메뉴 건너뛰기




Volumn 29, Issue 6, 2014, Pages 731-744

Piezoresistance in silicon and its nanostructures

Author keywords

[No Author keywords available]

Indexed keywords

CRYSTALLINE MATERIALS; ELECTRONIC STRUCTURE; NANOWIRES; SILICON; STRESSES;

EID: 84897410250     PISSN: 08842914     EISSN: 20445326     Source Type: Journal    
DOI: 10.1557/jmr.2014.52     Document Type: Article
Times cited : (51)

References (84)
  • 1
    • 84897460915 scopus 로고
    • The electrical resistance of metals under pressure
    • P.W. Bridgman: The electrical resistance of metals under pressure. Proc. Am. Acad. Arts Sci. 52, 573 (1917).
    • (1917) Proc. Am. Acad. Arts Sci , vol.52 , pp. 573
    • Bridgman, P.W.1
  • 2
    • 0344591233 scopus 로고
    • The resistance of 72 elements, alloys and compounds to 100,000 Kg/Cm
    • P.W. Bridgman: The resistance of 72 elements, alloys and compounds to 100,000 Kg/Cm. Proc. Am. Acad. Arts Sci. 81, 165 (1952).
    • (1952) Proc. Am. Acad. Arts Sci , vol.81 , pp. 165
    • Bridgman, P.W.1
  • 3
    • 33847795859 scopus 로고    scopus 로고
    • Topological insulators in three dimensions
    • L. Fu, C.L. Kane, and E.J. Mele: Topological insulators in three dimensions. Phys. Rev. Lett. 98, 106803 (2007).
    • (2007) Phys. Rev. Lett , vol.98 , pp. 106803
    • Fu, L.1    Kane, C.L.2    Mele, E.J.3
  • 4
    • 84897374609 scopus 로고
    • Summary of the Kronig-Penney electron
    • J.C. Wolfe: Summary of the Kronig-Penney electron. Am. J. Phys. 46, 1012 (1978).
    • (1978) Am. J. Phys , vol.46 , pp. 1012
    • Wolfe, J.C.1
  • 5
    • 33846693940 scopus 로고
    • Piezoresistance effect in germanium and silicon
    • C.S. Smith: Piezoresistance effect in germanium and silicon. Phys. Rev. 94, 42 (1954).
    • (1954) Phys. Rev , vol.94 , pp. 42
    • Smith, C.S.1
  • 6
    • 0000023102 scopus 로고
    • Piezoresistive properties of heavily doped n-Type silicon
    • O.N. Tufte and E.L. Stelzer: Piezoresistive properties of heavily doped n-Type silicon. J. Appl. Phys. 34, 313 (1963).
    • (1963) J. Appl. Phys , vol.34 , pp. 313
    • Tufte, O.N.1    Stelzer, E.L.2
  • 7
    • 36149023347 scopus 로고
    • Transport and deformation-potential theory for many-valley semiconductors with anisotropic scattering
    • C. Herring and E. Vogt: Transport and deformation-potential theory for many-valley semiconductors with anisotropic scattering. Phys. Rev. 101, 944 (1956).
    • (1956) Phys. Rev , vol.101 , pp. 944
    • Herring, C.1    Vogt, E.2
  • 8
    • 0242419509 scopus 로고
    • Piezoresistance and piezo-Hall-effect in n-Type silicon
    • J. Aubrey,W.Gubler, T. Henningsen, and S. Koenig: Piezoresistance and piezo-Hall-effect in n-Type silicon. Phys. Rev. 130, 1667 (1963).
    • (1963) Phys. Rev , vol.130 , pp. 1667
    • Aubrey, J.1    Gubler, W.2    Henningsen, T.3    Koenig, S.4
  • 9
    • 84862513724 scopus 로고    scopus 로고
    • Piezoresistance in silicon at uniaxial compressive stresses up to 3 GPa
    • J.S. Milne, I. Favorskiy, A.C.H. Rowe, S. Arscott, and C. Renner: Piezoresistance in silicon at uniaxial compressive stresses up to 3 GPa. Phys. Rev. Lett. 108, 256801 (2012).
