-
1
-
-
78049348819
-
A boosting algorithm for label covering in multilabel problems
-
Amit, Y., Dekel, O., & Singer, Y. (2007). A boosting algorithm for label covering in multilabel problems. In JMLR W&P (Vol. 2, pp. 27-34).
-
(2007)
JMLR W&P
, vol.2
, pp. 27-34
-
-
Amit, Y.1
Dekel, O.2
Singer, Y.3
-
2
-
-
0002961424
-
Multivariate regression analysis and canonical variates
-
an der Merwe, A., & Zidek, J. (1980). Multivariate regression analysis and canonical variates. Canadian Journal of Statistics, 8, 27-39.
-
(1980)
Canadian Journal of Statistics
, vol.8
, pp. 27-39
-
-
An Der Merwe, A.1
Zidek, J.2
-
3
-
-
3042597440
-
Learning multi-label scene classification
-
DOI 10.1016/j.patcog.2004.03.009, PII S0031320304001074
-
Boutell, M., Luo, J., Shen, X., & Brown, C. (2004). Learning multi-label scene classification. Pattern Recognition, 37(9), 1757-1771. (Pubitemid 38804465)
-
(2004)
Pattern Recognition
, vol.37
, Issue.9
, pp. 1757-1771
-
-
Boutell, M.R.1
Luo, J.2
Shen, X.3
Brown, C.M.4
-
4
-
-
0000927638
-
Predicting multivariate responses in multiple linear regression
-
Breiman, L., & Friedman, J. (1997). Predicting multivariate responses in multiple linear regression. Journal of the Royal Statistical Society. Series B. Statistical Methodology, 69, 3-54. (Pubitemid 127686939)
-
(1997)
Journal of the Royal Statistical Society. Series B: Statistical Methodology
, vol.59
, Issue.1
, pp. 3-54
-
-
Breiman, L.1
Friedman, J.H.2
-
5
-
-
0031189914
-
Multitask learning: A knowledge-based source of inductive bias
-
Caruana, R. (1997). Multitask learning: A knowledge-based source of inductive bias. Machine Learning, 28, 41-75.
-
(1997)
Machine Learning
, vol.28
, pp. 41-75
-
-
Caruana, R.1
-
6
-
-
68949141664
-
Combining instance-based learning and logistic regression for multilabel classification
-
Cheng, W., & Hüllermeier, E. (2009). Combining instance-based learning and logistic regression for multilabel classification. Machine Learning, 76(2-3), 211-225.
-
(2009)
Machine Learning
, vol.76
, Issue.2-3
, pp. 211-225
-
-
Cheng, W.1
Hüllermeier, E.2
-
7
-
-
77951707399
-
Finding the Jaccard median
-
Chierichetti, F., Kumar, R., Pandey, S., & Vassilvitskii, S. (2010). Finding the Jaccard median. In ACM-SIAM SODA 2010 (pp. 293-311).
-
(2010)
ACM-SIAM SODA 2010
, pp. 293-311
-
-
Chierichetti, F.1
Kumar, R.2
Pandey, S.3
Vassilvitskii, S.4
-
8
-
-
84898970009
-
Log-linear models for label ranking
-
S. Thrun, L. Saul, & B. Schölkopf (Eds. Cambridge: MIT Press
-
Dekel, O., Manning, C., & Singer, Y. (2004). Log-linear models for label ranking. In S. Thrun, L. Saul, & B. Schölkopf (Eds.), NIPS 16. Cambridge: MIT Press.
-
(2004)
NIPS
, vol.16
-
-
Dekel, O.1
Manning, C.2
Singer, Y.3
-
9
-
-
56449100417
-
Maximum likelihood rule ensembles
-
Madison: Omnipress
-
Dembczy'nski, K., Kotłowski, W., & Słowi'nski, R. (2008). Maximum likelihood rule ensembles. In ICML 2008 (pp. 224-231). Madison: Omnipress.
-
(2008)
ICML 2008
, pp. 224-231
-
-
Dembczy'nski, K.1
Kotłowski, W.2
Słowi'nski, R.3
-
11
-
-
79955570175
-
On label dependence in multilabel classification
-
in conjunction with ICML/COLT 2010
-
Dembczy'nski, K., Waegeman, W., Cheng, W., & Hüllermeier, E. (2010b). On label dependence in multilabel classification. In Second international workshop on learning from multi-label data (MLD 2010), in conjunction with ICML/COLT 2010.
-
(2010)
Second International Workshop on Learning From Multi-Label Data (MLD 2010
-
-
Dembczy'nski, K.1
Waegeman W. Cheng, W.2
Hüllermeier, E.3
-
12
-
-
84865261450
-
-
ECML/PKDD 2010. Berlin: Springer
-
Dembczy'nski, K., Waegeman, W., Cheng, W., & Hüllermeier, E. (2010c). Regret analysis for performance metrics in multi-label classification: The case of hamming and subset zero-one loss. In ECML/PKDD 2010. Berlin: Springer.
