메뉴 건너뛰기




Volumn , Issue , 2004, Pages 217-224

MMAC: A new multi-class, multi-label associative classification approach

Author keywords

[No Author keywords available]

Indexed keywords

COVERING ALGORITHMS; DECISION TREES; MULTI LABEL ASSOCIATIVE CLASSIFICATION (MMAC); MULTI LABEL CLASSIFICATION;

EID: 19544382863     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICDM.2004.10117     Document Type: Conference Paper
Times cited : (228)

References (21)
  • 3
    • 8844267104 scopus 로고    scopus 로고
    • Multi-label semantic scene classification
    • Department of Computer Science, University of Rochester, Rochester, NY 14627 & Electronic Imaging Products R & D, Eastern Kodak Company, September
    • M. Boutell, X. Shen, J. Luo and C. Brown. Multi-label semantic scene classification. Technical report 813, Department of Computer Science, University of Rochester, Rochester, NY 14627 & Electronic Imaging Products R & D, Eastern Kodak Company, September 2003.
    • (2003) Technical Report , vol.813
    • Boutell, M.1    Shen, X.2    Luo, J.3    Brown, C.4
  • 4
    • 84943242305 scopus 로고    scopus 로고
    • Knowledge discovery in multi-label phenotype data
    • L. De Raedt and A. Siebes, editors, Lecture Notes in Artificial Intelligence, Springer - Verlag
    • A. Clare and R.D. King. Knowledge discovery in multi-label phenotype data. In L. De Raedt and A. Siebes, editors, PKDD01, volume 2168 of Lecture Notes in Artificial Intelligence, Springer - Verlag, 2001, pp. 42-53.
    • (2001) PKDD01 , vol.2168 , pp. 42-53
    • Clare, A.1    King, R.D.2
  • 5
    • 84868531774 scopus 로고    scopus 로고
    • Hyperheuristics for managing a large collection of low level heuristics to schedule personnel
    • Canberra, Australia, 8-12 Dec
    • P. Cowling and K. Chakhlevitch. Hyperheuristics for Managing a Large Collection of Low Level Heuristics to Schedule Personnel. In Proceeding of 2003 IEEE conference on Evolutionary Computation, Canberra, Australia, 8-12 Dec 2003.
    • (2003) Proceeding of 2003 IEEE Conference on Evolutionary Computation
    • Cowling, P.1    Chakhlevitch, K.2
  • 7
    • 0002129041 scopus 로고    scopus 로고
    • Generating accurate rule sets without global optimisation
    • Shavlik, J., ed., Madison, Wisconsin. Morgan Kaufmann Publishers, San Francisco, CA
    • E. Frank and I. Witten. Generating accurate rule sets without global optimisation. In Shavlik, J., ed., Machine Learning: In Proceedings of the Fifteenth International Conference, Madison, Wisconsin. Morgan Kaufmann Publishers, San Francisco, CA, pp. 144-151.
    • Machine Learning: In Proceedings of the Fifteenth International Conference , pp. 144-151
    • Frank, E.1    Witten, I.2
  • 8
    • 0342405079 scopus 로고    scopus 로고
    • Separate-and-conquer rule learning
    • Austrian Research Institute for Artificial Intelligence, Vienna
    • J. Furnkranz. Separate-and-conquer rule learning. Technical Report TR-96-25, Austrian Research Institute for Artificial Intelligence, Vienna, 1996.
    • (1996) Technical Report , vol.TR-96-25
    • Furnkranz, J.1
  • 9
    • 78149313084 scopus 로고    scopus 로고
    • CMAR: Accurate and efficient classification based on multiple class association rule
    • San Jose, CA, Nov.
    • W. Li, J. Han and J. Pei. CMAR: Accurate and efficient classification based on multiple class association rule. In ICDM'01, San Jose, CA, Nov. 2001, pp. 369-376.
    • (2001) ICDM'01 , pp. 369-376
    • Li, W.1    Han, J.2    Pei, J.3
  • 10
    • 84957069814 scopus 로고    scopus 로고
    • Text categorisation with support vector machines: Learning with many relevant features
    • T. Joachims. Text categorisation with Support Vector Machines: Learning with many relevant features. In Proceeding Tenth European Conference on Machine Learning, 1998, pp. 137-142.
    • (1998) Proceeding Tenth European Conference on Machine Learning , pp. 137-142
    • Joachims, T.1
  • 11
    • 0034274591 scopus 로고    scopus 로고
    • A comparison of prediction accuracy, complexity and training time of thirty-three old and new classification algorithms
    • T. S. Lim, W. Y. Loh and Y. S. Shih. A comparison of prediction accuracy, complexity and training time of thirty-three old and new classification algorithms. Machine Learning, 39, 2000.
    • (2000) Machine Learning , vol.39
    • Lim, T.S.1    Loh, W.Y.2    Shih, Y.S.3
  • 12
    • 84948104699 scopus 로고    scopus 로고
    • Integrating classification and association rule mining
    • New York, NY, Aug.
    • B. Liu, W. Hsu and Y. Ma. Integrating Classification and association rule mining. In KDD '98, New York, NY, Aug. 1998.
    • (1998) KDD '98
    • Liu, B.1    Hsu, W.2    Ma, Y.3
  • 15
    • 0033905095 scopus 로고    scopus 로고
    • BoosTexter: A boosting-based system for text categorization
    • R. Schapire and Y. Singer, "BoosTexter: A boosting-based system for text categorization," Machine Learning, vol. 39, no. 2/3, 2000, pp. 135-168.
    • (2000) Machine Learning , vol.39 , Issue.2-3 , pp. 135-168
    • Schapire, R.1    Singer, Y.2
  • 17
    • 0007595973 scopus 로고    scopus 로고
    • An evaluation of statistical approaches to text categorisation
    • Carnegie Mellon University, April
    • Y. Yang. An evaluation of statistical approaches to text categorisation. Technical Report CMU-CS-97-127, Carnegie Mellon University, April 1997.
    • (1997) Technical Report , vol.CMU-CS-97-127
    • Yang, Y.1
  • 18
    • 19544366904 scopus 로고    scopus 로고
    • CPAR: Classification based on predictive association rule
    • San Francisco, CA, May
    • X. Yin and J. Han. CPAR: Classification based on predictive association rule. In SDM 2003, San Francisco, CA, May 2003.
    • (2003) SDM 2003
    • Yin, X.1    Han, J.2
  • 19
    • 84860952311 scopus 로고    scopus 로고
    • CBA:http://www.comp.nus.edu.sg/~dm2/p_download.html


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.