    • (2012) Phys. Rev. Lett , vol.108 , pp. 256801
    • Milne, J.S.1    Favorskiy, I.2    Rowe, A.C.H.3    Arscott, S.4    Renner, C.5
  • 10
    • 0019916789 scopus 로고
    • A graphical representation of the piezoresistance coefficients in silicon
    • Y. Kanda: A graphical representation of the piezoresistance coefficients in silicon. IEEE Trans. Electron Devices 29, 64 (1982).
    • (1982) IEEE Trans. Electron Devices , vol.29 , pp. 64
    • Kanda, Y.1
  • 11
    • 0347807129 scopus 로고
    • Elastoresistance in p-Type Ge and Si
    • E. Adams: Elastoresistance in p-Type Ge and Si. Phys. Rev. 96, 803 (1954).
    • (1954) Phys. Rev , vol.96 , pp. 803
    • Adams, E.1
  • 12
    • 7544239697 scopus 로고
    • Piezoresistance effect in p-Type Si
    • Y. Ohmura: Piezoresistance effect in p-Type Si. Phys. Rev. B 42, 9178 (1990).
    • (1990) Phys. Rev B , vol.42 , pp. 9178
    • Ohmura, Y.1
  • 13
    • 0021522633 scopus 로고
    • Origin of the linear and nonlinear piezoresistance effects in p-Type silicon
    • K. Suzuki, H. Hasegawa, and Y. Kanda: Origin of the linear and nonlinear piezoresistance effects in p-Type silicon. Jpn. J. Appl. Phys. 23, L871 (1984).
    • (1984) Jpn. J. Appl. Phys , vol.23
    • Suzuki, K.1    Hasegawa, H.2    Kanda, Y.3
  • 14
    • 0000536098 scopus 로고    scopus 로고
    • Stress-dependent hole effective masses and piezoresistive properties of p-Type monocrystalline and polycrystalline silicon
    • P. Kleimann, B. Semmache, M. Le Berre, and D. Barbier: Stress-dependent hole effective masses and piezoresistive properties of p-Type monocrystalline and polycrystalline silicon. Phys. Rev. B 57, 8966 (1998).
    • (1998) Phys. Rev B , vol.57 , pp. 8966
    • Kleimann, P.1    Semmache, B.2    Le Berre, M.3    Barbier, D.4
  • 16
  • 18
    • 34248208452 scopus 로고    scopus 로고
    • Giant piezoresistance effect in silicon nanowires
    • R. He and P. Yang: Giant piezoresistance effect in silicon nanowires. Nature Nanotech. 1, 42 (2006).
    • (2006) Nature Nanotech , vol.1 , pp. 42
    • He, R.1    Yang, P.2
  • 22
    • 50649105080 scopus 로고    scopus 로고
    • Using piezoresistance model with cr conversion for modeling of strain-induced mobility
    • Y. Tsang, A. ONeill, B. Gallacher, and S. Olsen: Using piezoresistance model with cr conversion for modeling of strain-induced mobility. IEEE Trans. Electron Devices 29, 1062 (2008).
    • (2008) IEEE Trans. Electron Devices , vol.29 , pp. 1062
    • Tsang, Y.1    Oneill, A.2    Gallacher, B.3    Olsen, S.4
  • 23
    • 79959265011 scopus 로고    scopus 로고
    • Piezoresistive effect in p-Type silicon classical nanowires at high uniaxial strains
    • S.I. Kozlovskiy and N.N. Sharan: Piezoresistive effect in p-Type silicon classical nanowires at high uniaxial strains. J. Comput. Electron. 10, 258 (2011).
    • (2011) J. Comput. Electron , vol.10 , pp. 258
    • Kozlovskiy, S.I.1    Sharan, N.N.2
  • 24
    • 0014869702 scopus 로고
    • Effective mass change of electrons in silicon inversion layers observed by piezoresistance
    • G. Dorda: Effective mass change of electrons in silicon inversion layers observed by piezoresistance. Appl. Phys. Lett. 17, 406 (1970).