-
(2010)
Regret Analysis For Performance Metrics In Multi-label Classification: The Case Of Hamming And Subset Zero-one Loss
-
-
Dembczy'nski, K.1
Waegeman W. Cheng, W.2
Hüllermeier, E.3
-
13
-
-
84865253908
-
-
Dembczy'nski, K., Waegeman, W., Cheng, W., & Hüllermeier, E. (2012) An exact algorithm for F-measure maximization. In Advances in neural information processing systems (Vol. 25).
-
(2012)
An Exact Algorithm For F-measure Maximization. Advances in neural information processing systems
, vol.25
-
-
Dembczy'nski, K.1
Waegeman W. Cheng, W.2
Hüllermeier, E.3
-
14
-
-
76649137444
-
A kernel method for multi-labelled classification
-
Elisseeff, A., & Weston, J. (2002). A kernel method for multi-labelled classification. In NIPS 14 (pp. 681-688).
-
(2002)
NIPS
, vol.14
, pp. 681-688
-
-
Elisseeff, A.1
Weston, J.2
-
15
-
-
56449113929
-
Training Structural SVMs When Exact Inference is Intractable
-
Finley, T., & Joachims, T. (2008). Training structural SVMs when exact inference is intractable. In ICML 2008. Madison: Omnipress.
-
(2008)
ICML 2008. Madison: Omnipress
-
-
Finley, T.1
Joachims, T.2
-
16
-
-
52949105710
-
Multilabel classification via calibrated label ranking
-
Fürnkranz, J., Hüllermeier, E., Loza Mencía, E., & Brinker, K. (2008). Multilabel classification via calibrated label ranking. Machine Learning, 73(2).
-
(2008)
Machine Learning
, vol.73
, pp. 2
-
-
Fürnkranz, J.1
Hüllermeier, E.2
Loza Mencía, E.3
Brinker, K.4
-
18
-
-
7444230008
-
Discriminative Methods for Multi-labeled Classification
-
Advances in Knowledge Discovery and Data Mining
-
Godbole, S., & Sarawagi, S. (2004). Discriminative methods for multi-labeled classification. In PAKDD 2004 (pp. 22-30). (Pubitemid 38824880)
-
(2004)
Lecture notes in computer science
, Issue.3056
, pp. 22-30
-
-
Godbole, S.1
Sarawagi, S.2
-
19
-
-
77956531458
-
Large scale max-margin multi-label classification with priors
-
Berlin: Omnipress
-
Hariharan, B., Zelnik-Manor, L., Vishwanathan, S., & Varma,M. (2010). Large scale max-margin multi-label classification with priors. In ICML 2010. Berlin: Omnipress.
-
(2010)
ICML 2010
-
-
Hariharan, B.1
Zelnik-Manor, L.2
Vishwanathan, S.3
Varma, M.4
-
20
-
-
0003684449
-
-
Berlin: Springer
-
Hastie, T., Tibshirani, R., & Friedman, J. H. (2007). Elements of statistical learning: data mining, inference, and prediction (2nd ed.). Berlin: Springer.
-
(2007)
Elements of Statistical Learning: Data Mining, Inference, and Prediction (2nd ed
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.H.3
-
21
-
-
77956528679
-
Multi-label prediction via compressed sensing
-
Hsu, D., Kakade, S., Langford, J., & Zhang, T. (2009). Multi-label prediction via compressed sensing. In NIPS 22 (pp. 772-780).
-
(2009)
NIPS
, vol.22
, pp. 772-780
-
-
Hsu, D.1
Kakade, S.2
Langford, J.3
Zhang, T.4
-
22
-
-
52949143827
-
Label ranking by learning pairwise preferences
-
Hüllermeier, E., Fürnkranz, J., Cheng, W., & Brinker, K. (2008). Label ranking by learning pairwise preferences. Artificial Intelligence, 172(16-17), 1897-1916.
-
(2008)
Artificial Intelligence
, vol.172
, Issue.16-17
, pp. 1897-1916
-
-
Hüllermeier, E.1
Fürnkranz, J.2
Cheng, W.3
Brinker, K.4
-
23
-
-
0016511949
-
Reduced-rank regression for the multivariate linear model
-
Izenman, A. (1975). Reduced-rank regression for the multivariate linear model. Journal of Multivariate Analysis, 5, 248-262.
-
(1975)
Journal of Multivariate Analysis
, vol.5
, pp. 248-262
-
-
Izenman, A.1
-
26
-
-
0003573483
-
Minima of functions of several variables with inequalities as side constraints
-
Dept. of Mathematics, Univ. of Chicago
-
Karush, W. (1939). Minima of functions of several variables with inequalities as side constraints. Master's thesis, Dept. of Mathematics, Univ. of Chicago.
-
(1939)
Master's Thesis
-
-
Karush, W.1
-
28
-
-
0142192295
-
Conditional random fields: Probabilistic models for segmenting and labeling sequence data
-
Lafferty, J. D., McCallum, A., & Pereira, F. C. N. (2001). Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In ICML 2001 (pp. 282-289).
