메뉴 건너뛰기




Volumn 20, Issue 11, 2014, Pages 1614-1624

Sirtuins: Nodes connecting aging, metabolism and tumorigenesis

Author keywords

Aging; Apoptosis; Autophagy; Genomic stability; Metabolism; Post translational modification; Sirtuin

Indexed keywords

SIRTUIN; SIRTUIN 1; SIRTUIN 2; SIRTUIN 3; SIRTUIN 4; SIRTUIN 5; SIRTUIN 6; SIRTUIN 7;

EID: 84903716335     PISSN: 13816128     EISSN: 18734286     Source Type: Journal    
DOI: 10.2174/13816128113199990513     Document Type: Review
Times cited : (23)

References (138)
  • 1
    • 3943054839 scopus 로고    scopus 로고
    • The Sir2 family of protein deacetylases
    • Blander G, Guarente L. The Sir2 family of protein deacetylases. Annu Rev Biochem 2004; 73: 417-35.
    • (2004) Annu Rev Biochem , vol.73 , pp. 417-435
    • Blander, G.1    Guarente, L.2
  • 2
    • 0033887456 scopus 로고    scopus 로고
    • Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins
    • Frye RA. Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem Biophys Res Commun 2000; 273: 793-8.
    • (2000) Biochem Biophys Res Commun , vol.273 , pp. 793-798
    • Frye, R.A.1
  • 3
    • 0028897013 scopus 로고
    • Mutation in the silencing gene SIR4 can delay aging in S. cerevisiae
    • Kennedy BK, Austriaco NR, Zhang J, Guarente L. Mutation in the silencing gene SIR4 can delay aging in S. cerevisiae. Cell 1995; 80: 485-96.
    • (1995) Cell , vol.80 , pp. 485-496
    • Kennedy, B.K.1    Austriaco, N.R.2    Zhang, J.3    Guarente, L.4
  • 4
    • 33746228121 scopus 로고    scopus 로고
    • Sirtuins in aging and age-related disease
    • Longo VD, Kennedy BK. Sirtuins in aging and age-related disease. Cell 2006; 126: 257-68.
    • (2006) Cell , vol.126 , pp. 257-268
    • Longo, V.D.1    Kennedy, B.K.2
  • 5
    • 26244436281 scopus 로고    scopus 로고
    • Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins
    • Michishita E, Park JY, Burneskis JM, Barrett JC, Horikawa I. Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol Biol Cell 2005; 16: 4623-35.
    • (2005) Mol Biol Cell , vol.16 , pp. 4623-4635
    • Michishita, E.1    Park, J.Y.2    Burneskis, J.M.3    Barrett, J.C.4    Horikawa, I.5
  • 6
    • 34250365395 scopus 로고    scopus 로고
    • Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT1
    • Tanno M, Sakamoto J, Miura T, Shimamoto K, Horio Y. Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT1. J Biol Chem 2007; 282: 6823-32.
    • (2007) J Biol Chem , vol.282 , pp. 6823-6832
    • Tanno, M.1    Sakamoto, J.2    Miura, T.3    Shimamoto, K.4    Horio, Y.5
  • 7
    • 0037108799 scopus 로고    scopus 로고
    • SIRT3, a human SIR2 homologue, is an NADdependent deacetylase localized to mitochondria
    • Onyango P. SIRT3, a human SIR2 homologue, is an NADdependent deacetylase localized to mitochondria. Proc Natl Acad Sci 2002; 99: 13653-8.
    • (2002) Proc Natl Acad Sci , vol.99 , pp. 13653-13658
    • Onyango, P.1
  • 8
    • 34247271282 scopus 로고    scopus 로고
    • SirT3 is a nuclear NAD+- dependent histone deacetylase that translocates to the mitochondria upon cellular stress
    • Scher MB, Vaquero A, Reinberg D. SirT3 is a nuclear NAD+- dependent histone deacetylase that translocates to the mitochondria upon cellular stress. Genes Development 2007; 21: 920-8.
    • (2007) Genes Development , vol.21 , pp. 920-928
    • Scher, M.B.1    Vaquero, A.2    Reinberg, D.3
  • 9
    • 84863453769 scopus 로고    scopus 로고
    • SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation
    • Barber MF, Michishita-Kioi E, Xi Y, et al. SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation. Nature 2012; 487: 114-8.
    • (2012) Nature , vol.487 , pp. 114-118
    • Barber, M.F.1    Michishita-Kioi, E.2    Xi, Y.3
  • 10
    • 34547875773 scopus 로고    scopus 로고
    • Sirtuins: Critical regulators at the crossroads between cancer and aging
    • Saunders LR, Verdin E. Sirtuins: critical regulators at the crossroads between cancer and aging. Oncogene 2007; 26: 5489-504.
    • (2007) Oncogene , vol.26 , pp. 5489-5504
    • Saunders, L.R.1    Verdin, E.2
  • 11
    • 20444409132 scopus 로고    scopus 로고
    • Mouse Sir2 homolog SIRT6 is a nuclear ADPribosyltransferase
    • Liszt G. Mouse Sir2 homolog SIRT6 is a nuclear ADPribosyltransferase. J Biological Chem 2005; 280: 21313-20.
    • (2005) J Biological Chem , vol.280 , pp. 21313-21320
    • Liszt, G.1
  • 12
    • 81055122671 scopus 로고    scopus 로고
    • Sirt5 Is a NAD-dependent protein lysine demalonylase and desuccinylase
    • Du J, Zhou Y, Su X, et al. Sirt5 Is a NAD-dependent protein lysine demalonylase and desuccinylase. Science 2011; 334: 806-9.
    • (2011) Science , vol.334 , pp. 806-809
    • Du, J.1    Zhou, Y.2    Su, X.3
  • 13
    • 83055173304 scopus 로고    scopus 로고
    • The first identification of lysine malonylation substrates and its regulatory enzyme
    • Peng C, Lu Z, Xie Z, et al. The first identification of lysine malonylation substrates and its regulatory enzyme. Mol Cell Proteomics 2011; 10: M111 012658.
    • (2011) Mol Cell Proteomics , vol.10 , pp. 012658
    • Peng, C.1    Lu, Z.2    Xie, Z.3
  • 14
    • 82955233648 scopus 로고    scopus 로고
    • Old enzymes, new tricks: Sirtuins are NAD+- dependent De-acylases
    • Hirschey Matthew D. Old enzymes, new tricks: sirtuins are NAD+- dependent De-acylases. Cell Metabolism 2011; 14: 718-9.
    • (2011) Cell Metabolism , vol.14 , pp. 718-719
    • Hirschey, M.D.1
  • 15
    • 33751113602 scopus 로고    scopus 로고
    • Mammalian sirtuins-emerging roles in physiology, aging, and calorie restriction
    • Haigis MC, Guarente LP. Mammalian sirtuins-emerging roles in physiology, aging, and calorie restriction. Genes & Development 2006; 20: 2913-21.
    • (2006) Genes & Development , vol.20 , pp. 2913-2921
    • Haigis, M.C.1    Guarente, L.P.2
  • 16
    • 0022625954 scopus 로고
    • Cloning and characterization of four SIR genes of Saccharomyces cerevisiae
    • Ivy JM, Klar AJ, Hicks JB. Cloning and characterization of four SIR genes of Saccharomyces cerevisiae. Mol Cell Biol 1986; 6: 688-702.