    • (1970) Appl. Phys. Lett , vol.17 , pp. 406
    • Dorda, G.1
  • 25
    • 0015048648 scopus 로고
    • Piezoresistance in quantized conduction bands in silicon inversion layers
    • G. Dorda: Piezoresistance in quantized conduction bands in silicon inversion layers. J. Appl. Phys. 42, 2053 (1971).
    • (1971) J. Appl. Phys , vol.42 , pp. 2053
    • Dorda, G.1
  • 26
    • 9744271881 scopus 로고
    • Stress and intersubband correlation in the silicon inversion layer
    • I. Eisele: Stress and intersubband correlation in the silicon inversion layer. Surf. Sci. 73, 315 (1978).
    • (1978) Surf. Sci , vol.73 , pp. 315
    • Eisele, I.1
  • 27
    • 4243892466 scopus 로고
    • Many-valley interactions in n-Type silicon inversion layers
    • G. Dorda, I. Eisele, and H. Gesch: Many-valley interactions in n-Type silicon inversion layers. Phys. Rev. B 17, 1785 (1978).
    • (1978) Phys. Rev B , vol.17 , pp. 1785
    • Dorda, G.1    Eisele, I.2    Gesch, H.3
  • 28
    • 9744237261 scopus 로고    scopus 로고
    • Giant low-Temperature piezoresistance effect in AlAs twodimensional electrons
    • Y.P. Shkolnikov, K. Vakili, E.P. De Poortere, and M. Shayegan: Giant low-Temperature piezoresistance effect in AlAs twodimensional electrons. Appl. Phys. Lett. 85, 3766 (2004).
    • (2004) Appl. Phys. Lett , vol.85 , pp. 3766
    • Shkolnikov, Y.P.1    Vakili, K.2    De Poortere, E.P.3    Shayegan, M.4
  • 29
    • 36049047370 scopus 로고    scopus 로고
    • Anisotropic low-Temperature piezoresistance in (311) A GaAs two-dimensional holes
    • B. Habib, J. Shabani, E.P. De Poortere, M. Shayegan, and R. Winkler: Anisotropic low-Temperature piezoresistance in (311) A GaAs two-dimensional holes. Appl. Phys. Lett. 91, 012107 (2007).
    • (2007) Appl. Phys. Lett , vol.91 , pp. 012107
    • Habib, B.1    Shabani, J.2    De Poortere, E.P.3    Shayegan, M.4    Winkler, R.5
  • 31
    • 0036772351 scopus 로고    scopus 로고
    • Single crystal silicon nano-wire piezoresistors for mechanical sensors
    • T. Toriyama, Y. Tanimoto, and S. Sugiyama: Single crystal silicon nano-wire piezoresistors for mechanical sensors. J. Microelectromech. Syst. 11, 605 (2002).
    • (2002) J. Microelectromech. Syst , vol.11 , pp. 605
    • Toriyama, T.1    Tanimoto, Y.2    Sugiyama, S.3
  • 32
    • 0037246482 scopus 로고    scopus 로고
    • Piezoresistance measurement on single crystal silicon nanowires
    • T. Toriyama, D. Funai, and S. Sugiyama: Piezoresistance measurement on single crystal silicon nanowires. J. Appl. Phys. 93, 561 (2003).
    • (2003) J. Appl. Phys , vol.93 , pp. 561
    • Toriyama, T.1    Funai, D.2    Sugiyama, S.3
  • 33
    • 78649307395 scopus 로고
    • Evaluation of piezoresistive coefficient variation in silicon stress sensors using a four-point bending test fixture
    • R.E. Beaty, R.C. Jaeger, J.C. Suhling, R.W. Johnson, and R.D. Butler: Evaluation of piezoresistive coefficient variation in silicon stress sensors using a four-point bending test fixture. IEEE Trans. Comp. Hyb. Man. Tech. 15, 904 (1992).
