Bayardo, R.J.4
  • 33
    • 33745768424 scopus 로고    scopus 로고
    • Kernel-based learning of hierarchical multilabel classification models
    • J. Rousu, C. Saunders, S. Szedmak, and J. Shawe-Taylor. Kernel-based learning of hierarchical multilabel classification models. JMLR, 7, 2006.
    • (2006) JMLR , vol.7
    • Rousu, J.1    Saunders, C.2    Szedmak, S.3    Shawe-Taylor, J.4
  • 35
    • 79251503629 scopus 로고    scopus 로고
    • Trading accuracy for sparsity in optimization problems with sparsity constraints
    • S. Shalev-Shwartz, N. Srebro, and T. Zhang. Trading accuracy for sparsity in optimization problems with sparsity constraints. SIAM J. on Optimization, 20(6), 2010.
    • (2010) SIAM J. on Optimization , vol.20 , Issue.6
    • Shalev-Shwartz, S.1    Srebro, N.2    Zhang, T.3
  • 36
    • 79951748586 scopus 로고    scopus 로고
    • One-class matrix completion with low-density factorizations
    • V. Sindhwani, S. S. Bucak, J. Hu, and A. Mojsilovic. One-class matrix completion with low-density factorizations. In ICDM, 2010.
    • (2010) ICDM
    • Sindhwani, V.1    Bucak, S.S.2    Hu, J.3    Mojsilovic, A.4
  • 37
    • 78649409198 scopus 로고    scopus 로고
    • Sparse semi-supervised learning using conjugate functions
    • S. Sun and J. Shawe-Taylor. Sparse semi-supervised learning using conjugate functions. JMLR, 2010.
    • (2010) JMLR
    • Sun, S.1    Shawe-Taylor, J.2
  • 38
    • 79951752250 scopus 로고    scopus 로고
    • Large scale multi-label classification via metalabeler
    • L. Tang, S. Rajan, and V. K. Narayanan. Large scale multi-label classification via metalabeler. In WWW, pages 211-220, 2009.
    • (2009) WWW , pp. 211-220
    • Tang, L.1    Rajan, S.2    Narayanan, V.K.3
  • 40
    • 24944537843 scopus 로고    scopus 로고
    • Large margin methods for structured and interdependent output variables
    • I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large margin methods for structured and interdependent output variables. JMLR, 6, 2005.
    • (2005) JMLR , vol.6
    • Tsochantaridis, I.1    Joachims, T.2    Hofmann, T.3    Altun, Y.4
  • 41
    • 74849083829 scopus 로고    scopus 로고
    • Effective and efficient multilabel classification in domains with large number of labels
    • G. Tsoumakas, I. Katakis, and I. Vlahavas. Effective and efficient multilabel classification in domains with large number of labels. In ECML/PKDD, 2008.
    • (2008) ECML/PKDD
    • Tsoumakas, G.1    Katakis, I.2    Vlahavas, I.3
  • 42
    • 52949089060 scopus 로고    scopus 로고
    • Random κ -labelsets: An ensemble method for multilabel classification
    • G. Tsoumakas and I. P. Vlahavas. Random κ -labelsets: An ensemble method for multilabel classification. In ECML, 2007.
    • (2007) ECML
    • Tsoumakas, G.1    Vlahavas, I.P.2
  • 43
    • 77955654853 scopus 로고    scopus 로고
    • Large scale image annotation: Learning to rank with joint word-image embeddings
    • J. Weston, S. Bengio, and N. Usunier. Large scale image annotation: Learning to rank with joint word-image embeddings. Machine Learning, 81(1), 2010.
    • (2010) Machine Learning , vol.81 , Issue.1
    • Weston, J.1    Bengio, S.2    Usunier, N.3
  • 44
    • 57349090617 scopus 로고    scopus 로고
    • Keyword extraction for contextual advertisement
    • X. Wu and A. Bolivar. Keyword extraction for contextual advertisement. In WWW, pages 1195-1196, 2008.
    • (2008) WWW , pp. 1195-1196
    • Wu, X.1    Bolivar, A.2
  • 45
    • 36849011561 scopus 로고    scopus 로고
    • Model-shared subspace boosting for multi-label classification
    • R. Yan, J. Tesic, and J. R. Smith. Model-shared subspace boosting for multi-label classification. In KDD, 2007.
    • (2007) KDD
    • Yan, R.1    Tesic, J.2    Smith, J.R.3
  • 46
    • 34250655383 scopus 로고    scopus 로고
    • Finding advertising keywords on web pages
    • W. Yih, J. Goodman, and V. R. Carvalho. Finding advertising keywords on web pages. In WWW, 2006.
    • (2006) WWW
    • Yih, W.1    Goodman, J.2    Carvalho, V.R.3
  • 47
    • 67650995440 scopus 로고    scopus 로고
    • Feature selection for multi-label naive bayes classification
    • M. L. Zhang, J. M. Peña, and V. Robles. Feature selection for multi-label naive bayes classification. Inf. Sci., 179(19), 2009.
    • (2009) Inf. Sci. , vol.179 , Issue.19
    • Zhang, M.L.1    Peña, J.M.2    Robles, V.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.