-
1
-
-
84897460915
-
The electrical resistance of metals under pressure
-
P.W. Bridgman: The electrical resistance of metals under pressure. Proc. Am. Acad. Arts Sci. 52, 573 (1917).
-
(1917)
Proc. Am. Acad. Arts Sci
, vol.52
, pp. 573
-
-
Bridgman, P.W.1
-
2
-
-
0344591233
-
The resistance of 72 elements, alloys and compounds to 100,000 Kg/Cm
-
P.W. Bridgman: The resistance of 72 elements, alloys and compounds to 100,000 Kg/Cm. Proc. Am. Acad. Arts Sci. 81, 165 (1952).
-
(1952)
Proc. Am. Acad. Arts Sci
, vol.81
, pp. 165
-
-
Bridgman, P.W.1
-
3
-
-
33847795859
-
Topological insulators in three dimensions
-
L. Fu, C.L. Kane, and E.J. Mele: Topological insulators in three dimensions. Phys. Rev. Lett. 98, 106803 (2007).
-
(2007)
Phys. Rev. Lett
, vol.98
, pp. 106803
-
-
Fu, L.1
Kane, C.L.2
Mele, E.J.3
-
4
-
-
84897374609
-
Summary of the Kronig-Penney electron
-
J.C. Wolfe: Summary of the Kronig-Penney electron. Am. J. Phys. 46, 1012 (1978).
-
(1978)
Am. J. Phys
, vol.46
, pp. 1012
-
-
Wolfe, J.C.1
-
5
-
-
33846693940
-
Piezoresistance effect in germanium and silicon
-
C.S. Smith: Piezoresistance effect in germanium and silicon. Phys. Rev. 94, 42 (1954).
-
(1954)
Phys. Rev
, vol.94
, pp. 42
-
-
Smith, C.S.1
-
6
-
-
0000023102
-
Piezoresistive properties of heavily doped n-Type silicon
-
O.N. Tufte and E.L. Stelzer: Piezoresistive properties of heavily doped n-Type silicon. J. Appl. Phys. 34, 313 (1963).
-
(1963)
J. Appl. Phys
, vol.34
, pp. 313
-
-
Tufte, O.N.1
Stelzer, E.L.2
-
7
-
-
36149023347
-
Transport and deformation-potential theory for many-valley semiconductors with anisotropic scattering
-
C. Herring and E. Vogt: Transport and deformation-potential theory for many-valley semiconductors with anisotropic scattering. Phys. Rev. 101, 944 (1956).
-
(1956)
Phys. Rev
, vol.101
, pp. 944
-
-
Herring, C.1
Vogt, E.2
-
8
-
-
0242419509
-
Piezoresistance and piezo-Hall-effect in n-Type silicon
-
J. Aubrey,W.Gubler, T. Henningsen, and S. Koenig: Piezoresistance and piezo-Hall-effect in n-Type silicon. Phys. Rev. 130, 1667 (1963).
-
(1963)
Phys. Rev
, vol.130
, pp. 1667
-
-
Aubrey, J.1
Gubler, W.2
Henningsen, T.3
Koenig, S.4
-
9
-
-
84862513724
-
Piezoresistance in silicon at uniaxial compressive stresses up to 3 GPa
-
J.S. Milne, I. Favorskiy, A.C.H. Rowe, S. Arscott, and C. Renner: Piezoresistance in silicon at uniaxial compressive stresses up to 3 GPa. Phys. Rev. Lett. 108, 256801 (2012).
-
(2012)
Phys. Rev. Lett
, vol.108
, pp. 256801
-
-
Milne, J.S.1
Favorskiy, I.2
Rowe, A.C.H.3
Arscott, S.4
Renner, C.5
-
10
-
-
0019916789
-
A graphical representation of the piezoresistance coefficients in silicon
-
Y. Kanda: A graphical representation of the piezoresistance coefficients in silicon. IEEE Trans. Electron Devices 29, 64 (1982).