    • (1992) IEEE Trans. Comp. Hyb. Man. Tech , vol.15 , pp. 904
    • Beaty, R.E.1    Jaeger, R.C.2    Suhling, J.C.3    Johnson, R.W.4    Butler, R.D.5
  • 34
    • 34347384837 scopus 로고    scopus 로고
    • Giant piezoresistance and its origin in Si (111) nanowires: First-principles calculations
    • J.X. Cao, X.G. Gong, and R.Q. Wu: Giant piezoresistance and its origin in Si (111) nanowires: First-principles calculations. Phys. Rev. B 75, 233302 (2007).
    • (2007) Phys. Rev. B , vol.75 , pp. 233302
    • Cao, J.X.1    Gong, X.G.2    Wu, R.Q.3
  • 35
    • 50249187022 scopus 로고    scopus 로고
    • Strain induced change of bandgap and effective mass in silicon nanowires
    • D. Shiri, Y. Kong, A. Buin, and M.P. Anantram: Strain induced change of bandgap and effective mass in silicon nanowires. Appl. Phys. Lett. 93, 073114 (2008).
    • (2008) Appl. Phys. Lett , vol.93 , pp. 073114
    • Shiri, D.1    Kong, Y.2    Buin, A.3    Anantram, M.P.4
  • 37
    • 45249124905 scopus 로고    scopus 로고
    • Ab initio calculations of the mechanical and electronic properties of strained Si nanowires
    • P.W. Leu, A. Svizhenko, and K. Cho: Ab initio calculations of the mechanical and electronic properties of strained Si nanowires. Phys. Rev. B 77, 235305 (2008).
    • (2008) Phys. Rev B , vol.77 , pp. 235305
    • Leu, P.W.1    Svizhenko, A.2    Cho, K.3
  • 38
    • 84863837836 scopus 로고    scopus 로고
    • Effects of strain on the carrier mobility in silicon nanowires
    • Y-M. Niquet, C. Delerue, and C. Krzeminski: Effects of strain on the carrier mobility in silicon nanowires. Nano Lett. 12, 3545 (2012).
    • (2012) Nano Lett , vol.12 , pp. 3545
    • Niquet, Y.-M.1    Delerue, C.2    Krzeminski, C.3
  • 39
    • 0141775174 scopus 로고
    • Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers
    • L.T. Canham: Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl. Phys. Lett. 57, 1046 (1990).
    • (1990) Appl. Phys. Lett , vol.57 , pp. 1046
    • Canham, L.T.1
  • 40
    • 3242701624 scopus 로고    scopus 로고
    • Quantumconfinement and electronic properties of silicon nanowires
    • X. Zhao, C.M.Wei, L.Yang, andM.Y. Chou: Quantumconfinement and electronic properties of silicon nanowires. Phys. Rev. Lett. 92, 236805 (2004).
    • (2004) Phys. Rev. Lett , vol.92 , pp. 236805
    • Zhao, X.1    Wei, C.M.2    Yang, L.3    Chou, M.Y.4
  • 41
    • 44949254989 scopus 로고    scopus 로고
    • Silicon nanowires feel the pinch
    • A.C.H. Rowe: Silicon nanowires feel the pinch. Nat. Nanotech. 3, 312 (2008).
    • (2008) Nat. Nanotech , vol.3 , pp. 312
    • Rowe, A.C.H.1
  • 42
  • 43
    • 0028194461 scopus 로고
    • Hot-electron trapping activation energy in PMOSFETs under mechanical stress
    • A. Hamada and E. Takeda: Hot-electron trapping activation energy in PMOSFETs under mechanical stress. IEEE Trans. Electron Devices 15, 31 (1994).
    • (1994) IEEE Trans. Electron Devices , vol.15 , pp. 31
    • Hamada, A.1    Takeda, E.2
  • 44
    • 84859328859 scopus 로고    scopus 로고
    • Large piezoresistance of single silicon nano-needles induced by non-uniaxial strain
    • Z. Xiao, J. She, S. Deng, and N. Xu: Large piezoresistance of single silicon nano-needles induced by non-uniaxial strain. J. Appl. Phys. 110, 114323 (2011).
