메뉴 건너뛰기




Volumn 52, Issue 6, 2011, Pages 705-727

Multi-dimensional classification with Bayesian networks

Author keywords

Bayesian network classifiers; Learning from data; MPE; Multi dimensional outputs; Multi label classification

Indexed keywords

BAYESIAN NETWORK CLASSIFIERS; LEARNING FROM DATA; MPE; MULTI-DIMENSIONAL OUTPUTS; MULTI-LABEL;

EID: 79955550286     PISSN: 0888613X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ijar.2011.01.007     Document Type: Article
Times cited : (187)

References (73)
  • 1
    • 0032089922 scopus 로고    scopus 로고
    • Approximating MAPs for belief networks is NP-hard and other theorems
    • PII S0004370298000435
    • A.M. Abdelbar, and S.M. Hedetniemi Approximating MAP for belief networks is NP-hard and other theorems Artificial Intelligence 102 1 1998 21 38 (Pubitemid 128378356)
    • (1998) Artificial Intelligence , vol.102 , Issue.1 , pp. 21-38
    • Abdelbar, A.M.1    Hedetniemi, S.M.2
  • 3
    • 26044441615 scopus 로고    scopus 로고
    • Feature selection in Bayesian classifiers for the prognosis of survival of cirrhotic patients treated with TIPS
    • DOI 10.1016/j.jbi.2005.05.004, PII S153204640500047X
    • R. Blanco, I. Inza, M. Merino, J. Quiroga, and P. Larrañaga Feature selection in Bayesian classifiers for the prognosis of survival of cirrhotic patients treated with TIPS Journal of Biomedical Informatics 38 5 2005 376 388 (Pubitemid 41405808)
    • (2005) Journal of Biomedical Informatics , vol.38 , Issue.5 , pp. 376-388
    • Blanco, R.1    Inza, I.2    Merino, M.3    Quiroga, J.4    Larranaga, P.5
  • 4
    • 3042597440 scopus 로고    scopus 로고
    • Learning multi-label scene classification
    • DOI 10.1016/j.patcog.2004.03.009, PII S0031320304001074
    • M.R. Boutell, J. Luo, X. Shen, and C.M. Brown Learning multi-label scene classification Pattern Recognition 37 9 2004 1757 1771 (Pubitemid 38804465)
    • (2004) Pattern Recognition , vol.37 , Issue.9 , pp. 1757-1771
    • Boutell, M.R.1    Luo, J.2    Shen, X.3    Brown, C.M.4
  • 5
    • 68949141664 scopus 로고    scopus 로고
    • Combining instance-based learning and logistic regression for multilabel classification
    • W. Cheng, and E. Hüllermeier Combining instance-based learning and logistic regression for multilabel classification Machine Learning 76 2-3 2009 211 225
    • (2009) Machine Learning , vol.76 , Issue.23 , pp. 211-225
    • Cheng, W.1    Hüllermeier, E.2
  • 6
    • 79955565563 scopus 로고    scopus 로고
    • A simple instance-based approach to multi-label classification using the Mallows model
    • W. Cheng, E. Hüllermeier, A simple instance-based approach to multi-label classification using the Mallows model, in: Proceedings of the Workshop on Learning from Multi-Label Data (MLD'09), 2009, pp. 28-38.
    • (2009) Proceedings of the Workshop on Learning from Multi-Label Data (MLD'09) , pp. 28-38
    • Cheng, W.1
  • 7
    • 35748943218 scopus 로고    scopus 로고
    • A discretization algorithm based on class-attribute contingency coefficient
    • T. Cheng-Jung, L. Chien-I, and Y. Wei-Pang A discretization algorithm based on class-attribute contingency coefficient Information Sciences 178 2008 714 731
    • (2008) Information Sciences , vol.178 , pp. 714-731
    • Cheng-Jung, T.1    Chien-I, L.2    Wei-Pang, Y.3
  • 8
    • 84933530882 scopus 로고
    • Approximating discrete probability distributions with dependence trees
    • C. Chow, and C. Liu Approximating discrete probability distributions with dependence trees IEEE Transactions on Information Theory 14 1968 462 467