-
(2001)
ICML 2001
, pp. 282-289
-
-
Lafferty, J.D.1
McCallum, A.2
Pereira, F.C.N.3
-
29
-
-
85031008452
-
A shared task involving multi-label classification of clinical free text
-
Association for Computational Linguistics
-
Pestian, J. P., Brew, C., Matykiewicz, P., Hovermale, D. J., Johnson, N., Cohen, K. B., & Duch, W. (2007). A shared task involving multi-label classification of clinical free text. In BioNLP'07: proceedings of the workshop on BioNLP 2007 (pp. 97-104). Association for Computational Linguistics.
-
(2007)
BioNLP'07: Proceedings of the Workshop on BioNLP 2007
, pp. 97-104
-
-
Pestian, J.P.1
Brew, C.2
Matykiewicz, P.3
Hovermale, D.J.4
Johnson, N.5
Cohen, K.B.6
Duch, W.7
-
30
-
-
84867115981
-
Entropy and margin maximization for structured output learning
-
Berlin: Springer
-
Pletscher, P., Ong, C. S., & Buhmann, J. M. (2010). Entropy and margin maximization for structured output learning. In ECML/PKDD 2010. Berlin: Springer.
-
(2010)
ECML/PKDD 2010
-
-
Pletscher, P.1
Ong, C.S.2
Buhmann, J.M.3
-
31
-
-
70349968175
-
Classifier chains for multi-label classification
-
Read, J., Pfahringer, B., Holmes, G., & Frank, E. (2009). Classifier chains for multi-label classification. In ECML/PKDD 2009 (pp. 254-269).
-
(2009)
ECML/PKDD 2009
, pp. 254-269
-
-
Read, J.1
Pfahringer, B.2
Holmes, G.3
Frank, E.4
-
32
-
-
0033905095
-
BoosTexter: A boosting-based system for text categorization
-
Schapire, RE, & Singer, Y. (2000). Boostexter: A boosting-based system for text categorization. Machine Learning, 39, 135-168. (Pubitemid 30594821)
-
(2000)
Machine Learning
, vol.39
, Issue.2
, pp. 135-168
-
-
Schapire, R.E.1
Singer, Y.2
-
33
-
-
0003956268
-
Functions de répartitions à n dimensions et leurs marges
-
Public Institute of Statistics of the University of Paris 8
-
Sklar, A. (1959). Functions de répartitions à n dimensions et leurs marges (Tech. rep.). Public Institute of Statistics of the University of Paris 8.
-
(1959)
Tech. Rep
-
-
Sklar, A.1
-
35
-
-
84873447495
-
Multi-label classification of music into emotions
-
Trohidis, K., Tsoumakas, G., Kalliris, G., & Vlahavas, I. (2008). Multi-label classification of music into emotions. In ISMIR 2008 (pp. 325-330).
-
(2008)
ISMIR 2008
, pp. 325-330
-
-
Trohidis, K.1
Tsoumakas, G.2
Kalliris, G.3
Vlahavas, I.4
-
36
-
-
24944537843
-
Large margin methods for structured and independent output variables
-
Tsochantaridis, Y., Joachims, T., Hofmann, T., & Altun, Y. (2005). Large margin methods for structured and independent output variables. Journal of Machine Learning Research, 6, 1453-1484.
-
(2005)
Journal of Machine Learning Research
, vol.6
, pp. 1453-1484
-
-
Tsochantaridis, Y.1
Joachims, T.2
Hofmann, T.3
Altun, Y.4
-
37
-
-
34748873053
-
Multi label classification: An overview
-
Tsoumakas, G., & Katakis, I. (2007). Multi label classification: An overview. International Journal of Data Warehousing and Mining, 3(3), 1-13.
-
(2007)
International Journal of Data Warehousing and Mining
, vol.3
, Issue.3
, pp. 1-13
-
-
Tsoumakas, G.1
Katakis, I.2
-
38
-
-
38049123909
-
Random k-labelsets: An ensemble method for multilabel classification
-
Tsoumakas, G. Vlahavas, I. (2007). Random k-labelsets: An ensemble method for multilabel classification. n ECML 2007 (pp. 406-417).
-
(2007)
N ECML 2007
, pp. 406-417
-
-
Tsoumakas, G.1
Vlahavas, I.2
-
40
-
-
85156188079
-
Kernel dependency estimation
-
Weston, J., Chapelle, O., Elisseeff, A., Schölkopf, B., & Vapnik, V. (2002). Kernel dependency estimation. In NIPS 2002 (pp. 873-880).
-
(2002)
NIPS 2002
, pp. 873-880
-
-
Weston, J.1
Chapelle, O.2
Elisseeff, A.3
Schölkopf, B.4
Vapnik, V.5
-
42
-
-
33750823079
-
Multi-output regularized feature projection
-
DOI 10.1109/TKDE.2006.194, 1717418
-
Yu, S., Yu, K., Tresp, V, & Kriegel, H. P. (2006). Multi-output regularized feature projection. IEEE Transactions on Knowledge and Data Engineering, 18(12), 1600-1613. (Pubitemid 44711720)
-
(2006)
IEEE Transactions on Knowledge and Data Engineering
, vol.18
, Issue.12
, pp. 1600-1613
-
-
Yu, S.1
Yu, K.2
Tresp, V.3
Kriegel, H.-P.4
|