    • (2011) J. Appl. Phys , vol.110 , pp. 114323
    • Xiao, Z.1    She, J.2    Deng, S.3    Xu, N.4
  • 47
    • 77951099099 scopus 로고    scopus 로고
    • Evaluation of the piezoresistive effect in single crystalline silicon nanowires
    • T.T. Bui, D.V. Dao, K. Nakamura, T. Toriyama, and S. Sugiyama: Evaluation of the piezoresistive effect in single crystalline silicon nanowires. IEEE Sens. 1-3, 41 (2009).
    • (2009) IEEE Sens , vol.1-3 , pp. 41
    • Bui, T.T.1    Dao, D.V.2    Nakamura, K.3    Toriyama, T.4    Sugiyama, S.5
  • 48
    • 53349098799 scopus 로고    scopus 로고
    • Increased piezoresistive effect in crystalline and polycrystalline Si nanowires
    • K. Reck, J. Richter, O. Hansen, and E.V. Thomsen: Increased piezoresistive effect in crystalline and polycrystalline Si nanowires. NTSI Nanotech. 1, 920 (2008).
    • (2008) NTSI Nanotech , vol.1 , pp. 920
    • Reck, K.1    Richter, J.2    Hansen, O.3    Thomsen, E.V.4
  • 49
    • 78649368594 scopus 로고    scopus 로고
    • Giant piezoresistance effects in silicon nanowires and microwires
    • J.S. Milne, A.C.H. Rowe, S. Arscott, and C. Renner: Giant piezoresistance effects in silicon nanowires and microwires. Phys. Rev. Lett. 105, 226802 (2010).
    • (2010) Phys. Rev. Lett , vol.105 , pp. 226802
    • Milne, J.S.1    Rowe, A.C.H.2    Arscott, S.3    Renner, C.4
  • 51
    • 77955133241 scopus 로고    scopus 로고
    • Silicon nanowire piezoresistance: Impact of surface crystallographic orientation
    • T. Barwicz, L. Klein, S.J. Koester, and H. Hamann: Silicon nanowire piezoresistance: Impact of surface crystallographic orientation. Appl. Phys. Lett. 97, 023110 (2010).
    • (2010) Appl. Phys. Lett , vol.97 , pp. 023110
    • Barwicz, T.1    Klein, L.2    Koester, S.J.3    Hamann, H.4
  • 52
    • 61349104284 scopus 로고    scopus 로고
    • Piezoresistance effect of strained and unstrained fully-depleted silicon-on-insulator MOSFETs integrating a HfO2/TiN gate stack
    • F. Rochette, M. Cass, M. Mouis, A. Haziot, T. Pioger, G. Ghibaudo, and F. Boulanger: Piezoresistance effect of strained and unstrained fully-depleted silicon-on-insulator MOSFETs integrating a HfO2/TiN gate stack. Solid State Electron. 53, 392 (2009).
    • (2009) Solid State Electron , vol.53 , pp. 392
    • Rochette, F.1    Cass, M.2    Mouis, M.3    Haziot, A.4    Pioger, T.5    Ghibaudo, G.6    Boulanger, F.7
  • 53
    • 77952778307 scopus 로고    scopus 로고
    • Backgate bias and stress level impact on giant piezoresistance effect in thin silicon films and nanowires
    • Wanchai, Hong Kong
    • V. Passi, F. Ravaux, E. Dubois, and J.P. Raskin: Backgate bias and stress level impact on giant piezoresistance effect in thin silicon films and nanowires. International Conference on Micro Electro Mechanical Systems, Wanchai, Hong Kong, 2010; 464.
    • (2010) International Conference on Micro Electro Mechanical Systems , vol.464
    • Passi, V.1    Ravaux, F.2    Dubois, E.3    Raskin, J.P.4
  • 54
    • 84868094449 scopus 로고    scopus 로고
    • The piezoresistive effect in n-Type junctionless silicon nanowire transistors
    • T.K. Kang: The piezoresistive effect in n-Type junctionless silicon nanowire transistors. Nanotechnology 23, 475203 (2012).