    • (1986) Mol Cell Biol , vol.6 , pp. 688-702
    • Ivy, J.M.1    Klar, A.J.2    Hicks, J.B.3
  • 17
    • 0025201982 scopus 로고
    • Position effect at S. cerevisiae telomeres: Reversible repression of Pol II transcription
    • Gottschling DE, Aparicio OM, Billington BL, Zakian VA. Position effect at S. cerevisiae telomeres: Reversible repression of Pol II transcription. Cell 1990; 63: 751-62.
    • (1990) Cell , vol.63 , pp. 751-762
    • Gottschling, D.E.1    Aparicio, O.M.2    Billington, B.L.3    Zakian, V.A.4
  • 18
    • 0031056907 scopus 로고    scopus 로고
    • An unusual form of transcriptional silencing in yeast ribosomal DNA
    • Smith JS, Boeke JD. An unusual form of transcriptional silencing in yeast ribosomal DNA. Genes Dev 1997; 11: 241-54.
    • (1997) Genes Dev , vol.11 , pp. 241-254
    • Smith, J.S.1    Boeke, J.D.2
  • 19
    • 0024536650 scopus 로고
    • A new role for a yeast transcriptional silencer gene, SIR2, in regulation of recombination in ribosomal DNA
    • Gottlieb S, Esposito RE. A new role for a yeast transcriptional silencer gene, SIR2, in regulation of recombination in ribosomal DNA. Cell 1989; 56: 771-6.
    • (1989) Cell , vol.56 , pp. 771-776
    • Gottlieb, S.1    Esposito, R.E.2
  • 20
    • 0029953722 scopus 로고    scopus 로고
    • Efficient transcriptional silencing in Saccharomyces cerevisiae requires a heterochromatin histone acetylation pattern
    • Braunstein M, Sobel RE, Allis CD, Turner BM, Broach JR. Efficient transcriptional silencing in Saccharomyces cerevisiae requires a heterochromatin histone acetylation pattern. Mol Cell Biol 1996; 16: 4349-56.
    • (1996) Mol Cell Biol , vol.16 , pp. 4349-4356
    • Braunstein, M.1    Sobel, R.E.2    Allis, C.D.3    Turner, B.M.4    Broach, J.R.5
  • 21
    • 0028234142 scopus 로고
    • Histone H3 amino terminus is required for telomeric and silent mating locus repression in yeast
    • Thompson JS, Ling X, Grunstein M. Histone H3 amino terminus is required for telomeric and silent mating locus repression in yeast. Nature 1994; 369: 245-7.
    • (1994) Nature , vol.369 , pp. 245-247
    • Thompson, J.S.1    Ling, X.2    Grunstein, M.3
  • 22
    • 0028919756 scopus 로고
    • Histone H3 and H4 N-termini interact with SIR3 and SIR4 proteins: A molecular model for the formation of heterochromatin in yeast
    • Hecht A, Laroche T, Strahl-Bolsinger S, Gasser SM, Grunstein M. Histone H3 and H4 N-termini interact with SIR3 and SIR4 proteins: A molecular model for the formation of heterochromatin in yeast. Cell 1995; 80: 583-92.
    • (1995) Cell , vol.80 , pp. 583-592
    • Hecht, A.1    Laroche, T.2    Strahl-Bolsinger, S.3    Gasser, S.M.4    Grunstein, M.5
  • 23
    • 0027192267 scopus 로고
    • Transcriptional silencing in yeast is associated with reduced nucleosome acetylation
    • Braunstein M, Rose AB, Holmes SG, Allis CD, Broach JR. Transcriptional silencing in yeast is associated with reduced nucleosome acetylation. Genes Development 1993; 7: 592-604.
    • (1993) Genes Development , vol.7 , pp. 592-604
    • Braunstein, M.1    Rose, A.B.2    Holmes, S.G.3    Allis, C.D.4    Broach, J.R.5
  • 24
    • 0033598942 scopus 로고    scopus 로고
    • An enzymatic activity in the yeast Sir2 protein that is essential for gene silencing
    • Tanny JC, Dowd GJ, Huang J, Hilz H, Moazed D. An enzymatic activity in the yeast Sir2 protein that is essential for gene silencing. Cell 1999; 99: 735-45.
    • (1999) Cell , vol.99 , pp. 735-745
    • Tanny, J.C.1    Dowd, G.J.2    Huang, J.3    Hilz, H.4    Moazed, D.5
  • 25
    • 0030964526 scopus 로고    scopus 로고
    • Silencing factors participate in DNA repair and recombination in Saccharomyces cerevisiae
    • Tsukamoto Y, Kato J, Ikeda H. Silencing factors participate in DNA repair and recombination in Saccharomyces cerevisiae. Nature 1997; 388: 900-3.
    • (1997) Nature , vol.388 , pp. 900-903
    • Tsukamoto, Y.1    Kato, J.2    Ikeda, H.3
  • 26
    • 0033612287 scopus 로고    scopus 로고
    • Relocalization of telomeric Ku and SIR proteins in response to DNA strand breaks in yeast
    • Martin SG, Laroche T, Suka N, Grunstein M, Gasser SM. Relocalization of telomeric Ku and SIR proteins in response to DNA strand breaks in yeast. Cell 1999; 97: 621-33.
    • (1999) Cell , vol.97 , pp. 621-633
    • Martin, S.G.1    Laroche, T.2    Suka, N.3    Grunstein, M.4    Gasser, S.M.5
  • 27
    • 0033612189 scopus 로고    scopus 로고
    • MEC1-dependent redistribution of the Sir3 silencing protein from telomeres to DNA double-strand breaks
    • Mills KD, Sinclair DA, Guarente L. MEC1-dependent redistribution of the Sir3 silencing protein from telomeres to DNA double-strand breaks. Cell 1999; 97: 609-20.
    • (1999) Cell , vol.97 , pp. 609-620
    • Mills, K.D.1    Sinclair, D.A.2    Guarente, L.3
  • 28
    • 0033214237 scopus 로고    scopus 로고
    • The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms
    • Kaeberlein M, McVey M, Guarente L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev 1999; 13: 2570-80.
    • (1999) Genes Dev , vol.13 , pp. 2570-2580
    • Kaeberlein, M.1    McVey, M.2    Guarente, L.3
  • 29
    • 0030916153 scopus 로고    scopus 로고
    • Redistribution of silencing proteins from telomeres to the nucleolus is associated with extension of life span in S. cerevisiae
    • Kennedy BK, Gotta M, Sinclair DA, et al. Redistribution of silencing proteins from telomeres to the nucleolus is associated with extension of life span in S. cerevisiae. Cell 1997; 89: 381-91.
    • (1997) Cell , vol.89 , pp. 381-391
    • Kennedy, B.K.1    Gotta, M.2    Sinclair, D.A.3
  • 30
    • 0030053650 scopus 로고    scopus 로고
    • Loss of transcriptional silencing causes sterility in old mother cells of S. cerevisiae
    • Smeal T, Claus J, Kennedy B, Cole F, Guarente L. Loss of transcriptional silencing causes sterility in old mother cells of S. cerevisiae. Cell 1996; 84: 633-42.
    • (1996) Cell , vol.84 , pp. 633-642
    • Smeal, T.1    Claus, J.2    Kennedy, B.3    Cole, F.4    Guarente, L.5
  • 31
    • 27744596999 scopus 로고    scopus 로고
    • Sir2 blocks extreme life-span extension
    • Fabrizio P, Gattazzo C, Battistella L, et al. Sir2 blocks extreme life-span extension. Cell 2005; 123: 655-67.