    • (1968) IEEE Transactions on Information Theory , vol.14 , pp. 462-467
    • Chow, C.1    Liu, C.2
  • 9
    • 0000666661 scopus 로고
    • On the shortest arborescence of a directed graph
    • C. Chu, and T. Liu On the shortest arborescence of a directed graph Science Sinica 14 1968 1396 1400
    • (1968) Science Sinica , vol.14 , pp. 1396-1400
    • Chu, C.1    Liu, T.2
  • 10
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • G.F. Cooper, and E.A. Herskovits A Bayesian method for the induction of probabilistic networks from data Machine Learning 9 1992 309 347
    • (1992) Machine Learning , vol.9 , pp. 309-347
    • Cooper, G.F.1    Herskovits, E.A.2
  • 12
    • 31844433245 scopus 로고    scopus 로고
    • Learning as search optimization: Approximate large margin methods for structured prediction
    • H. Daumé III, D. Marcu, Learning as search optimization: approximate large margin methods for structured prediction, in: Proceedings of the International Conference on Machine Learning, 2005, pp. 169-176.
    • (2005) Proceedings of the International Conference on Machine Learning , pp. 169-176
    • Daumé Iii, H.1
  • 13
    • 0003064380 scopus 로고
    • Applications of a general propagation algorithm for probabilistic expert systems
    • A.P. Dawid Applications of a general propagation algorithm for probabilistic expert systems Statistics and Computing 2 1992 25 36
    • (1992) Statistics and Computing , vol.2 , pp. 25-36
    • Dawid, A.P.1
  • 14
    • 67949108237 scopus 로고    scopus 로고
    • A tutorial on multi-label classification techniques
    • Springer, Foundations of Computational Intelligence
    • A. de Carvalho, and A.A. Freitas A tutorial on multi-label classification techniques Foundations of Computational Intelligence Studies in Computational Intelligence vol. 5 2009 Springer 177 195
    • (2009) Studies in Computational Intelligence , vol.5 , pp. 177-195
    • De Carvalho, A.1    Freitas, A.A.2
  • 15
    • 38049160416 scopus 로고    scopus 로고
    • Inference and learning in multi-dimensional Bayesian network classifiers
    • Springer, European Conference on Symbolic and Quantitative Approaches to Reasoning under Uncertainty
    • P.R. de Waal, and L.C. van der Gaag Inference and learning in multi-dimensional Bayesian network classifiers European Conference on Symbolic and Quantitative Approaches to Reasoning under Uncertainty Lecture Notes in Artificial Intelligence vol. 4724 2007 Springer 501 511
    • (2007) Lecture Notes in Artificial Intelligence , vol.4724 , pp. 501-511
    • De Waal, P.R.1    Van Der Gaag, L.C.2
  • 17
    • 0033188982 scopus 로고    scopus 로고
    • Bucket elimination: A unifying framework for reasoning
    • DOI 10.1016/S0004-3702(99)00059-4
    • R. Dechter Bucket elimination: a unifying framework for reasoning Artificial Intelligence 113 1-2 1999 41 85 (Pubitemid 30542742)
    • (1999) Artificial Intelligence , vol.113 , Issue.1 , pp. 41-85
    • Dechter, R.1
  • 21
    • 78650818467 scopus 로고    scopus 로고
    • Feature selection for Bayesian network classifiers using the MDL-FS score
    • M.M. Drugan, and M.A. Wiering Feature selection for Bayesian network classifiers using the MDL-FS score International Journal of Approximate Reasoning 51 6 2010 695 717
    • (2010) International Journal of Approximate Reasoning , vol.51 , Issue.6 , pp. 695-717
    • Drugan, M.M.1    Wiering, M.A.2
  • 23
    • 76649137444 scopus 로고    scopus 로고
    • A kernel method for multi-labelled classification