    • (2012) Nanotechnology , vol.23 , pp. 475203
    • Kang, T.K.1
  • 55
    • 84859980547 scopus 로고    scopus 로고
    • Evidence for giant piezoresistance effect in n-Type silicon nanowire field-effect transistors
    • T.K. Kang: Evidence for giant piezoresistance effect in n-Type silicon nanowire field-effect transistors. Appl. Phys. Lett. 100, 163501 (2012).
    • (2012) Appl. Phys. Lett , vol.100 , pp. 163501
    • Kang, T.K.1
  • 56
    • 84857226972 scopus 로고    scopus 로고
    • Tunable piezoresistance and noise in gate-All-Around nanowire field-effect-Transistor
    • P. Singh, W.T. Park, J. Miao, L. Shao, R. Krishna Kotlanka, and D.L. Kwong: Tunable piezoresistance and noise in gate-All-Around nanowire field-effect-Transistor. Appl. Phys. Lett. 100, 063106 (2012).
    • (2012) Appl. Phys. Lett , vol.100 , pp. 063106
    • Singh, P.1    Park, W.T.2    Miao, J.3    Shao, L.4    Krishna Kotlanka, R.5    Kwong, D.L.6
  • 57
    • 77951034966 scopus 로고    scopus 로고
    • Electrically controlled giant piezoresistance in silicon nanowires
    • P. Neuzil, C.C. Wong, and J. Reboud: Electrically controlled giant piezoresistance in silicon nanowires. Nano Lett. 10, 1248 (2010).
    • (2010) Nano Lett , vol.10 , pp. 1248
    • Neuzil, P.1    Wong, C.C.2    Reboud, J.3
  • 58
    • 79251546083 scopus 로고    scopus 로고
    • Giant piezoresistance of p-Type nano-Thick silicon induced by interface electron trapping instead of 2D quantum confinement
    • Y. Yang and X. Li: Giant piezoresistance of p-Type nano-Thick silicon induced by interface electron trapping instead of 2D quantum confinement. Nanotechnology 22, 015501 (2011).
    • (2011) Nanotechnology , vol.22 , pp. 015501
    • Yang, Y.1    Li, X.2
  • 60
    • 79961208410 scopus 로고    scopus 로고
    • Piezoresistivity characterization of synthetic silicon nanowires using a MEMS device
    • Y. Zhang, X.Y. Liu, C.H. Ru, Y.L. Zhang, L.X. Dong, and Y. Sun: Piezoresistivity characterization of synthetic silicon nanowires using a MEMS device. J. Microelectromech. Syst. 20, 959 (2011).
    • (2011) J. Microelectromech. Syst , vol.20 , pp. 959
    • Zhang, Y.1    Liu, X.Y.2    Ru, C.H.3    Zhang, Y.L.4    Dong, L.X.5    Sun, Y.6
  • 61
    • 36849141789 scopus 로고
    • Youngs modulus, shear modulus, and Poissons ratio in silicon and germanium
    • J.J. Wortman and R.A. Evans: Youngs modulus, shear modulus, and Poissons ratio in silicon and germanium. J. Appl. Phys. 36, 153 (1965).
    • (1965) J. Appl. Phys , vol.36 , pp. 153
    • Wortman, J.J.1    Evans, R.A.2
  • 62
  • 64
    • 0000662827 scopus 로고
    • Determination of the Fermi-level pinning position at Si (111) surfaces
    • F.J. Himpsel, G. Hollinger, and R.A. Pollak: Determination of the Fermi-level pinning position at Si (111) surfaces. Phys. Rev. B 28, 7014 (1983).
    • (1983) Phys. Rev. B , vol.28 , pp. 7014
    • Himpsel, F.J.1    Hollinger, G.2    Pollak, R.A.3
  • 65
    • 0001188528 scopus 로고
    • An investigation of surface states at a silicon/silicon oxide interface employing metal-oxide-silicon diodes
    • L.M. Terman: An investigation of surface states at a silicon/silicon oxide interface employing metal-oxide-silicon diodes. Solid State Electron. 5, 285 (1962).
