-
2
-
-
52649118114
-
Semi-supervised multi-label learning by solving a sylvester equation
-
Atlanta, GA
-
G. Chen, Y.-Q. Song, F. Wang, and C.-S. Zhang. Semi-supervised multi-label learning by solving a sylvester equation. In Proceedings of the 2008 SIAM International Conference on Data Mining, pages 410-419, Atlanta, GA, 2008.
-
(2008)
Proceedings of the 2008 SIAM International Conference on Data Mining
, pp. 410-419
-
-
Chen, G.1
Song, Y.-Q.2
Wang, F.3
Zhang, C.-S.4
-
3
-
-
33747128180
-
Large scale transductive svms
-
R. Collobert, F. Sinz, J. Weston, and L. Bottou. Large scale transductive svms. Journal of Machine Learning Research, 7:1687-1712, 2006.
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 1687-1712
-
-
Collobert, R.1
Sinz, F.2
Weston, J.3
Bottou, L.4
-
4
-
-
76649137444
-
A kernel method for multi-labelled classification
-
T.G. Dietterich, S. Becker, and Z. Ghahramani, editors, MIT Press, Cambrige, MA
-
A. Elisseeff and J. Weston. A kernel method for multi-labelled classification. In T.G. Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in Neural Information Processing Systems 14, pages 681-687. MIT Press, Cambrige, MA, 2002.
-
(2002)
Advances in Neural Information Processing Systems
, vol.14
, pp. 681-687
-
-
Elisseeff, A.1
Weston, J.2
-
5
-
-
52949105710
-
Multilabel classification via calibrated label ranking
-
J. Fürnkranz, E. Hüllermeier, E.-L. Mencía, and K. Brinker. Multilabel classification via calibrated label ranking. Machine Learning, 73(2):133-153, 2008.
-
(2008)
Machine Learning
, vol.73
, Issue.2
, pp. 133-153
-
-
Fürnkranz, J.1
Hüllermeier, E.2
Mencía, E.-L.3
Brinker, K.4
-
7
-
-
84866863626
-
-
P.-A. Flach, T.-D. Bie, and N. Cristianini, editors, Lecture Notes in Computer Science 7524, Berlin: Springer, Bristol, UK
-
Y.-H. Guo and D. Schuurmans. Semi-supervised multi-label classification: A simultaneous large-margin, subspace learning approach. In P.-A. Flach, T.-D. Bie, and N. Cristianini, editors, Lecture Notes in Computer Science 7524, pages 355-370. Berlin: Springer, Bristol, UK, 2012.
-
(2012)
Semi-Supervised Multi-label Classification: A Simultaneous Large-margin, Subspace Learning Approach
, pp. 355-370
-
-
Guo, Y.-H.1
Schuurmans, D.2
-
8
-
-
0001938951
-
Transductive inference for text classification using support vector machines
-
San Francisco, CA
-
T. Joachims. Transductive inference for text classification using support vector machines. In Proceedings of 16th International Conference on Machine Learning, pages 200-209, San Francisco, CA, 1999.
-
(1999)
Proceedings of 16th International Conference on Machine Learning
, pp. 200-209
-
-
Joachims, T.1
-
9
-
-
84873289445
-
Transductive multi-label learning via label set propagation
-
X.-N. Kong, M. Ng, and Z.-H. Zhou. Transductive multi-label learning via label set propagation. IEEE Transactions on Knowledge and Data Mining, 25(3):704-719, 2013.
-
(2013)
IEEE Transactions on Knowledge and Data Mining
, vol.25
, Issue.3
, pp. 704-719
-
-
Kong, X.-N.1
Ng, M.2
Zhou, Z.-H.3
-
10
-
-
83155175374
-
Classifier chains for multi-label classification
-
J. Read, B. Pfahringer, G. Holmes, and E. Frank. Classifier chains for multi-label classification. Machine Learning, 85(3):333-359, 2011.
