메뉴 건너뛰기




Volumn 4, Issue 3, 2010, Pages

Multilabel dimensionality reduction via dependence maximization

Author keywords

Dimensionality reduction; Multilabel learning

Indexed keywords

CLASS LABELS; CURSE OF DIMENSIONALITY; DIMENSIONALITY REDUCTION; DIMENSIONALITY REDUCTION METHOD; EIGEN DECOMPOSITION; FEATURE DESCRIPTION; FEATURE SPACE; HILBERT; MACHINE-LEARNING; MULTI-LABEL; MULTIPLE LABELS;

EID: 78049346655     PISSN: 15564681     EISSN: 1556472X     Source Type: Journal    
DOI: 10.1145/1839490.1839495     Document Type: Article
Times cited : (323)

References (45)
  • 1
    • 27844439373 scopus 로고    scopus 로고
    • A framework for learning predictive structures from multiple tasks and unlabeled data
    • ANDO, R. K. AND ZHANG, T. 2005. A framework for learning predictive structures from multiple tasks and unlabeled data. J. Mach. Learn. Resear. 6, 1817-1853.
    • (2005) J. Mach. Learn. Resear , vol.6 , pp. 1817-1853
    • Ando, R.K.1    Zhang, T.2
  • 2
    • 55149088329 scopus 로고    scopus 로고
    • Convex multi-task feature learning
    • ARGYRIOU, A., EVGENIOU, T., AND PONTIL, M. 2008. Convex multi-task feature learning. Mach. Learn. 73, 3, 243-272.
    • (2008) Mach. Learn , vol.73 , Issue.3 , pp. 243-272
    • Argyriou, A.1    Evgeniou, T.2    Pontil, M.3
  • 3
    • 0011812771 scopus 로고    scopus 로고
    • Kernel independent component analysis
    • BACH, F. R. AND JORDAN, M. I. 2002. Kernel independent component analysis. J. Mach. Learn. Resear. 3, 1-48.
    • (2002) J. Mach. Learn. Resear. , vol.3 , pp. 1-48
    • Bach, F.R.1    Jordan, M.I.2
  • 4
    • 0346238931 scopus 로고    scopus 로고
    • Task clustering and gating for bayesian multitask learning. J
    • BAKKER, B. AND HESKES, T. 2003. Task clustering and gating for bayesian multitask learning. J. Mach. Learn. Resear. 4, 83-99.
    • (2003) Mach. Learn. Resear , vol.4 , pp. 83-99
    • Bakker, B.1    Heskes, T.2
  • 5
    • 33645323768 scopus 로고    scopus 로고
    • Hierarchical multi-label prediction of gene function
    • BARUTCUOGLU, Z., SCHAPIRE, R. E., AND TROYANSKAYA, O. G. 2006. Hierarchical multi-label prediction of gene function. Bioinformatics 22, 7, 830-836.
    • (2006) Bioinformatics , vol.22 , Issue.7 , pp. 830-836
    • Barutcuoglu, Z.1    Schapire, R.E.2    Troyanskaya, O.G.3
  • 6
    • 84880203756 scopus 로고    scopus 로고
    • Laplacian eigenmaps and spectral techniques for embedding and clustering
    • MIT Press, Cambridge, MA
    • BELKIN, M. AND NIYOGI, P. 2002. Laplacian eigenmaps and spectral techniques for embedding and clustering. In Advances in Neural Information Processing Systems 14. MIT Press, Cambridge, MA, 585-591.
    • (2002) Advances in Neural Information Processing Systems 14 , pp. 585-591
    • Belkin, M.1    Niyogi, P.2
  • 7
    • 3042597440 scopus 로고    scopus 로고
    • Learning multi-label scene classification
    • BOUTELL, M. R., LUO, J., SHEN, X., AND BROWN, C. M. 2004. Learning multi-label scene classification. Patt. Rec. 37, 9, 1757-1771.
    • (2004) Patt. Rec. , vol.37 , Issue.9 , pp. 1757-1771
    • Boutell, M.R.1    Luo, J.2    Shen, X.3    Brown, C.M.4
  • 13
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • FISHER, R. A. 1936. The use of multiple measurements in taxonomic problems. Ann. Eugenics 7, 2, 179-188.
    • (1936) Ann. Eugenics , vol.7 , Issue.2 , pp. 179-188
    • Fisher, R.A.1
  • 16
    • 10044285992 scopus 로고    scopus 로고
    • Canonical correlation analysis: An overview with application to learning methods