    • (1962) Solid State Electron , vol.5 , pp. 285
    • Terman, L.M.1
  • 67
    • 23544450983 scopus 로고
    • Photoemission study of the effect of bulk doping and oxygen exposure on silicon surface states
    • L.F. Wagner and W.E. Spicer: Photoemission study of the effect of bulk doping and oxygen exposure on silicon surface states. Phys. Rev. B 9, 1512 (1974).
    • (1974) Phys. Rev B , vol.9 , pp. 1512
    • Wagner, L.F.1    Spicer, W.E.2
  • 68
    • 71549171107 scopus 로고    scopus 로고
    • Resistance electric field dependence and time drift of piezoresistive single crystalline silicon nanofilms
    • E. Anders, L. Vestling, J. Olsson, and I. Katardjiev: Resistance electric field dependence and time drift of piezoresistive single crystalline silicon nanofilms. Proc. Chem. 1, 80 (2009).
    • (2009) Proc. Chem , vol.1 , pp. 80
    • Anders, E.1    Vestling, L.2    Olsson, J.3    Katardjiev, I.4
  • 70
    • 0034511116 scopus 로고    scopus 로고
    • On the design of piezoresistive silicon cantilevers with stress concentration regions for scanning probe microscopy applications
    • R. Bashir, A. Gupta, G.W. Neudeck, M. McElfresh, and R. Gomez: On the design of piezoresistive silicon cantilevers with stress concentration regions for scanning probe microscopy applications. J. Micromech. Microeng. 10, 483 (2000).
    • (2000) J. Micromech. Microeng , vol.10 , pp. 483
    • Bashir, R.1    Gupta, A.2    Neudeck, G.W.3    McElfresh, M.4    Gomez, R.5
  • 71
    • 33644780780 scopus 로고    scopus 로고
    • The influence of the surface migration of gold on the growth of silicon nanowires
    • J.B. Hannon, S. Kodambaka, F.M. Ross, and R.M. Tromp: The influence of the surface migration of gold on the growth of silicon nanowires. Nature 440, 69 (2006).
    • (2006) Nature , vol.440 , pp. 69
    • Hannon, J.B.1    Kodambaka, S.2    Ross, F.M.3    Tromp, R.M.4
  • 72
    • 0000667441 scopus 로고
    • Complex nature of gold-related deep levels in silicon
    • D.V. Lang, H.G. Grimmeiss, E. Meijer, and M. Jaros: Complex nature of gold-related deep levels in silicon. Phys. Rev. B 22, 3917 (1980).
    • (1980) Phys. Rev B , vol.22 , pp. 3917
    • Lang, D.V.1    Grimmeiss, H.G.2    Meijer, E.3    Jaros, M.4
  • 73
    • 84866526723 scopus 로고    scopus 로고
    • A 22nm high performance and low-power CMOS technology featuring fully-depleted tri-gate transistors, self-Aligned contacts and high density MIM capacitors
    • C. Auth, C. Allen, A. Blattner, and D. Bergstrom: A 22nm high performance and low-power CMOS technology featuring fully-depleted tri-gate transistors, self-Aligned contacts and high density MIM capacitors. Symposium on VLSI Technology, Honolulu, HI, 2012; 131.
    • (2012) Symposium on VLSI Technology, Honolulu, HI , pp. 131
    • Auth, C.1    Allen, C.2    Blattner, A.3    Bergstrom, D.4
  • 74
    • 0342394322 scopus 로고
    • Acoustic?wave detection via a piezoelectric field?effect transducer
    • E.W. Greeneich and R.S. Muller: Acoustic?wave detection via a piezoelectric field?effect transducer. Appl. Phys. Lett. 20, 156 (1972).