-
(2011)
Machine Learning
, vol.85
, Issue.3
, pp. 333-359
-
-
Read, J.1
Pfahringer, B.2
Holmes, G.3
Frank, E.4
-
11
-
-
84880202552
-
Regularized structured output learning with partial labels
-
Anaheim, CA
-
S. Sellamanickam, C. Tiwari, and S.-K. Selvaraj. Regularized structured output learning with partial labels. In Proceedings of the 2012 SIAM International Conference on Data Mining, pages 1059-1070, Anaheim, CA, 2012.
-
(2012)
Proceedings of the 2012 SIAM International Conference on Data Mining
, pp. 1059-1070
-
-
Sellamanickam, S.1
Tiwari, C.2
Selvaraj, S.-K.3
-
12
-
-
77956163078
-
Mining multi-label data
-
O. Maimon and L. Rokach, editors, Berlin: Springer
-
G. Tsoumakas, I. Katakis, and I. Vlahavas. Mining multi-label data. In O. Maimon and L. Rokach, editors, Data Mining and Knowledge Discovery Handbook, pages 667-686. Berlin: Springer, 2010.
-
(2010)
Data Mining and Knowledge Discovery Handbook
, pp. 667-686
-
-
Tsoumakas, G.1
Katakis, I.2
Vlahavas, I.3
-
13
-
-
80052236046
-
Mulan: A java library for multi-label learning
-
G. Tsoumakas, E.-S. Xioufis, J. Vilcek, and I.-P. Vlahavas. Mulan: A java library for multi-label learning. Journal of Machine Learning Research, 12(7):2411-2414, 2011.
-
(2011)
Journal of Machine Learning Research
, vol.12
, Issue.7
, pp. 2411-2414
-
-
Tsoumakas, G.1
Xioufis, E.-S.2
Vilcek, J.3
Vlahavas, I.-P.4
-
14
-
-
79958844204
-
A transductive multi-label learning approach for video concept detection
-
J.-D. Wang, Y.-H. Zhao, X.-Q. Wu, and X.-S. Hua. A transductive multi-label learning approach for video concept detection. Pattern Recognition, 44(10):2274-2286, 2011.
-
(2011)
Pattern Recognition
, vol.44
, Issue.10
, pp. 2274-2286
-
-
Wang, J.-D.1
Zhao, Y.-H.2
Wu, X.-Q.3
Hua, X.-S.4
-
15
-
-
60649094696
-
Graph-based semi-supervised learning with multiple labels
-
Z.-J. Zha, T. Mei, J.-D. Wang, Z.-F. Wang, and X.-S. Hua. Graph-based semi-supervised learning with multiple labels. Journal of Visual Communication and Image Representation, 20(2):97-103, 2009.
-
(2009)
Journal of Visual Communication and Image Representation
, vol.20
, Issue.2
, pp. 97-103
-
-
Zha, Z.-J.1
Mei, T.2
Wang, J.-D.3
Wang, Z.-F.4
Hua, X.-S.5
-
16
-
-
33947681316
-
Ml-knn: A lazy learning approach to multi-label learning
-
M.-L. Zhang and Z.-H. Zhou. Ml-knn: A lazy learning approach to multi-label learning. Pattern Recognition, 40(7):2038-2048, 2007.
-
(2007)
Pattern Recognition
, vol.40
, Issue.7
, pp. 2038-2048
-
-
Zhang, M.-L.1
Zhou, Z.-H.2
-
18
-
-
84899006908
-
Learning with local and global consistency
-
D.-Y. Zhou, O. Bousquet, TN. Lal, J. Weston, and B. Schölkopf. Learning with local and global consistency. In Advances in Neural Information Processing Systems 16, pages 321-328. 2004.
-
(2004)
Advances in Neural Information Processing Systems
, vol.16
, pp. 321-328
-
-
Zhou, D.-Y.1
Bousquet, O.2
Lal, T.N.3
Weston, J.4
Schölkopf, B.5
-
19
-
-
84885572482
-
Multi-labelled classification using maximum entropy method
-
Salvador, Brazil
-
S.-H. Zhu, X. Ji, W. Xu, and Y.-H. Gong. Multi-labelled classification using maximum entropy method. In Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 274-281, Salvador, Brazil, 2005.
-
(2005)
Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval
, pp. 274-281
-
-
Zhu, S.-H.1
Ji, X.2
Xu, W.3
Gong, Y.-H.4
|