메뉴 건너뛰기




Volumn , Issue , 2010, Pages 617-622

Empirical study of multi-label classification methods for image annotation and retrieval

Author keywords

Empirical study; Image annotation and retrieval; Multi label classification

Indexed keywords

AUTOMATIC IMAGE ANNOTATION; CLASSIFICATION ALGORITHM; CLASSIFICATION METHODS; EMPIRICAL STUDIES; EVALUATION RESULTS; IMAGE ANNOTATION; IMAGE ANNOTATION AND RETRIEVAL; IMAGE DATASETS; K-NEAREST NEIGHBORS; MULTI-LABEL; PREDICTION PERFORMANCE; SCENE IMAGE;

EID: 79951630478     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/DICTA.2010.113     Document Type: Conference Paper
Times cited : (18)

References (35)
  • 1
    • 70449378549 scopus 로고    scopus 로고
    • Automatic annotating images with keywords: A review of image annotation systems
    • C. -F. Tsai, C. Huang. "Automatic annotating images with keywords: A review of image annotation systems", Recent Patterns on Computer Science, No. 1, pp. 55-68, 2008.
    • (2008) Recent Patterns on Computer Science , Issue.1 , pp. 55-68
    • Tsai, C.-F.1    Huang, C.2
  • 3
    • 37849050214 scopus 로고    scopus 로고
    • Dual cross-media relevance model for image annotation
    • J. Liu, B. Wang, M. Li, et al, "Dual cross-media relevance model for image annotation", ACM SIGMM 2007, pp. 605-614.
    • ACM SIGMM 2007 , pp. 605-614
    • Liu, J.1    Wang, B.2    Li, M.3
  • 5
    • 70450202102 scopus 로고    scopus 로고
    • Automatic image annotation based on improved relevance model
    • IEEE Computer Society
    • H. Song, X. Li, "Automatic image annotation based on improved relevance model", Asia-Pacific Conference on Information Processing. IEEE Computer Society, 2009.
    • (2009) Asia-pacific Conference on Information Processing
    • Song, H.1    Li, X.2
  • 13
    • 3042597440 scopus 로고    scopus 로고
    • Learning multi-label scene classification
    • DOI 10.1016/j.patcog.2004.03.009, PII S0031320304001074
    • M. Boutell, J. Luo, X. Shen, and C. Brown, "Learning multi-label scene classification", Pattern Recognition, 37(9), 2004, pp.1757-1771. (Pubitemid 38804465)
    • (2004) Pattern Recognition , vol.37 , Issue.9 , pp. 1757-1771
    • Boutell, M.R.1    Luo, J.2    Shen, X.3    Brown, C.M.4
  • 14
    • 84864028262 scopus 로고    scopus 로고
    • Multi-instance multi-label learning with application to scene classification
    • Scho"lkopf. B., Platt. J. C., Hoffman. T., Eds. MIT Press
    • Z. H. Zhou, M. L. Zhang, "Multi-instance multi-label learning with application to scene classification", Scho"lkopf. B., Platt. J. C., Hoffman. T., Eds. MIT Press, NIPS 2006, pp.1609-1616.
    • NIPS 2006 , pp. 1609-1616
    • Zhou, Z.H.1    Zhang, M.L.2
  • 15
    • 34748873053 scopus 로고    scopus 로고
    • Multi label classification: An overview
    • David Taniar, Eds., Idea Group Publishing
    • G. Tsoumakas, I. Katakis, "Multi label classification: An overview", Int'l Journal of Data Warehousing and Mining, David Taniar, Eds., Idea Group Publishing 3(3), 2007, pp.1-13.
    • (2007) Int'l Journal of Data Warehousing and Mining , vol.3 , Issue.3 , pp. 1-13
    • Tsoumakas, G.1    Katakis, I.2
  • 18
    • 33947681316 scopus 로고    scopus 로고
    • ML-KNN: A lazy learning approach to multi-label learning
    • M. L. Zhang, Z. H. Zhou, "ML-KNN: A lazy learning approach to multi-label learning", Pattern Recognition 40 (7), 2007, pp. 2038-2048.
    • (2007) Pattern Recognition , vol.40 , Issue.7 , pp. 2038-2048
    • Zhang, M.L.1    Zhou, Z.H.2
  • 19
    • 33748366796 scopus 로고    scopus 로고
    • Multi-label neural networks with applications to functional genomics and text categorization
    • M. L. Zhang, Z. H. Zhou, "Multi-label neural networks with applications to functional genomics and text categorization", IEEE Transactions on Knowledge and Data Engineering (18), 2006, pp. 1338-1351.
    • (2006) IEEE Transactions on Knowledge and Data Engineering , Issue.18 , pp. 1338-1351
    • Zhang, M.L.1    Zhou, Z.H.2
  • 26
    • 0032139235 scopus 로고    scopus 로고
    • The random subspace method for constructing decision forests
    • T. K. Ho, "The random subspace method for constructing decision forests", IEEE Transactions on Pattern Analysis and Machine Intelligence 20(8), 1998, pp.832-844. (Pubitemid 128741345)
    • (1998) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.20 , Issue.8 , pp. 832-844
    • Ho, T.K.1
  • 27
    • 0242515926 scopus 로고    scopus 로고
    • Attribute bagging: Improving accuracy of classifier ensembles by using random feature subsets
    • DOI 10.1016/S0031-3203(02)00121-8, PII S0031320302001218
    • R. Bryll, R. Gutierrez-Osuna, F. Quek, "Attribute bagging: improving accuracy of classifier ensembles by using random feature subsets", Pattern Recognition, 36(6), 2003, pp. 1291-1302. (Pubitemid 36225868)
    • (2003) Pattern Recognition , vol.36 , Issue.6 , pp. 1291-1302
    • Bryll, R.1    Gutierrez-Osuna, R.2    Quek, F.3
  • 28
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman (1996a), "Bagging predictors", Journal of Machine Learning, Vol. 24 (2), 1996, pp. 123-140. (Pubitemid 126724382)
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 35
    • 79951645512 scopus 로고    scopus 로고
    • URL
    • Computational medical center: Medical NLP challenge. URL:/www. computationalmedicine.org/chllenge/index.php


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.