    • (2005) Cell , vol.123 , pp. 655-667
    • Fabrizio, P.1    Gattazzo, C.2    Battistella, L.3
  • 32
    • 4644342867 scopus 로고    scopus 로고
    • Superoxide is a mediator of an altruistic aging program in Saccharomyces cerevisiae
    • Fabrizio P, Battistella L, Vardavas R, et al. Superoxide is a mediator of an altruistic aging program in Saccharomyces cerevisiae. J Cell Biol 2004; 166: 1055-67.
    • (2004) J Cell Biol , vol.166 , pp. 1055-1067
    • Fabrizio, P.1    Battistella, L.2    Vardavas, R.3
  • 33
    • 0033529926 scopus 로고    scopus 로고
    • Passage through stationary phase advances replicative aging in Saccharomyces cerevisiae
    • Ashrafi K, Sinclair D, Gordon JI, Guarente L. Passage through stationary phase advances replicative aging in Saccharomyces cerevisiae. Proc Natl Acad Sci 1999; 96: 9100-5.
    • (1999) Proc Natl Acad Sci , vol.96 , pp. 9100-9105
    • Ashrafi, K.1    Sinclair, D.2    Gordon, J.I.3    Guarente, L.4
  • 35
  • 36
    • 0035100306 scopus 로고    scopus 로고
    • Aged mother cells of Saccharomyces cerevisiae show markers of oxidative stress and apoptosis
    • Laun P, Pichova A, Madeo F, et al. Aged mother cells of Saccharomyces cerevisiae show markers of oxidative stress and apoptosis. Mol Microbiol 2001; 39: 1166-73.
    • (2001) Mol Microbiol , vol.39 , pp. 1166-1173
    • Laun, P.1    Pichova, A.2    Madeo, F.3
  • 37
    • 0036021375 scopus 로고    scopus 로고
    • Genetic analysis of tissue aging in Caenorhabditis elegans: A role for heat-shock factor and bacterial proliferation
    • Garigan D, Hsu AL, Fraser AG, Kamath RS, Ahringer J, Kenyon C. Genetic analysis of tissue aging in Caenorhabditis elegans: a role for heat-shock factor and bacterial proliferation. Genetics 2002; 161: 1101-12.
    • (2002) Genetics , vol.161 , pp. 1101-1112
    • Garigan, D.1    Hsu, A.L.2    Fraser, A.G.3    Kamath, R.S.4    Ahringer, J.5    Kenyon, C.6
  • 38
    • 77950200010 scopus 로고    scopus 로고
    • The genetics of ageing
    • Kenyon CJ. The genetics of ageing. Nature 2010; 464: 504-12.
    • (2010) Nature , vol.464 , pp. 504-512
    • Kenyon, C.J.1
  • 39
    • 0035826271 scopus 로고    scopus 로고
    • Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans
    • Tissenbaum HA, Guarente L. Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 2001; 410: 227-30.
    • (2001) Nature , vol.410 , pp. 227-230
    • Tissenbaum, H.A.1    Guarente, L.2
  • 40
    • 8644224064 scopus 로고    scopus 로고
    • Sir2 mediates longevity in the fly through a pathway related to calorie restriction
    • Rogina B. Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc Natl Acad Sci 2004; 101: 15998-6003.
    • (2004) Proc Natl Acad Sci , vol.101 , pp. 15998-16003
    • Rogina, B.1
  • 41
    • 18744416824 scopus 로고    scopus 로고
    • Longevity regulation by Drosophila Rpd3 deacetylase and caloric restriction
    • Rogina B, Helfand SL, Frankel S. Longevity regulation by Drosophila Rpd3 deacetylase and caloric restriction. Science 2002; 298: 1745.
    • (2002) Science , vol.298 , pp. 1745
    • Rogina, B.1    Helfand, S.L.2    Frankel, S.3
  • 42
    • 41649094992 scopus 로고    scopus 로고
    • SIRT1 Acts as a nutrientsensitive growth suppressor and its loss is associated with increased AMPK and telomerase activity
    • Narala SR, Allsopp RC, Wells TB, et al. SIRT1 Acts as a nutrientsensitive growth suppressor and its loss is associated with increased AMPK and telomerase activity. Mol Biol Cell 2007; 19: 1210-9.
    • (2007) Mol Biol Cell , vol.19 , pp. 1210-1219
    • Narala, S.R.1    Allsopp, R.C.2    Wells, T.B.3
  • 43
    • 33744976074 scopus 로고    scopus 로고
    • C. elegans SIR-2.1 Interacts with 14-3-3 proteins to activate DAF-16 and extend life span
    • Berdichevsky A, Viswanathan M, Horvitz HR, Guarente L. C. elegans SIR-2.1 Interacts with 14-3-3 proteins to activate DAF-16 and extend life span. Cell 2006; 125: 1165-77.
    • (2006) Cell , vol.125 , pp. 1165-1177
    • Berdichevsky, A.1    Viswanathan, M.2    Horvitz, H.R.3    Guarente, L.4
  • 44
    • 33746245679 scopus 로고    scopus 로고
    • C. elegans 14-3-3 proteins regulate life span and interact with SIR-2.1 and DAF-16/FOXO
    • Wang Y, Oh SW, Deplancke B, Luo J, Walhout AJ, Tissenbaum HA. C. elegans 14-3-3 proteins regulate life span and interact with SIR-2.1 and DAF-16/FOXO. Mech Ageing Dev 2006; 127: 741-7.
    • (2006) Mech Ageing Dev , vol.127 , pp. 741-747
    • Wang, Y.1    Oh, S.W.2    Deplancke, B.3    Luo, J.4    Walhout, A.J.5    Tissenbaum, H.A.6
  • 45
    • 67949102053 scopus 로고    scopus 로고
    • Recent progress in the biology and physiology of sirtuins
    • Finkel T, Deng C-X, Mostoslavsky R. Recent progress in the biology and physiology of sirtuins. Nature 2009; 460: 587-91.
    • (2009) Nature , vol.460 , pp. 587-591
    • Finkel, T.1    Deng, C.-X.2    Mostoslavsky, R.3
  • 48
    • 14544282413 scopus 로고    scopus 로고
    • Nutrient control of glucose homeostasis through a complex of PGC-1[alpha] and SIRT1
    • Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P. Nutrient control of glucose homeostasis through a complex of PGC-1[alpha] and SIRT1. Nature 2005; 434: 113-8.
    • (2005) Nature , vol.434 , pp. 113-118
    • Rodgers, J.T.1    Lerin, C.2    Haas, W.3    Gygi, S.P.4    Spiegelman, B.M.5    Puigserver, P.6
  • 49
    • 33244486764 scopus 로고    scopus 로고
    • Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic beta cells
    • Bordone L, Motta MC, Picard F, et al. Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic beta cells. PLoS Biol 2006; 4: e31.
    • (2006) PLoS Biol , vol.4
    • Bordone, L.1    Motta, M.C.2    Picard, F.3
  • 50
    • 56249100986 scopus 로고    scopus 로고
    • A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange
    • Liu Y, Dentin R, Chen D, et al. A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange. Nature 2008; 456: 269-73.
