메뉴 건너뛰기




Volumn 12, Issue 5, 2009, Pages 559-580

Preferential text classification: Learning algorithms and evaluation measures

Author keywords

Preferential learning; Primary and secondary categories; Supervised learning; Text categorization; Text classification

Indexed keywords


EID: 84873337014     PISSN: 13864564     EISSN: 15737659     Source Type: Journal    
DOI: 10.1007/s10791-008-9071-y     Document Type: Article
Times cited : (12)

References (35)
  • 2
    • 84898965242 scopus 로고    scopus 로고
    • Learning preferences for multiclass problems
    • In L. K. Saul, Y. Weiss, & L. Bottou (Eds.), Cambridge, MA: MIT Press
    • Aiolli, F., & Sperduti, A. (2005). Learning preferences for multiclass problems. In L. K. Saul, Y. Weiss, & L. Bottou (Eds.), Advances in neural information processing systems 17 (Vol. 17, pp. 17-24). Cambridge, MA: MIT Press.
    • (2005) Advances In Neural Information Processing Systems 17 , vol.17 , pp. 17-24
    • Aiolli, F.1    Sperduti, A.2
  • 3
    • 77950950348 scopus 로고    scopus 로고
    • Support vector machine learning for interdependent and structured output spaces
    • In: G. H. Bakir, T. Hofmann, B. Scholkopf, A. J. Smola, B. Taskar, & S. V. N. Vishwanathan (Eds.), Cambridge, MA: The MIT Press
    • Altun, Y., Hofmann, T., & Tsochantaridis, I. (2007). Support vector machine learning for interdependent and structured output spaces. In: G. H. Bakir, T. Hofmann, B. Scholkopf, A. J. Smola, B. Taskar, & S. V. N. Vishwanathan (Eds.), Predicting structured data (pp. 85-104). Cambridge, MA: The MIT Press.
    • (2007) Predicting Structured Data , pp. 85-104
    • Altun, Y.1    Hofmann, T.2    Tsochantaridis, I.3
  • 6
    • 33847626350 scopus 로고    scopus 로고
    • Support vector ordinal regression
    • Chu, W., & Keerthi, S. S. (2007). Support vector ordinal regression. Neural Computation, 19(3), 792-815.
    • (2007) Neural Computation , vol.19 , Issue.3 , pp. 792-815
    • Chu, W.1    Keerthi, S.S.2
  • 7
    • 0010442827 scopus 로고    scopus 로고
    • On the algorithmic implementation of multiclass kernel-based vector machines
    • Crammer, K., & Singer, Y. (2001). On the algorithmic implementation of multiclass kernel-based vector machines. Journal of Machine Learning Research, 2, 265-292.
    • (2001) Journal of Machine Learning Research , vol.2 , pp. 265-292
    • Crammer, K.1    Singer, Y.2
  • 12
    • 11144323868 scopus 로고    scopus 로고
    • Automated categorization in the international patent classification
    • Fall, C. J., Torcsvári, A., Benzineb, K., & Karetka, G. (2003). Automated categorization in the international patent classification. SIGIR Forum, 37(1), 10-25.
    • (2003) SIGIR Forum , vol.37 , Issue.1 , pp. 10-25
    • Fall, C.J.1    Torcsvári, A.2    Benzineb, K.3    Karetka, G.4
  • 13
    • 2942731012 scopus 로고    scopus 로고
    • An extensive empirical study of feature selection metrics for text classification
    • Forman, G. (2003). An extensive empirical study of feature selection metrics for text classification. Journal of Machine Learning Research, 3, 1289-1305.
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 1289-1305
    • Forman, G.1
  • 19
    • 84957069814 scopus 로고    scopus 로고
    • Text categorization with support vector machines: Learning with many relevant features
    • Chemnitz, Germany
    • Joachims, T. (1998). Text categorization with support vector machines: Learning with many relevant features. In Proceedings of the 10th European Conference on Machine Learning (ECML'98) (pp. 137-142). Chemnitz, Germany.
    • (1998) Proceedings of the 10th European Conference On Machine Learning (ECML'98) , pp. 137-142
    • Joachims, T.1
  • 25
    • 0242659655 scopus 로고    scopus 로고
    • Hierarchical text classification using neural networks
    • Ruiz, M., & Srinivasan, P. (2002). Hierarchical text classification using neural networks. Information Retrieval, 5(1), 87-118.
    • (2002) Information Retrieval , vol.5 , Issue.1 , pp. 87-118
    • Ruiz, M.1    Srinivasan, P.2
  • 26
    • 46249109879 scopus 로고    scopus 로고
    • Cross-validation Optimization For Large Scale Hierarchical Classification Kernel Methods
    • Cambridge, MA: MIT Press
    • Seeger, M. W. (2007). Cross-validation optimization for large scale hierarchical classification Kernel methods. In B. Scholkopf, J. Platt, & Hoffman, T. (Eds.), Advances in neural information processing systems (Vol. 19, pp. 1233-1240). Cambridge, MA: MIT Press.
    • (2007) Advances In Neural Information Processing Systems , vol.19 , pp. 1233-1240
    • Seeger, M.W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.