메뉴 건너뛰기




Volumn , Issue , 2010, Pages 778-789

Multi-label classification without the multi-label cost

Author keywords

[No Author keywords available]

Indexed keywords

CLASSIFICATION (OF INFORMATION); DECISION TREES; EFFICIENCY; LARGE DATASET; LEARNING SYSTEMS; SPACE DIVISION MULTIPLE ACCESS; TEXT PROCESSING;

EID: 80054948516     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1137/1.9781611972801.68     Document Type: Conference Paper
Times cited : (44)

References (28)
  • 2
    • 0003223784 scopus 로고    scopus 로고
    • Multi-label text classification with a mixture model trained by EM
    • A. K. McCallum, Multi-label text classification with a mixture model trained by EM, AAAI 99 Workshop on Text Learning, 1999.
    • (1999) AAAI 99 Workshop on Text Learning
    • McCallum, A.K.1
  • 4
    • 52949141834 scopus 로고    scopus 로고
    • Decision trees for hierarchical multi-label classification
    • November
    • C. Vens and J. Struyf, Decision Trees for Hierarchical Multi-label Classification, Machine Learning, Volume 73,Issue 2 (November 2008), pp. 185-214.
    • (2008) Machine Learning , vol.73 , Issue.2 , pp. 185-214
    • Vens, C.1    Struyf, J.2
  • 7
    • 84880083214 scopus 로고    scopus 로고
    • MMAC: A new multi-class, multi-label associative classification approach
    • F. A. Thabtah, P. Cowling and Y. Peng, MMAC: A New Multi-class, Multi-label Associative Classification Approach, IEEE ICDM, 4 (2004).
    • (2004) IEEE ICDM , vol.4
    • Thabtah, F.A.1    Cowling, P.2    Peng, Y.3
  • 8
    • 84933515061 scopus 로고    scopus 로고
    • Multi-label classification: An overview
    • Aristotle University of Thessaloniki, Greece
    • G. Tsoumakas and I. Katakis, Multi-Label Classification: An Overview, Dept. of Informatics, Aristotle University of Thessaloniki, Greece.
    • Dept. of Informatics
    • Tsoumakas, G.1    Katakis, I.2
  • 14
    • 52949089060 scopus 로고    scopus 로고
    • Random k-labelsets: An ensemble method for multilabel classification
    • G. Tsoumakas and I. Vlahavas, Random k-Labelsets: An Ensemble Method for Multilabel Classification, ECML PKDD, 18 (2007).
    • (2007) ECML PKDD , vol.18
    • Tsoumakas, G.1    Vlahavas, I.2
  • 17
    • 84880106608 scopus 로고    scopus 로고
    • A pruned problem transformation method for multi-label classification
    • J. Read, A pruned problem transformation method for multi-label classification, NZCSRS, 2008.
    • (2008) NZCSRS
    • Read, J.1
  • 19
    • 33947681316 scopus 로고    scopus 로고
    • Ml-knn: A lazy learning approach to multi-label learning
    • M. L. Zhang and Z. H. Zhou, Ml-knn: A lazy learning approach to multi-label learning, in Pattern Recognition, 40 (2007).
    • (2007) Pattern Recognition , vol.40
    • Zhang, M.L.1    Zhou, Z.H.2
  • 20
    • 33748366796 scopus 로고    scopus 로고
    • Multi-label neural networks with applications to functional genomics and text categorization
    • M. L. Zhang and Z. H. Zhou, Multi-Label Neural Networks with Applications to Functional Genomics and Text Categorization, IEEE Transactions on Knowledge and Data Engineering, 18 (2006), pp. 1338-1351.
    • (2006) IEEE Transactions on Knowledge and Data Engineering , vol.18 , pp. 1338-1351
    • Zhang, M.L.1    Zhou, Z.H.2
  • 22
    • 84898954552 scopus 로고    scopus 로고
    • Parametric mixture models for multi-labeled text
    • N. Ueda and K. Saito, Parametric mixture models for multi-labeled text, NIPS, 15 (2003), pp. 721-728.
    • (2003) NIPS , vol.15 , pp. 721-728
    • Ueda, N.1    Saito, K.2
  • 23
    • 0033905095 scopus 로고    scopus 로고
    • BoosTexter: A boosting-based system for text categorization
    • R. E. Schapire and Y. Singer, BoosTexter: A Boosting-based System for Text Categorization, in Machine Learning, 39 (2000), pp. 135-168.
    • (2000) Machine Learning , vol.39 , pp. 135-168
    • Schapire, R.E.1    Singer, Y.2
  • 25
    • 33646529563 scopus 로고    scopus 로고
    • StreamMiner: A classifier ensemble-based engine to mine concept-drifting data streams
    • W. Fan, StreamMiner: A Classifier Ensemble-based Engine to Mine Concept-drifting Data Streams, VLDB, 30 (2004), pp. 1338-1351.
    • (2004) VLDB , vol.30 , pp. 1338-1351
    • Fan, W.1
  • 26
    • 33749568964 scopus 로고    scopus 로고
    • A general framework for accurate and fast regression by data summarization in random decision trees
    • W. Fan, J. McCloskey and P. S. Yu, A General Framework for Accurate and Fast Regression by Data Summarization in Random Decision Trees, ACM SIGKDD, 12 (2006), pp. 136-146.
    • (2006) ACM SIGKDD , vol.12 , pp. 136-146
    • Fan, W.1    McCloskey, J.2    Yu, P.S.3
  • 27
    • 84880112732 scopus 로고    scopus 로고
    • Is random model better? On its accuracy and efficiency
    • W. Fan, H. Wang, P. S. Yu and S. Ma, Is random model better? On its accuracy and efficiency, IEEE ICDM, 3 (2003).
    • (2003) IEEE ICDM , vol.3
    • Fan, W.1    Wang, H.2    Yu, P.S.3    Ma, S.4
  • 28
    • 84864028262 scopus 로고    scopus 로고
    • Multi-instance multi-label learning with application to scene classification
    • Z. H. Zhou and M. L. Zhang, Multi-Instance Multi-Label Learning with Application to Scene Classification, NIPS, 20 (2006), pp. 1609-1616.
    • (2006) NIPS , vol.20 , pp. 1609-1616
    • Zhou, Z.H.1    Zhang, M.L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.