    • (2008) Nature , vol.456 , pp. 269-273
    • Liu, Y.1    Dentin, R.2    Chen, D.3
  • 51
    • 25144454432 scopus 로고    scopus 로고
    • Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucosestimulated insulin secretion in mice
    • Moynihan KA, Grimm AA, Plueger MM, et al. Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucosestimulated insulin secretion in mice. Cell Metab 2005; 2: 105-17.
    • (2005) Cell Metab , vol.2 , pp. 105-117
    • Moynihan, K.A.1    Grimm, A.A.2    Plueger, M.M.3
  • 53
    • 52749091816 scopus 로고    scopus 로고
    • Sirt1 gain of function increases energy efficiency and prevents diabetes in mice
    • Banks AS, Kon N, Knight C, et al. Sirt1 gain of function increases energy efficiency and prevents diabetes in mice. Cell Metab 2008; 8: 333-41.
    • (2008) Cell Metab , vol.8 , pp. 333-341
    • Banks, A.S.1    Kon, N.2    Knight, C.3
  • 54
    • 3042681042 scopus 로고    scopus 로고
    • Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma
    • Picard F, Kurtev M, Chung N, et al. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature 2004; 429: 771-6.
    • (2004) Nature , vol.429 , pp. 771-776
    • Picard, F.1    Kurtev, M.2    Chung, N.3
  • 55
    • 34247259630 scopus 로고    scopus 로고
    • Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1[alpha]
    • Gerhart-Hines Z, Rodgers JT, Bare O, et al. Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1[alpha]. EMBO J 2007; 26: 1913-23.
    • (2007) EMBO J , vol.26 , pp. 1913-1923
    • Gerhart-Hines, Z.1    Rodgers, J.T.2    Bare, O.3
  • 56
    • 34948883324 scopus 로고    scopus 로고
    • SIRT1 deacetylates and positively regulates the nuclear receptor LXR
    • Li X, Zhang S, Blander G, Tse JG, Krieger M, Guarente L. SIRT1 deacetylates and positively regulates the nuclear receptor LXR. Mol Cell 2007; 28: 91-106.
    • (2007) Mol Cell , vol.28 , pp. 91-106
    • Li, X.1    Zhang, S.2    Blander, G.3    Tse, J.G.4    Krieger, M.5    Guarente, L.6
  • 57
    • 34547397081 scopus 로고    scopus 로고
    • SIRT2 regulates adipocyte differentiation through FoxO1 acetylation/deacetylation
    • Jing E, Gesta S, Kahn CR. SIRT2 regulates adipocyte differentiation through FoxO1 acetylation/deacetylation. Cell Metabol 2007; 6: 105-14.
    • (2007) Cell Metabol , vol.6 , pp. 105-114
    • Jing, E.1    Gesta, S.2    Kahn, C.R.3
  • 58
    • 64049089450 scopus 로고    scopus 로고
    • SIRT2 suppresses adipocyte differentiation by deacetylating FOXO1 and enhancing FOXO1's repressive interaction with PPARgamma
    • Wang F, Tong Q. SIRT2 suppresses adipocyte differentiation by deacetylating FOXO1 and enhancing FOXO1's repressive interaction with PPARgamma. Mol Biol Cell 2009; 20: 801-8.
    • (2009) Mol Biol Cell , vol.20 , pp. 801-808
    • Wang, F.1    Tong, Q.2
  • 59
    • 33745889628 scopus 로고    scopus 로고
    • Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2
    • Schwer B, Bunkenborg J, Verdin RO, Andersen JS, Verdin E. Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2. Proc Natl Acad Sci USA 2006; 103: 10224-9.
    • (2006) Proc Natl Acad Sci USA , vol.103 , pp. 10224-10229
    • Schwer, B.1    Bunkenborg, J.2    Verdin, R.O.3    Andersen, J.S.4    Verdin, E.5
  • 60
    • 33745931074 scopus 로고    scopus 로고
    • Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases
    • Hallows WC, Lee S, Denu JM. Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. Proc Natl Acad Sci USA 2006; 103: 10230-5.
    • (2006) Proc Natl Acad Sci USA , vol.103 , pp. 10230-10235
    • Hallows, W.C.1    Lee, S.2    Denu, J.M.3
  • 61
    • 55749084738 scopus 로고    scopus 로고
    • A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis
    • Ahn BH, Kim HS, Song S, et al. A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc Natl Acad Sci USA 2008; 105: 14447-52.
    • (2008) Proc Natl Acad Sci USA , vol.105 , pp. 14447-14452
    • Ahn, B.H.1    Kim, H.S.2    Song, S.3
  • 62
    • 77950806433 scopus 로고    scopus 로고
    • SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation
    • Hirschey MD, Shimazu T, Goetzman E, et al. SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature 2010; 464: 121-5.
    • (2010) Nature , vol.464 , pp. 121-125
    • Hirschey, M.D.1    Shimazu, T.2    Goetzman, E.3
  • 63
    • 33748316536 scopus 로고    scopus 로고
    • SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells
    • Haigis MC, Mostoslavsky R, Haigis KM, et al. SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells. Cell 2006; 126: 941-54.
    • (2006) Cell , vol.126 , pp. 941-954
    • Haigis, M.C.1    Mostoslavsky, R.2    Haigis, K.M.3
  • 64
    • 78449248442 scopus 로고    scopus 로고
    • SIRT6 deficiency results in severe hypoglycemia by enhancing both basal and insulinstimulated glucose uptake in mice
    • Xiao C, Kim HS, Lahusen T, et al. SIRT6 deficiency results in severe hypoglycemia by enhancing both basal and insulinstimulated glucose uptake in mice. J Biological Chem 2010; 285: 36776-84.
    • (2010) J Biological Chem , vol.285 , pp. 36776-36784
    • Xiao, C.1    Kim, H.S.2    Lahusen, T.3
  • 65
    • 74549142287 scopus 로고    scopus 로고
    • The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1alpha
    • Zhong L, D'Urso A, Toiber D, et al. The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1alpha. Cell 2010; 140: 280-93.
    • (2010) Cell , vol.140 , pp. 280-293
    • Zhong, L.1    D'Urso, A.2    Toiber, D.3
  • 66
    • 84857444437 scopus 로고    scopus 로고
    • Dietary restriction increases site-specific histone H3 acetylation in rat liver: Possible modulation by sirtuins
    • Kawakami K, Nakamura A, Goto S. Dietary restriction increases site-specific histone H3 acetylation in rat liver: possible modulation by sirtuins. Biochem Biophys Res Commun 2012; 418: 836-40.
    • (2012) Biochem Biophys Res Commun , vol.418 , pp. 836-840
    • Kawakami, K.1    Nakamura, A.2    Goto, S.3
  • 67
    • 4043165678 scopus 로고    scopus 로고
    • Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration
    • Araki T, Sasaki Y, Milbrandt J. Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Science 2004; 305: 1010-3.
    • (2004) Science , vol.305 , pp. 1010-1013
    • Araki, T.1    Sasaki, Y.2    Milbrandt, J.3
  • 68
    • 0042848910 scopus 로고    scopus 로고
    • Involvement of the ubiquitinproteasome system in the early stages of wallerian degeneration
    • Zhai Q, Wang J, Kim A, et al. Involvement of the ubiquitinproteasome system in the early stages of wallerian degeneration. Neuron 2003; 39: 217-25.
