메뉴 건너뛰기




Volumn , Issue , 2011, Pages 1609-1614

LIFT: Multi-label learning with label-specific features

Author keywords

[No Author keywords available]

Indexed keywords

CLUSTERING ANALYSIS; CLUSTERING RESULTS; DIFFERENT CLASS; EFFECTIVE ALGORITHMS; MULTI-LABEL LEARNING; NEGATIVE INSTANCES; TRAINING AND TESTING; TRAINING EXAMPLE;

EID: 84881055109     PISSN: 10450823     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.5591/978-1-57735-516-8/IJCAI11-270     Document Type: Conference Paper
Times cited : (89)

References (19)
  • 1
    • 3042597440 scopus 로고    scopus 로고
    • Learning multi-label scene classification
    • DOI 10.1016/j.patcog.2004.03.009, PII S0031320304001074
    • M. R. Boutell, J. Luo, X. Shen, and C. M. Brown. Learning multi-label scene classification. Pattern Recognition, 37(9):1757-1771, 2004. (Pubitemid 38804465)
    • (2004) Pattern Recognition , vol.37 , Issue.9 , pp. 1757-1771
    • Boutell, M.R.1    Luo, J.2    Shen, X.3    Brown, C.M.4
  • 3
    • 68949141664 scopus 로고    scopus 로고
    • Combining instance-based learning and logistic regression for multilabel classification
    • W. Cheng and E. Hüllermeier. Combining instance-based learning and logistic regression for multilabel classification. Machine Learning, 76(2-3):211-225, 2009.
    • (2009) Machine Learning , vol.76 , Issue.2-3 , pp. 211-225
    • Cheng, W.1    Hüllermeier, E.2
  • 4
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • J. Demšar. Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research, 7(Jan):1-30, 2006. (Pubitemid 43022939)
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demsar, J.1
  • 5
    • 76649137444 scopus 로고    scopus 로고
    • A kernel method for multi-labelled classification
    • A. Elisseeff and J. Weston. A kernel method for multi-labelled classification. In NIPS 14, pages 681-687. 2002.
    • (2002) NIPS , vol.14 , pp. 681-687
    • Elisseeff, A.1    Weston, J.2
  • 7
    • 33745767102 scopus 로고    scopus 로고
    • Collective multi-label classification
    • N. Ghamrawi and A. McCallum. Collective multi-label classification. In CIKM, pages 195-200, 2005.
    • (2005) CIKM , pp. 195-200
    • Ghamrawi, N.1    McCallum, A.2
  • 9
    • 65449189832 scopus 로고    scopus 로고
    • Extracting shared subspace for multi-label classification
    • S. Ji, L. Tang, S. Yu, and J. Ye. Extracting shared subspace for multi-label classification. In KDD, pages 381-389, 2008.
    • (2008) KDD , pp. 381-389
    • Ji, S.1    Tang, L.2    Yu, S.3    Ye, J.4
  • 10
    • 70349968175 scopus 로고    scopus 로고
    • Classifier chains for multi-label classification
    • J. Read, B. Pfahringer, G. Holmes, and E. Frank. Classifier chains for multi-label classification. In ECML PKDD, pages 254-269, 2009.
    • (2009) ECML PKDD , pp. 254-269
    • Read, J.1    Pfahringer, B.2    Holmes, G.3    Frank, E.4
  • 11
    • 0033905095 scopus 로고    scopus 로고
    • BoosTexter: A boosting-based system for text categorization
    • R. E. Schapire and Y. Singer. Boostexter: A boosting-based system for text categorization. Machine Learning, 39(2/3):135-168, 2000. (Pubitemid 30594821)
    • (2000) Machine Learning , vol.39 , Issue.2 , pp. 135-168
    • Schapire, R.E.1    Singer, Y.2
  • 12
    • 38049123909 scopus 로고    scopus 로고
    • Random k-labelsets: An ensemble method for multilabel classification
    • G. Tsoumakas and I. Vlahavas. Random k-labelsets: An ensemble method for multilabel classification. In ECML, pages 406-417, 2007.
    • (2007) ECML , pp. 406-417
    • Tsoumakas, G.1    Vlahavas, I.2
  • 13
    • 84877995077 scopus 로고    scopus 로고
    • Learning from multi-label data
    • Available at
    • G. Tsoumakas, M.-L. Zhang, and Z.-H. Zhou. Learning from multi-label data. In ECML PKDD Tutorial, 2009. Available at http://www.ecmlpkdd2009.net/wp- content/uploads/2009/08/learning-from-multi-label-data.pdf.
    • (2009) ECML PKDD Tutorial
    • Tsoumakas, G.1    Zhang, M.-L.2    Zhou, Z.-H.3
  • 14
    • 77958614714 scopus 로고    scopus 로고
    • Multilabel classification: Inconsistency and class balanced k-neareast neighbor
    • H. Wang, C. Ding, and H. Huang. Multilabel classification: Inconsistency and class balanced k-neareast neighbor. In AAAI, pages 1264-1266, 2010.
    • (2010) AAAI , pp. 1264-1266
    • Wang, H.1    Ding, C.2    Huang, H.3
  • 15
    • 36849011561 scopus 로고    scopus 로고
    • Model-shared subspace boosting for multi-label classification
    • R. Yan, J. Tešić, and J. R. Smith. Model-shared subspace boosting for multi-label classification. In KDD, pages 834-843, 2007.
    • (2007) KDD , pp. 834-843
    • Yan, R.1    Tešić, J.2    Smith, J.R.3
  • 16
    • 77956201769 scopus 로고    scopus 로고
    • Multilabel learning by exploiting label dependency
    • M.-L. Zhang and K. Zhang. Multilabel learning by exploiting label dependency. In KDD, pages 999-1007, 2010.
    • (2010) KDD , pp. 999-1007
    • Zhang, M.-L.1    Zhang, K.2
  • 17
    • 33748366796 scopus 로고    scopus 로고
    • Multilabel neural networks with applications to functional genomics and text categorization
    • DOI 10.1109/TKDE.2006.162, 1683770
    • M.-L. Zhang and Z.-H. Zhou. Multilabel neural networks with applications to functional genomics and text categorization. IEEE Trans Knowledge and Data Engineering, 18(10):1338-1351, 2006. (Pubitemid 44335199)
    • (2006) IEEE Transactions on Knowledge and Data Engineering , vol.18 , Issue.10 , pp. 1338-1351
    • Zhang, M.-L.1    Zhou, Z.-H.2
  • 18
    • 33947681316 scopus 로고    scopus 로고
    • ML-KNN: A lazy learning approach to multi-label learning
    • DOI 10.1016/j.patcog.2006.12.019, PII S0031320307000027
    • M.-L. Zhang and Z.-H. Zhou. ML-kNN: A lazy learning approach to multi-label learning. Pattern Recognition, 40(7):2038-2048, 2007. (Pubitemid 46497248)
    • (2007) Pattern Recognition , vol.40 , Issue.7 , pp. 2038-2048
    • Zhang, M.-L.1    Zhou, Z.-H.2
  • 19
    • 84885572482 scopus 로고    scopus 로고
    • Multi-labelled classification using maximum entropy method
    • S. Zhu, X. Ji, W. Xu, and Y. Gong. Multi-labelled classification using maximum entropy method. In SIGIR, pages 274-281, 2005.
    • (2005) SIGIR , pp. 274-281
    • Zhu, S.1    Ji, X.2    Xu, W.3    Gong, Y.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.