    • (1972) Appl. Phys. Lett , vol.20 , pp. 156
    • Greeneich, E.W.1    Muller, R.S.2
  • 75
    • 48449083960 scopus 로고    scopus 로고
    • Self-Transducing silicon nanowire electromechanical systems at room temperature
    • R. He, X. Feng, M.L. Roukes, and P. Yang: Self-Transducing silicon nanowire electromechanical systems at room temperature. Nano Lett. 8, 1756 (2008).
    • (2008) Nano Lett , vol.8 , pp. 1756
    • He, R.1    Feng, X.2    Roukes, M.L.3    Yang, P.4
  • 78
    • 84862908325 scopus 로고    scopus 로고
    • Piezoresistive silicon nanowire based nanoelectromechanical system cantilever air flow sensor
    • S. Zhang, L. Lou, and C. Lee: Piezoresistive silicon nanowire based nanoelectromechanical system cantilever air flow sensor. Appl. Phys. Lett. 100, 023111 (2012).
    • (2012) Appl. Phys. Lett , vol.100 , pp. 023111
    • Zhang, S.1    Lou, L.2    Lee, C.3
  • 79
    • 84871321556 scopus 로고    scopus 로고
    • Electrical transduction in nanomechanical resonators based on doubly clamped bottom-up silicon nanowires
    • M. Sansa,M. Fernandez-Regulez,A. San Paulo, and F. Perez-Murano: Electrical transduction in nanomechanical resonators based on doubly clamped bottom-up silicon nanowires. Appl. Phys. Lett. 101, 243115 (2012).
    • (2012) Appl. Phys. Lett , vol.101 , pp. 243115
    • Sansa, M.1    Fernandez-Regulez, M.2    San Paulo, A.3    Perez-Murano, F.4
  • 80
    • 84878589181 scopus 로고    scopus 로고
    • Large-rangeMEMSmotion detection with Subangström noise level using an integrated piezoresistive silicon nanowire
    • P.E. Allain, F. Parrain, A. Bosseboeuf, S. Mâaroufi, P. Coste, and A.Walther: Large-rangeMEMSmotion detection with Subangström noise level using an integrated piezoresistive silicon nanowire. J. Microelectromech. Syst. 22, 716 (2013).
    • (2013) J. Microelectromech. Syst , vol.22 , pp. 716
    • Allain, P.E.1    Parrain, F.2    Bosseboeuf, A.3    Mâaroufi, S.4    Coste, P.5    Walther, A.6
  • 81
    • 0000150332 scopus 로고    scopus 로고
    • Residual lattice strain in thin silicon-on-insulator bonded wafers: Thermal behavior and formation mechanisms
    • T. Iida, T. Itoh, D. Noguchi, and Y. Takano: Residual lattice strain in thin silicon-on-insulator bonded wafers: Thermal behavior and formation mechanisms. J. Appl. Phys. 87, 675 (2000).
    • (2000) J. Appl. Phys , vol.87 , pp. 675
    • Iida, T.1    Itoh, T.2    Noguchi, D.3    Takano, Y.4
  • 82
    • 84877962999 scopus 로고    scopus 로고
    • Large initial compressive stress in top-down fabricated silicon nanowires evidenced by static buckling
    • P.E. Allain, X. Le Roux, F. Parrain, and A. Bosseboeuf: Large initial compressive stress in top-down fabricated silicon nanowires evidenced by static buckling. J. Micromech. Microeng. 23, 015014 (2013).
    • (2013) J. Micromech. Microeng , vol.23 , pp. 015014
    • Allain, P.E.1    Le Roux, X.2    Parrain, F.3    Bosseboeuf, A.4
  • 84
    • 1242331610 scopus 로고    scopus 로고
    • The piezojunction effect in silicon sensors and circuits and its relation to piezoresistance
    • J.F. Creemer, F. Fruett,G.Meijer, and P.J. French: The piezojunction effect in silicon sensors and circuits and its relation to piezoresistance. IEEE Sens. J 1, 98 (2001).
    • (2001) IEEE Sens , vol.1 , pp. 98
    • Creemer, J.F.1    Fruett, F.2    Meijer, G.3    French, P.J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.