    • (2003) Neuron , vol.39 , pp. 217-225
    • Zhai, Q.1    Wang, J.2    Kim, A.3
  • 69
    • 23744474976 scopus 로고    scopus 로고
    • A local mechanism mediates NADdependent protection of axon degeneration
    • Wang J, Zhai Q, Chen Y, et al. A local mechanism mediates NADdependent protection of axon degeneration. J Cell Biol 2005; 170: 349-55.
    • (2005) J Cell Biol , vol.170 , pp. 349-355
    • Wang, J.1    Zhai, Q.2    Chen, Y.3
  • 70
    • 34447308268 scopus 로고    scopus 로고
    • SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer's disease and amyotrophic lateral sclerosis
    • Kim D, Nguyen MD, Dobbin MM, et al. SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer's disease and amyotrophic lateral sclerosis. EMBO J 2007; 26: 3169-79.
    • (2007) EMBO J , vol.26 , pp. 3169-3179
    • Kim, D.1    Nguyen, M.D.2    Dobbin, M.M.3
  • 71
    • 41949097891 scopus 로고    scopus 로고
    • C. elegans model identifies genetic modifiers of alpha-synuclein inclusion formation during aging
    • Thijssen KL, Breitling R, Hofstra RM, Plasterk RH, Nollen EA. C. elegans model identifies genetic modifiers of alpha-synuclein inclusion formation during aging. PLoS Genet 2008; 4: e1000027.
    • (2008) PLoS Genet , vol.4
    • Thijssen, K.L.1    Breitling, R.2    Hofstra, R.M.3    Plasterk, R.H.4    Nollen, E.A.5
  • 72
    • 45549096918 scopus 로고    scopus 로고
    • Sirt1 Inhibition Reduces IGF-I/IRS-2/Ras/ERK1/2 Signaling and Protects Neurons
    • Li Y, Xu W, McBurney MW, Longo VD. Sirt1 Inhibition Reduces IGF-I/IRS-2/Ras/ERK1/2 Signaling and Protects Neurons. Cell Metabol 2008; 8: 38-48.
    • (2008) Cell Metabol , vol.8 , pp. 38-48
    • Li, Y.1    Xu, W.2    McBurney, M.W.3    Longo, V.D.4
  • 73
    • 77955046461 scopus 로고    scopus 로고
    • SIRT1 suppresses beta-amyloid production by activating the alpha-secretase gene ADAM10
    • Donmez G, Wang D, Cohen DE, Guarente L. SIRT1 suppresses beta-amyloid production by activating the alpha-secretase gene ADAM10. Cell 2010; 142: 320-32.
    • (2010) Cell , vol.142 , pp. 320-332
    • Donmez, G.1    Wang, D.2    Cohen, D.E.3    Guarente, L.4
  • 75
    • 56749156405 scopus 로고    scopus 로고
    • SIRT1 redistribution on chromatin promotes genomic stability but alters gene expression during aging
    • Oberdoerffer P, Michan S, McVay M, et al. SIRT1 redistribution on chromatin promotes genomic stability but alters gene expression during aging. Cell 2008; 135: 907-18.
    • (2008) Cell , vol.135 , pp. 907-918
    • Oberdoerffer, P.1    Michan, S.2    McVay, M.3
  • 76
    • 36248954501 scopus 로고    scopus 로고
    • SIRT1 regulates the histone methyl-transferase SUV39H1 during heterochromatin formation
    • Vaquero A. SIRT1 regulates the histone methyl-transferase SUV39H1 during heterochromatin formation. Nature 2007; 450: 440-4.
    • (2007) Nature , vol.450 , pp. 440-444
    • Vaquero, A.1
  • 77
    • 79954467406 scopus 로고    scopus 로고
    • Stabilization of Suv39H1 by Sirt1 is part of oxidative stress response and ensures genome protection
    • Bosch-Presegué L, Raurell-Vila H, Marazuela-Duque A, et al. Stabilization of Suv39H1 by Sirt1 is part of oxidative stress response and ensures genome protection. Mol Cell 2011; 42: 210-23.
    • (2011) Mol Cell , vol.42 , pp. 210-223
    • Bosch-Presegué, L.1    Raurell-Vila, H.2    Marazuela-Duque, A.3
  • 79
    • 12344296753 scopus 로고    scopus 로고
    • Heterochromatin?many flavours, common themes
    • Craig JM. Heterochromatin?many flavours, common themes. Bioessays 2005; 27: 17-28.
    • (2005) Bioessays , vol.27 , pp. 17-28
    • Craig, J.M.1
  • 80
    • 4944245398 scopus 로고    scopus 로고
    • Human Sirt1 interacts with histone H1 and promotes formation of facultative heterochromatin
    • Vaquero A, Scher M, Lee D, Erdjument-Bromage H, Tempst P, Reinberg D. Human Sirt1 interacts with histone H1 and promotes formation of facultative heterochromatin. Mol Cell 2004; 16: 93-105.
    • (2004) Mol Cell , vol.16 , pp. 93-105
    • Vaquero, A.1    Scher, M.2    Lee, D.3    Erdjument-Bromage, H.4    Tempst, P.5    Reinberg, D.6
  • 81
    • 50849104569 scopus 로고    scopus 로고
    • Double strand breaks can initiate gene silencing and SIRT1-dependent onset of DNA methylation in an exogenous promoter CpG island
    • Lee JT, O'Hagan HM, Mohammad HP, Baylin SB. Double strand breaks can initiate gene silencing and SIRT1-dependent onset of DNA methylation in an exogenous promoter CpG island. PLoS Genetics 2008; 4: e1000155.
    • (2008) PLoS Genetics , vol.4
    • Lee, J.T.1    O'Hagan, H.M.2    Mohammad, H.P.3    Baylin, S.B.4
  • 82
    • 33645768490 scopus 로고    scopus 로고
    • Inhibition of SIRT1 reactivates silenced cancer genes without loss of promoter DNA hypermethylation
    • Pruitt K. Inhibition of SIRT1 reactivates silenced cancer genes without loss of promoter DNA hypermethylation. PLoS Genetics 2006;2(3): 0344-52.
    • (2006) PLoS Genetics , vol.2 , Issue.3 , pp. 0344-0352
    • Pruitt, K.1
  • 83
    • 17244367849 scopus 로고    scopus 로고
    • DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis
    • Bartkova J. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 2005; 434: 864-70.
    • (2005) Nature , vol.434 , pp. 864-870
    • Bartkova, J.1
  • 84
    • 53149137486 scopus 로고    scopus 로고
    • Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice
    • Wang RH. Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice. Cancer Cell 2008; 14: 312-23.
    • (2008) Cancer Cell , vol.14 , pp. 312-323
    • Wang, R.H.1
  • 85
    • 0034690249 scopus 로고    scopus 로고
    • Interplay of p53 and DNArepair protein XRCC4 in tumorigenesis, genomic stability and development
    • Gao Y, Ferguson DO, Xie W, et al. Interplay of p53 and DNArepair protein XRCC4 in tumorigenesis, genomic stability and development. Nature 2000; 404: 897-900.
    • (2000) Nature , vol.404 , pp. 897-900
    • Gao, Y.1    Ferguson, D.O.2    Xie, W.3
  • 86
    • 33847647624 scopus 로고    scopus 로고
    • SIRT1 promotes DNA repair activity and deacetylation of Ku70
    • Jeong J, Juhn K, Lee H, et al. SIRT1 promotes DNA repair activity and deacetylation of Ku70. Exp Mol Med 2007; 39: 8-13.