    • HARDOON, D. R., SZEDMAK, S., AND SHAWE-TAYLOR, J. 2004. Canonical correlation analysis: An overview with application to learning methods. Neural Computat. 16, 12, 2639-2664.
    • (2004) Neural Computat. , vol.16 , Issue.12 , pp. 2639-2664
    • Hardoon, D.R.1    Szedmak, S.2    Shawe-Taylor, J.3
  • 18
  • 22
    • 84876811202 scopus 로고    scopus 로고
    • RCV1: A new benchmark collection for text categorization research
    • LEWIS, D. D., YANG, Y., ROSE, T., AND LI, F. 2004. RCV1: A new benchmark collection for text categorization research. J. Mach. Learn. Resear. 5, 361-397.
    • (2004) J. Mach. Learn. Resear , vol.5 , pp. 361-397
    • Lewis, D.D.1    Yang, Y.2    Rose, T.3    Li, F.4
  • 26
    • 34948865158 scopus 로고    scopus 로고
    • Multi-task feature selection
    • Deptartment of Statistics, UC Berkeley
    • OBOZINSKI, G., TASKAR, B., AND JORDAN, M. I. 2006. Multi-task feature selection. Tech. rep., Deptartment of Statistics, UC Berkeley.
    • (2006) Tech. rep.
    • Obozinski, G.1    Taskar, B.2    Jordan, M.I.3
  • 28
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • ROWEIS, S. T. AND SAUL, L. K. 2000. Nonlinear dimensionality reduction by locally linear embedding. Science 290, 5500, 2323-2326.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 29
    • 0033905095 scopus 로고    scopus 로고
    • BoosTexter: A boosting-based system for text categorization
    • SCHAPIRE, R. E. AND SINGER, Y. 2000. BoosTexter: A boosting-based system for text categorization. Machine Learning 39, 2-3, 135-168.
    • (2000) Machine Learning , vol.39 , Issue.2-3 , pp. 135-168
    • Schapire, R.E.1    Singer, Y.2
  • 33
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • TENENBAUM, J. B., DE SILVA, V., AND LANGFORD, J. C. 2000. A global geometric framework for nonlinear dimensionality reduction. Science 290, 5500, 2319-2323.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2319-2323
    • Tenenbaum, J.B.1    De Silva, V.2    Langford, J.C.3
  • 36
  • 38
    • 27144441097 scopus 로고    scopus 로고
    • An evaluation of statistical approaches to text categorization
    • YANG, Y. 1999. An evaluation of statistical approaches to text categorization. Info. Retr. 1, 1-2, 69-90.
    • (1999) Info. Retr , vol.1 , Issue.1-2 , pp. 69-90
    • Yang, Y.1
  • 41
    • 33748366796 scopus 로고    scopus 로고
    • Multilabel neural networks with applications to functional genomics and text categorization
    • ZHANG, M.-L. AND ZHOU, Z.-H. 2006. Multilabel neural networks with applications to functional genomics and text categorization. IEEE Trans. Knowl. Data Eng. 18, 10, 1338-1351.
    • (2006) IEEE Trans. Knowl. Data Eng , vol.18 , Issue.10 , pp. 1338-1351
    • Zhang, M.-L.1    Zhou, Z.-H.2
  • 42
    • 33947681316 scopus 로고    scopus 로고
    • ML-KNN: A lazy learning approach to multi-label learning
    • ZHANG, M.-L. AND ZHOU, Z.-H. 2007. ML-KNN: A lazy learning approach to multi-label learning. Patt. Recog. 40, 7, 2038-2048.
    • (2007) Patt. Recog , vol.40 , Issue.7 , pp. 2038-2048
    • Zhang, M.-L.1    Zhou, Z.-H.2
  • 44
    • 84864028262 scopus 로고    scopus 로고
    • Multi-instance multi-label learning with application to scene classification
    • MIT Press, Cambridge, MA
    • ZHOU, Z.-H. AND ZHANG, M.-L. 2007. Multi-instance multi-label learning with application to scene classification. In Advances in Neural Information Processing Systems 19. MIT Press, Cambridge, MA, 1609-1616.
    • (2007) Advances in Neural Information Processing Systems 19 , pp. 1609-1616
    • Zhou, Z.-H.1    Zhang, M.-L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.