    • A. Elisseeff, and J. Weston A kernel method for multi-labelled classification T. Dietterich, S. Becker, Z. Ghahramani, Advances in Neural Information Processing Systems vol. 14 2002 MIT Press 681 687
    • (2002) Advances in Neural Information Processing Systems , vol.14 , pp. 681-687
    • Elisseeff, A.1    Weston, J.2
  • 24
  • 25
    • 58149287952 scopus 로고    scopus 로고
    • An extension on "statistical comparisons of classifiers over multiple data sets" for all pairwise comparisons
    • S. García, and F. Herrera An extension on "Statistical comparisons of classifiers over multiple data sets" for all pairwise comparisons Journal of Machine Learning Research 9 2008 2677 2694
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 2677-2694
    • García, S.1    Herrera, F.2
  • 26
    • 0001698338 scopus 로고
    • Abductive reasoning in Bayesian belief networks using a genetic algorithm
    • E.S. Gelsema Abductive reasoning in Bayesian belief networks using a genetic algorithm Pattern Recognition Letters 16 8 1995 865 871
    • (1995) Pattern Recognition Letters , vol.16 , Issue.8 , pp. 865-871
    • Gelsema, E.S.1
  • 27
    • 7444230008 scopus 로고    scopus 로고
    • Discriminative Methods for Multi-labeled Classification
    • Advances in Knowledge Discovery and Data Mining
    • S. Godbole, S. Sarawagi, Discriminative methods for multi-labeled classification, in: Proceedings of the 8th Pacific-Asia Conference on Knowledge Discovery and Data Mining, 2004, pp. 22-30. (Pubitemid 38824880)
    • (2004) Lecture Notes in Computer Science , Issue.3056 , pp. 22-30
    • Godbole, S.1    Sarawagi, S.2
  • 34
    • 0035369520 scopus 로고    scopus 로고
    • A general scheme for automatic generation of search heuristics from specification dependencies
    • DOI 10.1016/S0004-3702(01)00107-2, PII S0004370201001072
    • K. Kask, and R. Dechter A general scheme for automatic generation of search heuristics from specification dependencies Artificial Intelligence 129 1-2 2001 91 131 (Pubitemid 32498417)
    • (2001) Artificial Intelligence , vol.129 , Issue.1-2 , pp. 91-131
    • Kask, K.1    Dechter, R.2
  • 35
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • PII S000437029700043X
    • R. Kohavi, and G. John Wrappers for feature subset selection Artificial Intelligence 97 1-2 1997 273 324 (Pubitemid 127401107)
    • (1997) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 39
    • 69249213986 scopus 로고    scopus 로고
    • AND/OR branch-and-bound search for combinatorial optimization in graphical models
    • R. Marinescu, and R. Dechter AND/OR branch-and-bound search for combinatorial optimization in graphical models Artificial Intelligence 173 16-17 2009 1457 1491
    • (2009) Artificial Intelligence , vol.173 , Issue.1617 , pp. 1457-1491
    • Marinescu, R.1    Dechter, R.2
  • 41
    • 73149118243 scopus 로고    scopus 로고
    • Guest editorial: Special issue on structured prediction
    • C. Parker, Y. Altun, and P. Tadepalli Guest editorial: special issue on structured prediction Machine Learning 77 2009 161 164
    • (2009) Machine Learning , vol.77 , pp. 161-164
    • Parker, C.1    Altun, Y.2    Tadepalli, P.3
  • 43
    • 84939750950 scopus 로고
    • A probabilistic causal model for diagnostic problem solving - Part I: Integrating symbolic causal inference with numeric probabilistic inference
    • Y. Peng, and J.A. Reggia A probabilistic causal model for diagnostic problem solving - Part I: Integrating symbolic causal inference with numeric probabilistic inference IEEE Transactions on Systems, Man, and Cybernetics 17 2 1987 146 162