    • (2007) Exp Mol Med , vol.39 , pp. 8-13
    • Jeong, J.1    Juhn, K.2    Lee, H.3
  • 87
    • 43149118368 scopus 로고    scopus 로고
    • Regulation of WRN protein cellular localization and enzymatic activities by SIRT1-mediated deacetylation
    • Li K, Casta A, Wang R, et al. Regulation of WRN protein cellular localization and enzymatic activities by SIRT1-mediated deacetylation. J Biol Chem 2008; 283: 7590-8.
    • (2008) J Biol Chem , vol.283 , pp. 7590-7598
    • Li, K.1    Casta, A.2    Wang, R.3
  • 88
    • 34250897968 scopus 로고    scopus 로고
    • SIRT1 regulates the function of the Nijmegen breakage syndrome protein
    • Yuan Z, Zhang X, Sengupta N, Lane WS, Seto E. SIRT1 regulates the function of the Nijmegen breakage syndrome protein. Mol Cell 2007; 27: 149-62.
    • (2007) Mol Cell , vol.27 , pp. 149-162
    • Yuan, Z.1    Zhang, X.2    Sengupta, N.3    Lane, W.S.4    Seto, E.5
  • 89
    • 77955501963 scopus 로고    scopus 로고
    • SIRT1 regulates UV-induced DNA repair through deacetylating XPA
    • Fan W, Luo J. SIRT1 regulates UV-induced DNA repair through deacetylating XPA. Mol Cell 2010; 39: 247-58.
    • (2010) Mol Cell , vol.39 , pp. 247-258
    • Fan, W.1    Luo, J.2
  • 90
    • 37549002891 scopus 로고    scopus 로고
    • Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation
    • Lombard DB. Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Mol Cell Biol 2007; 27: 8807-14.
    • (2007) Mol Cell Biol , vol.27 , pp. 8807-8814
    • Lombard, D.B.1
  • 91
    • 31044445366 scopus 로고    scopus 로고
    • Genomic instability and aging-like phenotype in the absence of mammalian SIRT6
    • Mostoslavsky R, Chua KF, Lombard DB, et al. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell 2006; 124: 315-29.
    • (2006) Cell , vol.124 , pp. 315-329
    • Mostoslavsky, R.1    Chua, K.F.2    Lombard, D.B.3
  • 92
    • 41349090663 scopus 로고    scopus 로고
    • SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin
    • Michishita E, McCord RA, Berber E, et al. SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin. Nature 2008; 452: 492-6.
    • (2008) Nature , vol.452 , pp. 492-496
    • Michishita, E.1    McCord, R.A.2    Berber, E.3
  • 93
    • 69249221533 scopus 로고    scopus 로고
    • Cell cycle-dependent deacetylation of telomeric histone H3 lysine K56 by human SIRT6
    • Michishita E, McCord RA, Boxer LD, et al. Cell cycle-dependent deacetylation of telomeric histone H3 lysine K56 by human SIRT6. Cell Cycle 2009; 8: 2664-6.
    • (2009) Cell Cycle , vol.8 , pp. 2664-2666
    • Michishita, E.1    McCord, R.A.2    Boxer, L.D.3
  • 94
    • 69249229772 scopus 로고    scopus 로고
    • The sirtuin SIRT6 deacetylates H3 K56Ac in vivo to promote genomic stability
    • Yang B, Zwaans BM, Eckersdorff M, Lombard DB. The sirtuin SIRT6 deacetylates H3 K56Ac in vivo to promote genomic stability. Cell Cycle 2009; 8: 2662-3.
    • (2009) Cell Cycle , vol.8 , pp. 2662-2663
    • Yang, B.1    Zwaans, B.M.2    Eckersdorff, M.3    Lombard, D.B.4
  • 95
    • 77956550868 scopus 로고    scopus 로고
    • Human SIRT6 promotes DNA end resection through CtIP deacetylation
    • Kaidi A, Weinert BT, Choudhary C, Jackson SP. Human SIRT6 promotes DNA end resection through CtIP deacetylation. Science 2010; 329: 1348-53.
    • (2010) Science , vol.329 , pp. 1348-1353
    • Kaidi, A.1    Weinert, B.T.2    Choudhary, C.3    Jackson, S.P.4
  • 96
    • 14644407525 scopus 로고    scopus 로고
    • The role of apoptosis in cancer development and treatment response
    • Brown JM, Attardi LD. The role of apoptosis in cancer development and treatment response. Nat Rev Cancer 2005; 5: 231-7.
    • (2005) Nat Rev Cancer , vol.5 , pp. 231-237
    • Brown, J.M.1    Attardi, L.D.2
  • 97
    • 23244461708 scopus 로고    scopus 로고
    • Oncogene-induced senescence as an initial barrier in lymphoma development
    • Braig M, Lee S, Loddenkemper C, et al. Oncogene-induced senescence as an initial barrier in lymphoma development. Nature 2005; 436: 660-5.
    • (2005) Nature , vol.436 , pp. 660-665
    • Braig, M.1    Lee, S.2    Loddenkemper, C.3
  • 98
    • 23244447893 scopus 로고    scopus 로고
    • Tumour biology: Senescence in premalignant tumours
    • Collado M, Gil J, Efeyan A, et al. Tumour biology: senescence in premalignant tumours. Nature 2005; 436: 642.
    • (2005) Nature , vol.436 , pp. 642
    • Collado, M.1    Gil, J.2    Efeyan, A.3
  • 99
    • 0036829090 scopus 로고    scopus 로고
    • Cancer and aging: A model for the cancer promoting effects of the aging stroma
    • Krtolica A, Campisi J. Cancer and aging: a model for the cancer promoting effects of the aging stroma. Int J Biochem Cell Biol 2002; 34: 1401-14.
    • (2002) Int J Biochem Cell Biol , vol.34 , pp. 1401-1414
    • Krtolica, A.1    Campisi, J.2
  • 100
    • 13944270339 scopus 로고    scopus 로고
    • Senescent cells, tumor suppression, and organismal aging: Good citizens, bad neighbors
    • Campisi J. Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 2005; 120: 513-22.
    • (2005) Cell , vol.120 , pp. 513-522
    • Campisi, J.1
  • 101
    • 58849158388 scopus 로고    scopus 로고
    • How does SIRT1 affect metabolism, senescence and cancer?
    • Brooks CL, Gu W. How does SIRT1 affect metabolism, senescence and cancer? Nat Rev Cancer 2009; 9: 123-8.
    • (2009) Nat Rev Cancer , vol.9 , pp. 123-128
    • Brooks, C.L.1    Gu, W.2
  • 102
    • 0037093346 scopus 로고    scopus 로고
    • Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence
    • Langley E, Pearson M, Faretta M, et al. Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence. EMBO J 2002; 21: 2383-96.
    • (2002) EMBO J , vol.21 , pp. 2383-2396
    • Langley, E.1    Pearson, M.2    Faretta, M.3
  • 103
    • 45849137875 scopus 로고    scopus 로고
    • SIRT1 overexpression antagonizes cellular senescence with activated ERK/S6k1 signaling in human diploid fibroblasts
    • Huang J, Gan Q, Han L, et al. SIRT1 overexpression antagonizes cellular senescence with activated ERK/S6k1 signaling in human diploid fibroblasts. PLoS One 2008; 3: e1710.
