메뉴 건너뛰기




Volumn 3734 LNAI, Issue , 2005, Pages 63-77

Measuring statistical dependence with Hilbert-Schmidt norms

Author keywords

[No Author keywords available]

Indexed keywords

CONVERGENCE OF NUMERICAL METHODS; EIGENVALUES AND EIGENFUNCTIONS; INDEPENDENT COMPONENT ANALYSIS; MATHEMATICAL OPERATORS;

EID: 33646528415     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/11564089_7     Document Type: Conference Paper
Times cited : (1422)

References (21)
  • 5
    • 0029411030 scopus 로고
    • An information-maximization approach to blind separation and blind deconvolution
    • A. Bell and T. Sejnowski, An information-maximization approach to blind separation and blind deconvolution, Neural Computation 7 (1995), no. 6, 1129-1159.
    • (1995) Neural Computation , vol.7 , Issue.6 , pp. 1129-1159
    • Bell, A.1    Sejnowski, T.2
  • 6
    • 0032187518 scopus 로고    scopus 로고
    • Blind signal separation: Statistical principles
    • J.-F. Cardoso, Blind signal separation: statistical principles, Proceedings of the IEEE 90 (1998), no. 8, 2009-2026.
    • (1998) Proceedings of the IEEE , vol.90 , Issue.8 , pp. 2009-2026
    • Cardoso, J.-F.1
  • 7
    • 29144438939 scopus 로고    scopus 로고
    • Consistent independent component analysis and prewhitening
    • Berkeley
    • A. Chen and P. Bickel, Consistent independent component analysis and prewhitening, Tech. report, Berkeley, 2004.
    • (2004) Tech. Report
    • Chen, A.1    Bickel, P.2
  • 8
    • 0003336572 scopus 로고    scopus 로고
    • A probabilistic theory of pattern recognition
    • Springer, New York
    • L. Devroye, L. Györfi, and G. Lugosi, A probabilistic theory of pattern recognition, Applications of mathematics, vol. 31, Springer, New York, 1996.
    • (1996) Applications of Mathematics , vol.31
    • Devroye, L.1    Györfi, L.2    Lugosi, G.3
  • 9
    • 4544371135 scopus 로고    scopus 로고
    • Dimensionality reduction for supervised learning with reproducing kernel hilbert spaces
    • K. Fukumizu, F. R. Bach, and M. I. Jordan, Dimensionality reduction for supervised learning with reproducing kernel hilbert spaces, Journal of Machine Learning Research 5 (2004), 73-99.
    • (2004) Journal of Machine Learning Research , vol.5 , pp. 73-99
    • Fukumizu, K.1    Bach, F.R.2    Jordan, M.I.3
  • 10
    • 0141804070 scopus 로고    scopus 로고
    • The kernel mutual information
    • Cambridge University Engineering Department and Max Planck Institute for Biological Cybernetics
    • A. Gretton, R. Herbrich, and A. Smola, The kernel mutual information, Tech. report, Cambridge University Engineering Department and Max Planck Institute for Biological Cybernetics, 2003.
    • (2003) Tech. Report
    • Gretton, A.1    Herbrich, R.2    Smola, A.3
  • 12
    • 29144480949 scopus 로고    scopus 로고
    • Kernels, associated structures, and generalizations
    • Max Planck Institute for Biological Cybernetics
    • M. Hein and O. Bousquet, Kernels, associated structures, and generalizations, Tech. Report 127, Max Planck Institute for Biological Cybernetics, 2004.
    • (2004) Tech. Report , vol.127
    • Hein, M.1    Bousquet, O.2
  • 13
  • 16
    • 8344261659 scopus 로고    scopus 로고
    • ICA using spacings estimates of entropy
    • E. Miller and J. Fisher III, ICA using spacings estimates of entropy, JMLR 4 (2003), 1271-1295.
    • (2003) JMLR , vol.4 , pp. 1271-1295
    • Miller, E.1    Fisher III, J.2
  • 18
    • 29144464874 scopus 로고    scopus 로고
    • Nonparametric independent component analysis
    • A. Samarov and A. Tsybakov, Nonparametric independent component analysis, Bernoulli 10 (2004), 565-582.
    • (2004) Bernoulli , vol.10 , pp. 565-582
    • Samarov, A.1    Tsybakov, A.2
  • 19
    • 0010786475 scopus 로고    scopus 로고
    • On the influence of the kernel on the consistency of support vector machines
    • I. Steinwart, On the influence of the kernel on the consistency of support vector machines, JMLR 2 (2001).
    • (2001) JMLR , vol.2
    • Steinwart, I.1
  • 20
    • 33646518750 scopus 로고    scopus 로고
    • Heterogeneous data comparison and gene selection with kernel canonical correlation analysis
    • (Cambridge, MA) (B. Schölkopf, K. Tsuda, and J.-P. Vert, eds.), MIT Press
    • Y. Yamanishi, J.-P. Vert, and M. Kanehisa, Heterogeneous data comparison and gene selection with kernel canonical correlation analysis, Kernel Methods in Computational Biology (Cambridge, MA) (B. Schölkopf, K. Tsuda, and J.-P. Vert, eds.), MIT Press, 2004, pp. 209-229.
    • (2004) Kernel Methods in Computational Biology , pp. 209-229
    • Yamanishi, Y.1    Vert, J.-P.2    Kanehisa, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.