-
(1982)
IEEE Trans. Electron Devices
, vol.29
, pp. 64
-
-
Kanda, Y.1
-
11
-
-
0347807129
-
Elastoresistance in p-Type Ge and Si
-
E. Adams: Elastoresistance in p-Type Ge and Si. Phys. Rev. 96, 803 (1954).
-
(1954)
Phys. Rev
, vol.96
, pp. 803
-
-
Adams, E.1
-
12
-
-
7544239697
-
Piezoresistance effect in p-Type Si
-
Y. Ohmura: Piezoresistance effect in p-Type Si. Phys. Rev. B 42, 9178 (1990).
-
(1990)
Phys. Rev B
, vol.42
, pp. 9178
-
-
Ohmura, Y.1
-
13
-
-
0021522633
-
Origin of the linear and nonlinear piezoresistance effects in p-Type silicon
-
K. Suzuki, H. Hasegawa, and Y. Kanda: Origin of the linear and nonlinear piezoresistance effects in p-Type silicon. Jpn. J. Appl. Phys. 23, L871 (1984).
-
(1984)
Jpn. J. Appl. Phys
, vol.23
-
-
Suzuki, K.1
Hasegawa, H.2
Kanda, Y.3
-
14
-
-
0000536098
-
Stress-dependent hole effective masses and piezoresistive properties of p-Type monocrystalline and polycrystalline silicon
-
P. Kleimann, B. Semmache, M. Le Berre, and D. Barbier: Stress-dependent hole effective masses and piezoresistive properties of p-Type monocrystalline and polycrystalline silicon. Phys. Rev. B 57, 8966 (1998).
-
(1998)
Phys. Rev B
, vol.57
, pp. 8966
-
-
Kleimann, P.1
Semmache, B.2
Le Berre, M.3
Barbier, D.4
-
15
-
-
48849105905
-
Piezoresistance in p-Type silicon revisited
-
J. Richter, J. Pedersen, M. Brandbyge, E. Thomsen, and O. Hansen: Piezoresistance in p-Type silicon revisited. J. Appl. Phys. 104, 023715 (2008).
-
(2008)
J. Appl. Phys
, vol.104
, pp. 023715
-
-
Richter, J.1
Pedersen, J.2
Brandbyge, M.3
Thomsen, E.4
Hansen, O.5
-
16
-
-
33646043420
-
Uniaxialprocess- induced strained-Si: Extending the CMOS roadmap
-
S. Thompson, G. Sun, Y. Choi, and T. Nishida: Uniaxialprocess- induced strained-Si: Extending the CMOS roadmap. IEEE Trans. Electron Devices 53, 1010 (2006).
-
(2006)
IEEE Trans. Electron Devices
, vol.53
, pp. 1010
-
-
Thompson, S.1
Sun, G.2
Choi, Y.3
Nishida, T.4
-
17
-
-
33847653208
-
Hole mobility and thermal velocity enhancement for uniaxial stress in Si up to 4 GPa
-
X. Fan, L. Register, B. Winstead, M. Foisy, W. Chen, X. Zheng, B. Ghosh, and S. Banerjee: Hole mobility and thermal velocity enhancement for uniaxial stress in Si up to 4 GPa. IEEE Trans. Electron Devices 54, 291 (2007).
-
(2007)
IEEE Trans. Electron Devices
, vol.54
, pp. 291
-
-
Fan, X.1
Register, L.2
Winstead, B.3
Foisy, M.4
Chen, W.5
Zheng, X.6
Ghosh, B.7
Banerjee, S.8
-
18
-
-
34248208452
-
Giant piezoresistance effect in silicon nanowires
-
R. He and P. Yang: Giant piezoresistance effect in silicon nanowires. Nature Nanotech. 1, 42 (2006).
-
(2006)
Nature Nanotech
, vol.1
, pp. 42
-
-
He, R.1
Yang, P.2
-
20
-
-
0000876593
-
Nonlinear piezoresistance effects in silicon
-
K. Matsuda, K. Suzuki, K. Yamamura, and Y. Kanda: Nonlinear piezoresistance effects in silicon. J. Appl. Phys. 73, 1838 (1993).