    • (2008) PLoS One , vol.3
    • Huang, J.1    Gan, Q.2    Han, L.3
  • 104
    • 35349011597 scopus 로고    scopus 로고
    • Sirt1 modulates premature senescence-like phenotype in human endothelial cells
    • Ota H, Akishita M, Eto M, Iijima K, Kaneki M, Ouchi Y. Sirt1 modulates premature senescence-like phenotype in human endothelial cells. J Mol Cell Cardiol 2007; 43: 571-9.
    • (2007) J Mol Cell Cardiol , vol.43 , pp. 571-579
    • Ota, H.1    Akishita, M.2    Eto, M.3    Iijima, K.4    Kaneki, M.5    Ouchi, Y.6
  • 105
    • 77952527053 scopus 로고    scopus 로고
    • An energy-sensor network takes center stage during endothelial aging
    • Potente M. An energy-sensor network takes center stage during endothelial aging. Circ Res 2010; 106: 1316-8.
    • (2010) Circ Res , vol.106 , pp. 1316-1318
    • Potente, M.1
  • 106
    • 30544445468 scopus 로고    scopus 로고
    • Sirt1 inhibitor, Sirtinol, induces senescence-like growth arrest with attenuated Ras-MAPK signaling in human cancer cells
    • Ota H, Tokunaga E, Chang K, et al. Sirt1 inhibitor, Sirtinol, induces senescence-like growth arrest with attenuated Ras-MAPK signaling in human cancer cells. Oncogene 2006; 25: 176-85.
    • (2006) Oncogene , vol.25 , pp. 176-185
    • Ota, H.1    Tokunaga, E.2    Chang, K.3
  • 107
    • 27244435939 scopus 로고    scopus 로고
    • Mammalian SIRT1 limits replicative life span in response to chronic genotoxic stress
    • Chua KF, Mostoslavsky R, Lombard DB, et al. Mammalian SIRT1 limits replicative life span in response to chronic genotoxic stress. Cell Metab 2005; 2: 67-76.
    • (2005) Cell Metab , vol.2 , pp. 67-76
    • Chua, K.F.1    Mostoslavsky, R.2    Lombard, D.B.3
  • 108
    • 58149090925 scopus 로고    scopus 로고
    • SIRT6 links histone H3 lysine 9 deacetylation to NF-kappaB-dependent gene expression and organismal life span
    • Kawahara TL, Michishita E, Adler AS, et al. SIRT6 links histone H3 lysine 9 deacetylation to NF-kappaB-dependent gene expression and organismal life span. Cell 2009; 136: 62-74.
    • (2009) Cell , vol.136 , pp. 62-74
    • Kawahara, T.L.1    Michishita, E.2    Adler, A.S.3
  • 109
  • 110
    • 0141814680 scopus 로고    scopus 로고
    • Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice
    • Cheng HL, Mostoslavsky R, Saito S, et al. Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc Natl Acad Sci USA 2003; 100: 10794-9.
    • (2003) Proc Natl Acad Sci USA , vol.100 , pp. 10794-10799
    • Cheng, H.L.1    Mostoslavsky, R.2    Saito, S.3
  • 112
    • 39749087530 scopus 로고    scopus 로고
    • SIRT1 regulates apoptosis and Nanog expression in mouse embryonic stem cells by controlling p53 subcellular localization
    • Han MK, Song EK, Guo Y, Ou X, Mantel C, Broxmeyer HE. SIRT1 regulates apoptosis and Nanog expression in mouse embryonic stem cells by controlling p53 subcellular localization. Cell Stem Cell 2008; 2: 241-51.
    • (2008) Cell Stem Cell , vol.2 , pp. 241-251
    • Han, M.K.1    Song, E.K.2    Guo, Y.3    Ou, X.4    Mantel, C.5    Broxmeyer, H.E.6
  • 113
    • 15944365507 scopus 로고    scopus 로고
    • Role of NAD-dependent deacetylases SIRT1 and SIRT2 in radiation and cisplatin-induced cell death in vertebrate cells
    • Matsushita N, Takami Y, Kimura M, et al. Role of NAD-dependent deacetylases SIRT1 and SIRT2 in radiation and cisplatin-induced cell death in vertebrate cells. Genes Cells 2005; 10: 321-32.
    • (2005) Genes Cells , vol.10 , pp. 321-332
    • Matsushita, N.1    Takami, Y.2    Kimura, M.3
  • 114
    • 78650638268 scopus 로고    scopus 로고
    • SIRT2 down-regulation in HeLa can induce p53 accumulation via p38 MAPK activationdependent p300 decrease, eventually leading to apoptosis
    • Li Y, Matsumori H, Nakayama Y, et al. SIRT2 down-regulation in HeLa can induce p53 accumulation via p38 MAPK activationdependent p300 decrease, eventually leading to apoptosis. Genes to Cells 2011; 16: 34-45.
    • (2011) Genes to Cells , vol.16 , pp. 34-45
    • Li, Y.1    Matsumori, H.2    Nakayama, Y.3
  • 115
    • 77956295588 scopus 로고    scopus 로고
    • p53-induced growth arrest is regulated by the mitochondrial Sirt3 deacetylase
    • Li S, Banck M, Mujtaba S, Zhou MM, Sugrue MM, Walsh MJ. p53-induced growth arrest is regulated by the mitochondrial Sirt3 deacetylase. PLoS One 2010; 5: e10486.
    • (2010) PLoS One , vol.5
    • Li, S.1    Banck, M.2    Mujtaba, S.3    Zhou, M.M.4    Sugrue, M.M.5    Walsh, M.J.6
  • 116
    • 79952124926 scopus 로고    scopus 로고
    • Methyltransferase Set7/9 regulates p53 activity by interacting with Sirtuin 1 (SIRT1)
    • Liu X, Wang D, Zhao Y, et al. Methyltransferase Set7/9 regulates p53 activity by interacting with Sirtuin 1 (SIRT1). Proc Natl Acad Sci USA 2011; 108: 1925-30.
    • (2011) Proc Natl Acad Sci USA , vol.108 , pp. 1925-1930
    • Liu, X.1    Wang, D.2    Zhao, Y.3
  • 117
    • 41849150779 scopus 로고    scopus 로고
    • FOXOs, cancer and regulation of apoptosis
    • Fu Z, Tindall DJ. FOXOs, cancer and regulation of apoptosis. Oncogene 2008; 27: 2312-9.
    • (2008) Oncogene , vol.27 , pp. 2312-2319
    • Fu, Z.1    Tindall, D.J.2
  • 118
    • 12144290563 scopus 로고    scopus 로고
    • Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase
    • Brunet A, Sweeney LB, Sturgill JF, et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 2004; 303: 2011-5.
    • (2004) Science , vol.303 , pp. 2011-2015
    • Brunet, A.1    Sweeney, L.B.2    Sturgill, J.F.3
  • 119
    • 1342264308 scopus 로고    scopus 로고
    • Mammalian SIRT1 represses forkhead transcription factors
    • Motta MC, Divecha N, Lemieux M, et al. Mammalian SIRT1 represses forkhead transcription factors. Cell 2004; 116: 551-63.
    • (2004) Cell , vol.116 , pp. 551-563
    • Motta, M.C.1    Divecha, N.2    Lemieux, M.3
  • 120
    • 3142740860 scopus 로고    scopus 로고
    • Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase
    • Cohen HY, Miller C, Bitterman KJ, et al. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 2004; 305: 390-2.
