메뉴 건너뛰기




Volumn 88, Issue 1-2, 2012, Pages 5-45

On label dependence and loss minimization in multi-label classification

Author keywords

Label dependence; Loss functions; Multi label classification

Indexed keywords

ARTIFICIAL INTELLIGENCE; SOFTWARE ENGINEERING;

EID: 84865223006     PISSN: 08856125     EISSN: 15730565     Source Type: Journal    
DOI: 10.1007/s10994-012-5285-8     Document Type: Article
Times cited : (313)

References (43)
  • 1
    • 78049348819 scopus 로고    scopus 로고
    • A boosting algorithm for label covering in multilabel problems
    • Amit, Y., Dekel, O., & Singer, Y. (2007). A boosting algorithm for label covering in multilabel problems. In JMLR W&P (Vol. 2, pp. 27-34).
    • (2007) JMLR W&P , vol.2 , pp. 27-34
    • Amit, Y.1    Dekel, O.2    Singer, Y.3
  • 2
    • 0002961424 scopus 로고
    • Multivariate regression analysis and canonical variates
    • an der Merwe, A., & Zidek, J. (1980). Multivariate regression analysis and canonical variates. Canadian Journal of Statistics, 8, 27-39.
    • (1980) Canadian Journal of Statistics , vol.8 , pp. 27-39
    • An Der Merwe, A.1    Zidek, J.2
  • 3
    • 3042597440 scopus 로고    scopus 로고
    • Learning multi-label scene classification
    • DOI 10.1016/j.patcog.2004.03.009, PII S0031320304001074
    • Boutell, M., Luo, J., Shen, X., & Brown, C. (2004). Learning multi-label scene classification. Pattern Recognition, 37(9), 1757-1771. (Pubitemid 38804465)
    • (2004) Pattern Recognition , vol.37 , Issue.9 , pp. 1757-1771
    • Boutell, M.R.1    Luo, J.2    Shen, X.3    Brown, C.M.4
  • 5
    • 0031189914 scopus 로고    scopus 로고
    • Multitask learning: A knowledge-based source of inductive bias
    • Caruana, R. (1997). Multitask learning: A knowledge-based source of inductive bias. Machine Learning, 28, 41-75.
    • (1997) Machine Learning , vol.28 , pp. 41-75
    • Caruana, R.1
  • 6
    • 68949141664 scopus 로고    scopus 로고
    • Combining instance-based learning and logistic regression for multilabel classification
    • Cheng, W., & Hüllermeier, E. (2009). Combining instance-based learning and logistic regression for multilabel classification. Machine Learning, 76(2-3), 211-225.
    • (2009) Machine Learning , vol.76 , Issue.2-3 , pp. 211-225
    • Cheng, W.1    Hüllermeier, E.2
  • 8
    • 84898970009 scopus 로고    scopus 로고
    • Log-linear models for label ranking
    • S. Thrun, L. Saul, & B. Schölkopf (Eds. Cambridge: MIT Press
    • Dekel, O., Manning, C., & Singer, Y. (2004). Log-linear models for label ranking. In S. Thrun, L. Saul, & B. Schölkopf (Eds.), NIPS 16. Cambridge: MIT Press.
    • (2004) NIPS , vol.16
    • Dekel, O.1    Manning, C.2    Singer, Y.3
  • 9
    • 56449100417 scopus 로고    scopus 로고
    • Maximum likelihood rule ensembles
    • Madison: Omnipress
    • Dembczy'nski, K., Kotłowski, W., & Słowi'nski, R. (2008). Maximum likelihood rule ensembles. In ICML 2008 (pp. 224-231). Madison: Omnipress.
    • (2008) ICML 2008 , pp. 224-231
    • Dembczy'nski, K.1    Kotłowski, W.2    Słowi'nski, R.3
  • 14
    • 76649137444 scopus 로고    scopus 로고
    • A kernel method for multi-labelled classification
    • Elisseeff, A., & Weston, J. (2002). A kernel method for multi-labelled classification. In NIPS 14 (pp. 681-688).
    • (2002) NIPS , vol.14 , pp. 681-688
    • Elisseeff, A.1    Weston, J.2
  • 15
    • 56449113929 scopus 로고    scopus 로고
    • Training Structural SVMs When Exact Inference is Intractable
    • Finley, T., & Joachims, T. (2008). Training structural SVMs when exact inference is intractable. In ICML 2008. Madison: Omnipress.
    • (2008) ICML 2008. Madison: Omnipress
    • Finley, T.1    Joachims, T.2
  • 18
    • 7444230008 scopus 로고    scopus 로고
    • Discriminative Methods for Multi-labeled Classification
    • Advances in Knowledge Discovery and Data Mining