    • (1987) IEEE Transactions on Systems, Man, and Cybernetics , vol.17 , Issue.2 , pp. 146-162
    • Peng, Y.1    Reggia, J.A.2
  • 44
    • 0023347137 scopus 로고
    • A probabilistic causal model for diagnostic problem solving. Part II: Diagnostic strategy
    • Y. Peng, and J.A. Reggia A probabilistic causal model for diagnostic problem solving. Part II: Diagnostic strategy IEEE Transactions on Systems, Man, and Cybernetics 17 3 1987 395 406 (Pubitemid 17632136)
    • (1987) IEEE Transactions on Systems, Man and Cybernetics , vol.SMC-17 , Issue.3 , pp. 395-406
    • Peng Yun1    Reggia James, A.2
  • 45
  • 50
    • 0001457227 scopus 로고
    • Counting labeled acyclic digraphs
    • Academic Press New York
    • R.W. Robinson Counting labeled acyclic digraphs New Directions in Graph Theory 1973 Academic Press New York
    • (1973) New Directions in Graph Theory
    • Robinson, R.W.1
  • 52
  • 55
    • 0033905095 scopus 로고    scopus 로고
    • BoosTexter: A boosting-based system for text categorization
    • R.E. Schapire, and Y. Singer Boostexter: a boosting-based system for text categorization Machine Learning 39 2-3 2000 135 168 (Pubitemid 30594821)
    • (2000) Machine Learning , vol.39 , Issue.2 , pp. 135-168
    • Schapire, R.E.1    Singer, Y.2
  • 56
    • 0028483915 scopus 로고
    • Finding MAPs for belief networks is NP-hard
    • S.E. Shimony Finding MAPs for belief networks is NP-hard Artificial Intelligence 68 2 1994 399 410
    • (1994) Artificial Intelligence , vol.68 , Issue.2 , pp. 399-410
    • Shimony, S.E.1
  • 58
    • 0000629975 scopus 로고
    • Cross-validatory choice and assessment of statistical predictions (with discussion)
    • M. Stone Cross-validatory choice and assessment of statistical predictions (with discussion) Journal of the Royal Statistical Society B 36 1974 111 147
    • (1974) Journal of the Royal Statistical Society B , vol.36 , pp. 111-147
    • Stone, M.1
  • 59
    • 33947615175 scopus 로고    scopus 로고
    • Dynamic conditional random fields: Factorized probabilistic models for labeling and segmenting sequence data
    • C. Sutton, A. McCallum, and K. Rohanimanesh Dynamic conditional random fields: Factorized probabilistic models for labelling and segmenting sequence data Journal of Machine Learning Research 8 2007 693 723 (Pubitemid 46491655)
    • (2007) Journal of Machine Learning Research , vol.8 , pp. 693-723
    • Sutton, C.1    McCallum, A.2    Rohanimanesh, K.3
  • 72
    • 33947681316 scopus 로고    scopus 로고
    • ML-KNN: A lazy learning approach to multi-label learning
    • DOI 10.1016/j.patcog.2006.12.019, PII S0031320307000027
    • M. Zhang, and Z. Zhou ML-KNN: a lazy learning approach to multi-label learning Pattern Recognition 40 7 2007 2038 2048 (Pubitemid 46497248)
    • (2007) Pattern Recognition , vol.40 , Issue.7 , pp. 2038-2048
    • Zhang, M.-L.1    Zhou, Z.-H.2
  • 73
    • 33748366796 scopus 로고    scopus 로고
    • Multi-label neural networks with applications to functional genomics and text categorization
    • M.L. Zhang, and Z.H. Zhou Multi-label neural networks with applications to functional genomics and text categorization IEEE Transactions on Knowledge and Data Engineering 18 10 2006 1338 1351
    • (2006) IEEE Transactions on Knowledge and Data Engineering , vol.18 , Issue.10 , pp. 1338-1351
    • Zhang, M.L.1    Zhou, Z.H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.