    • (2004) Science , vol.305 , pp. 390-392
    • Cohen, H.Y.1    Miller, C.2    Bitterman, K.J.3
  • 121
    • 35748949600 scopus 로고    scopus 로고
    • Deacetylation of the retinoblastoma tumour suppressor protein by SIRT1
    • Wong S, Weber JD. Deacetylation of the retinoblastoma tumour suppressor protein by SIRT1. Biochem J 2007; 407: 451-60.
    • (2007) Biochem J , vol.407 , pp. 451-460
    • Wong, S.1    Weber, J.D.2
  • 122
    • 0033486152 scopus 로고    scopus 로고
    • beta-catenin signaling and cancer
    • Morin PJ. beta-catenin signaling and cancer. Bioessays 1999; 21: 1021-30.
    • (1999) Bioessays , vol.21 , pp. 1021-1030
    • Morin, P.J.1
  • 123
    • 44849096876 scopus 로고    scopus 로고
    • The SIRT1 deacetylase suppresses intestinal tumorigenesis and colon cancer growth
    • Firestein R, Blander G, Michan S, et al. The SIRT1 deacetylase suppresses intestinal tumorigenesis and colon cancer growth. PLoS One 2008; 3: e2020.
    • (2008) PLoS One , vol.3
    • Firestein, R.1    Blander, G.2    Michan, S.3
  • 124
    • 53149144656 scopus 로고    scopus 로고
    • Interplay among BRCA1, SIRT1, and survivin during BRCA1-associated tumorigenesis
    • Wang RH, Zheng Y, Kim HS, et al. Interplay among BRCA1, SIRT1, and survivin during BRCA1-associated tumorigenesis. Molecular Cell 2008; 32: 11-20.
    • (2008) Molecular Cell , vol.32 , pp. 11-20
    • Wang, R.H.1    Zheng, Y.2    Kim, H.S.3
  • 125
    • 0036937410 scopus 로고    scopus 로고
    • The proto-oncogene BCL-6 in normal and malignant B cell development
    • Niu H. The proto-oncogene BCL-6 in normal and malignant B cell development. Hematol Oncol 2002; 20: 155-66.
    • (2002) Hematol Oncol , vol.20 , pp. 155-166
    • Niu, H.1
  • 126
    • 3242719545 scopus 로고    scopus 로고
    • Modulation of NF-kappaBdependent transcription and cell survival by the SIRT1 deacetylase
    • Yeung F, Hoberg JE, Ramsey CS, et al. Modulation of NF-kappaBdependent transcription and cell survival by the SIRT1 deacetylase. EMBO J 2004; 23: 2369-80.
    • (2004) EMBO J , vol.23 , pp. 2369-2380
    • Yeung, F.1    Hoberg, J.E.2    Ramsey, C.S.3
  • 127
    • 33748200050 scopus 로고    scopus 로고
    • Interactions between E2F1 and Sirt1 regulate apoptotic response to DNA damage
    • Wang C, Chen L, Hou X, et al. Interactions between E2F1 and Sirt1 regulate apoptotic response to DNA damage. Nat Cell Biol 2006; 8: 1025-31.
    • (2006) Nat Cell Biol , vol.8 , pp. 1025-1031
    • Wang, C.1    Chen, L.2    Hou, X.3
  • 128
    • 84869500842 scopus 로고    scopus 로고
    • Receptor-interacting protein (RIP) and Sirtuin-3 (SIRT3) are on opposite sides of anoikis and tumorigenesis
    • Kamarajan P, Alhazzazi TY, Danciu T, D'Silva N J, Verdin E, Kapila YL. Receptor-interacting protein (RIP) and Sirtuin-3 (SIRT3) are on opposite sides of anoikis and tumorigenesis. Cancer 2012.
    • (2012) Cancer
    • Kamarajan, P.1    Alhazzazi, T.Y.2    Danciu, T.3    D'Silva, N.J.4    Verdin, E.5    Kapila, Y.L.6
  • 129
    • 84862689176 scopus 로고    scopus 로고
    • Sirt3 inhibits hepatocellular carcinoma cell growth through reducing Mdm2-mediated p53 degradation
    • Zhang Y-Y, Zhou L-M. Sirt3 inhibits hepatocellular carcinoma cell growth through reducing Mdm2-mediated p53 degradation. Biochem Biophys Res Communications 2012.
    • (2012) Biochem Biophys Res Communications
    • Zhang, Y.-Y.1    Zhou, L.-M.2
  • 130
    • 34147193472 scopus 로고    scopus 로고
    • Cell biology: Autophagy and cancer
    • Levine B. Cell biology: Autophagy and cancer. Nature 2007; 446: 745-47.
    • (2007) Nature , vol.446 , pp. 745-747
    • Levine, B.1
  • 132
    • 41549138483 scopus 로고    scopus 로고
    • A role for the NADdependent deacetylase Sirt1 in the regulation of autophagy
    • Lee IH, Cao L, Mostoslavsky R, et al. A role for the NADdependent deacetylase Sirt1 in the regulation of autophagy. Proc Natl Acad Sci 2008; 105: 3374-9.
    • (2008) Proc Natl Acad Sci , vol.105 , pp. 3374-3379
    • Lee, I.H.1    Cao, L.2    Mostoslavsky, R.3
  • 133
    • 77954225200 scopus 로고    scopus 로고
    • Cytosolic FoxO1 is essential for the induction of autophagy and tumour suppressor activity
    • Zhao Y, Yang J, Liao W, et al. Cytosolic FoxO1 is essential for the induction of autophagy and tumour suppressor activity. Nat Cell Biol 2010; 12: 665-75.
    • (2010) Nat Cell Biol , vol.12 , pp. 665-675
    • Zhao, Y.1    Yang, J.2    Liao, W.3
  • 134
    • 35348980724 scopus 로고    scopus 로고
    • SIRT1 controls endothelial angiogenic functions during vascular growth
    • Potente M, Ghaeni L, Baldessari D, et al. SIRT1 controls endothelial angiogenic functions during vascular growth. Genes Dev 2007; 21: 2644-58.
    • (2007) Genes Dev , vol.21 , pp. 2644-2658
    • Potente, M.1    Ghaeni, L.2    Baldessari, D.3
  • 137
    • 79959837062 scopus 로고    scopus 로고
    • SIRT1 promotes N-Myc oncogenesis through a positive feedback loop involving the effects of MKP3 and ERK on N-Myc protein stability
    • Marshall GM, Liu PY, Gherardi S, et al. SIRT1 promotes N-Myc oncogenesis through a positive feedback loop involving the effects of MKP3 and ERK on N-Myc protein stability. PLoS Genet 2011; 7: e1002135.
    • (2011) PLoS Genet , vol.7
    • Marshall, G.M.1    Liu, P.Y.2    Gherardi, S.3
  • 138
    • 80255135621 scopus 로고    scopus 로고
    • p53 deacetylation by SIRT1 decreases during protein kinase CKII downregulation-mediated cellular senescence
    • Jang SY, Kim SY, Bae YS. p53 deacetylation by SIRT1 decreases during protein kinase CKII downregulation-mediated cellular senescence. FEBS Lett 2011; 585: 3360-6.
    • (2011) FEBS Lett , vol.585 , pp. 3360-3366
    • Jang, S.Y.1    Kim, S.Y.2    Bae, Y.S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.