    • Godbole, S., & Sarawagi, S. (2004). Discriminative methods for multi-labeled classification. In PAKDD 2004 (pp. 22-30). (Pubitemid 38824880)
    • (2004) Lecture notes in computer science , Issue.3056 , pp. 22-30
    • Godbole, S.1    Sarawagi, S.2
  • 19
    • 77956531458 scopus 로고    scopus 로고
    • Large scale max-margin multi-label classification with priors
    • Berlin: Omnipress
    • Hariharan, B., Zelnik-Manor, L., Vishwanathan, S., & Varma,M. (2010). Large scale max-margin multi-label classification with priors. In ICML 2010. Berlin: Omnipress.
    • (2010) ICML 2010
    • Hariharan, B.1    Zelnik-Manor, L.2    Vishwanathan, S.3    Varma, M.4
  • 21
    • 77956528679 scopus 로고    scopus 로고
    • Multi-label prediction via compressed sensing
    • Hsu, D., Kakade, S., Langford, J., & Zhang, T. (2009). Multi-label prediction via compressed sensing. In NIPS 22 (pp. 772-780).
    • (2009) NIPS , vol.22 , pp. 772-780
    • Hsu, D.1    Kakade, S.2    Langford, J.3    Zhang, T.4
  • 23
    • 0016511949 scopus 로고
    • Reduced-rank regression for the multivariate linear model
    • Izenman, A. (1975). Reduced-rank regression for the multivariate linear model. Journal of Multivariate Analysis, 5, 248-262.
    • (1975) Journal of Multivariate Analysis , vol.5 , pp. 248-262
    • Izenman, A.1
  • 26
    • 0003573483 scopus 로고
    • Minima of functions of several variables with inequalities as side constraints
    • Dept. of Mathematics, Univ. of Chicago
    • Karush, W. (1939). Minima of functions of several variables with inequalities as side constraints. Master's thesis, Dept. of Mathematics, Univ. of Chicago.
    • (1939) Master's Thesis
    • Karush, W.1
  • 28
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: Probabilistic models for segmenting and labeling sequence data
    • Lafferty, J. D., McCallum, A., & Pereira, F. C. N. (2001). Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In ICML 2001 (pp. 282-289).
    • (2001) ICML 2001 , pp. 282-289
    • Lafferty, J.D.1    McCallum, A.2    Pereira, F.C.N.3
  • 30
    • 84867115981 scopus 로고    scopus 로고
    • Entropy and margin maximization for structured output learning
    • Berlin: Springer
    • Pletscher, P., Ong, C. S., & Buhmann, J. M. (2010). Entropy and margin maximization for structured output learning. In ECML/PKDD 2010. Berlin: Springer.
    • (2010) ECML/PKDD 2010
    • Pletscher, P.1    Ong, C.S.2    Buhmann, J.M.3
  • 31
    • 70349968175 scopus 로고    scopus 로고
    • Classifier chains for multi-label classification
    • Read, J., Pfahringer, B., Holmes, G., & Frank, E. (2009). Classifier chains for multi-label classification. In ECML/PKDD 2009 (pp. 254-269).
    • (2009) ECML/PKDD 2009 , pp. 254-269
    • Read, J.1    Pfahringer, B.2    Holmes, G.3    Frank, E.4
  • 32
    • 0033905095 scopus 로고    scopus 로고
    • BoosTexter: A boosting-based system for text categorization
    • Schapire, RE, & Singer, Y. (2000). Boostexter: A boosting-based system for text categorization. Machine Learning, 39, 135-168. (Pubitemid 30594821)
    • (2000) Machine Learning , vol.39 , Issue.2 , pp. 135-168
    • Schapire, R.E.1    Singer, Y.2
  • 33
    • 0003956268 scopus 로고
    • Functions de répartitions à n dimensions et leurs marges
    • Public Institute of Statistics of the University of Paris 8
    • Sklar, A. (1959). Functions de répartitions à n dimensions et leurs marges (Tech. rep.). Public Institute of Statistics of the University of Paris 8.
    • (1959) Tech. Rep
    • Sklar, A.1
  • 38
    • 38049123909 scopus 로고    scopus 로고
    • Random k-labelsets: An ensemble method for multilabel classification
    • Tsoumakas, G. Vlahavas, I. (2007). Random k-labelsets: An ensemble method for multilabel classification. n ECML 2007 (pp. 406-417).
    • (2007) N ECML 2007 , pp. 406-417
    • Tsoumakas, G.1    Vlahavas, I.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.