메뉴 건너뛰기




Volumn 6321 LNAI, Issue PART 1, 2010, Pages 280-295

Regret analysis for performance metrics in multi-label classification: The case of hamming and subset zero-one loss

Author keywords

[No Author keywords available]

Indexed keywords

EXPERIMENTAL STUDIES; LOSS FUNCTIONS; MULTI-LABEL; MULTI-LABEL CLASSIFICATIONS; PERFORMANCE METRICS; RISK MINIMIZATION; THEORETICAL RESULT; ZERO-ONE;

EID: 78049326859     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-15880-3_24     Document Type: Conference Paper
Times cited : (48)

References (17)
  • 1
    • 3042597440 scopus 로고    scopus 로고
    • Learning multi-label scene classification
    • Boutell, M., Luo, J., Shen, X., Brown, C.: Learning multi-label scene classification. Pattern Recognition 37(9), 1757-1771 (2004)
    • (2004) Pattern Recognition , vol.37 , Issue.9 , pp. 1757-1771
    • Boutell, M.1    Luo, J.2    Shen, X.3    Brown, C.4
  • 2
    • 33745767102 scopus 로고    scopus 로고
    • Collective multi-label classification
    • Ghamrawi, N., McCallum, A.: Collective multi-label classification. In: CIKM 2005, pp. 195-200 (2005)
    • (2005) CIKM 2005 , pp. 195-200
    • Ghamrawi, N.1    McCallum, A.2
  • 3
    • 78049348819 scopus 로고    scopus 로고
    • A boosting algorithm for label covering in multilabel problems
    • Amit, Y., Dekel, O., Singer, Y.: A boosting algorithm for label covering in multilabel problems. In: JMLR W&P, vol. 2, pp. 27-34 (2007)
    • (2007) JMLR W&P , vol.2 , pp. 27-34
    • Amit, Y.1    Dekel, O.2    Singer, Y.3
  • 5
    • 68949141664 scopus 로고    scopus 로고
    • Combining instance-based learning and logistic regression for multilabel classification
    • Cheng, W., Hüllermeier, E.: Combining instance-based learning and logistic regression for multilabel classification. Machine Learning 76 (2-3), 211-225 (2009)
    • (2009) Machine Learning , vol.76 , Issue.2-3 , pp. 211-225
    • Cheng, W.1    Hüllermeier, E.2
  • 7
    • 77956522919 scopus 로고    scopus 로고
    • Bayes optimal multilabel classification via probabilistic classifier chains
    • Dembczyński, K., Cheng, W., Hüllermeier, E.: Bayes optimal multilabel classification via probabilistic classifier chains. In: ICML 2010 (2010)
    • (2010) ICML 2010
    • Dembczyński, K.1    Cheng, W.2    Hüllermeier, E.3
  • 8
    • 84898948585 scopus 로고    scopus 로고
    • Max-margin markov networks
    • MIT Press, Cambridge
    • Taskar, B., Guestrin, C., Koller, D.: Max-margin markov networks. In: NIPS 16. MIT Press, Cambridge (2004)
    • (2004) NIPS 16
    • Taskar, B.1    Guestrin, C.2    Koller, D.3
  • 9
    • 50149118484 scopus 로고    scopus 로고
    • Generalization bounds and consistency for structured labeling
    • MIT Press, Cambridge
    • McAllester, D.: Generalization bounds and consistency for structured labeling. In: Predicting Structured Data. MIT Press, Cambridge (2007)
    • (2007) Predicting Structured Data
    • McAllester, D.1
  • 11
    • 0000927638 scopus 로고    scopus 로고
    • Predicting multivariate responses in multiple linear regression
    • Breiman, L., Friedman, J.: Predicting multivariate responses in multiple linear regression. J. R. Stat. Soc. Ser. B 69, 3-54 (1997)
    • (1997) J. R. Stat. Soc. Ser. B , vol.69 , pp. 3-54
    • Breiman, L.1    Friedman, J.2
  • 12
    • 0031189914 scopus 로고    scopus 로고
    • Multitask learning: A knowledge-based source of inductive bias
    • Caruana, R.: Multitask learning: A knowledge-based source of inductive bias. Machine Learning 28, 41-75 (1997)
    • (1997) Machine Learning , vol.28 , pp. 41-75
    • Caruana, R.1
  • 15
    • 0003243224 scopus 로고    scopus 로고
    • Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods
    • MIT Press, Cambridge
    • Platt, J. C.: Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. In: Advances in Large Margin Classifiers, pp. 61-74. MIT Press, Cambridge (1999)
    • (1999) Advances in Large Margin Classifiers , pp. 61-74
    • Platt, J.C.1
  • 17
    • 38049123909 scopus 로고    scopus 로고
    • Random k-labelsets: An ensemble method for multilabel classification
    • Kok, J. N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenic, D., Skowron, A. eds., Springer, Heidelberg
    • Tsoumakas, G., Vlahavas, I.: Random k-labelsets: An ensemble method for multilabel classification. In: Kok, J. N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenic, D., Skowron, A. (eds.) ECML 2007. LNCS (LNAI), vol. 4701, pp. 406-417. Springer, Heidelberg (2007)
    • (2007) ECML 2007. LNCS (LNAI) , vol.4701 , pp. 406-417
    • Tsoumakas, G.1    Vlahavas, I.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.