-
(1993)
J. Appl. Phys
, vol.73
, pp. 1838
-
-
Matsuda, K.1
Suzuki, K.2
Yamamura, K.3
Kanda, Y.4
-
21
-
-
20444482091
-
Drive current enhancement in p-Type metal-oxide-semiconductor field-effect transistors under shear uniaxial stress
-
L. Shifren, X. Wang, P. Matagne, B. Obradovic, C. Auth, S. Cea, T. Ghani, J. He, T. Hoffman, R. Kotlyar, Z. Ma, K. Mistry, R. Nagisetty, R. Shaheed, M. Stettler, C. Weber, M.D. Giles: Drive current enhancement in p-Type metal-oxide-semiconductor field-effect transistors under shear uniaxial stress. Appl. Phys. Lett. 85, 6188 (2004).
-
(2004)
Appl. Phys. Lett
, vol.85
, pp. 6188
-
-
Shifren, L.1
Wang, X.2
Matagne, P.3
Obradovic, B.4
Auth, C.5
Cea, S.6
Ghani, T.7
He, J.8
Hoffman, T.9
Kotlyar, R.10
Ma, Z.11
Mistry, K.12
Nagisetty, R.13
Shaheed, R.14
Stettler, M.15
Weber, C.16
Giles, M.D.17
-
22
-
-
50649105080
-
Using piezoresistance model with cr conversion for modeling of strain-induced mobility
-
Y. Tsang, A. ONeill, B. Gallacher, and S. Olsen: Using piezoresistance model with cr conversion for modeling of strain-induced mobility. IEEE Trans. Electron Devices 29, 1062 (2008).
-
(2008)
IEEE Trans. Electron Devices
, vol.29
, pp. 1062
-
-
Tsang, Y.1
Oneill, A.2
Gallacher, B.3
Olsen, S.4
-
23
-
-
79959265011
-
Piezoresistive effect in p-Type silicon classical nanowires at high uniaxial strains
-
S.I. Kozlovskiy and N.N. Sharan: Piezoresistive effect in p-Type silicon classical nanowires at high uniaxial strains. J. Comput. Electron. 10, 258 (2011).
-
(2011)
J. Comput. Electron
, vol.10
, pp. 258
-
-
Kozlovskiy, S.I.1
Sharan, N.N.2
-
24
-
-
0014869702
-
Effective mass change of electrons in silicon inversion layers observed by piezoresistance
-
G. Dorda: Effective mass change of electrons in silicon inversion layers observed by piezoresistance. Appl. Phys. Lett. 17, 406 (1970).
-
(1970)
Appl. Phys. Lett
, vol.17
, pp. 406
-
-
Dorda, G.1
-
25
-
-
0015048648
-
Piezoresistance in quantized conduction bands in silicon inversion layers
-
G. Dorda: Piezoresistance in quantized conduction bands in silicon inversion layers. J. Appl. Phys. 42, 2053 (1971).
-
(1971)
J. Appl. Phys
, vol.42
, pp. 2053
-
-
Dorda, G.1
-
26
-
-
9744271881
-
Stress and intersubband correlation in the silicon inversion layer
-
I. Eisele: Stress and intersubband correlation in the silicon inversion layer. Surf. Sci. 73, 315 (1978).
-
(1978)
Surf. Sci
, vol.73
, pp. 315
-
-
Eisele, I.1
-
27
-
-
4243892466
-
Many-valley interactions in n-Type silicon inversion layers
-
G. Dorda, I. Eisele, and H. Gesch: Many-valley interactions in n-Type silicon inversion layers. Phys. Rev. B 17, 1785 (1978).
-
(1978)
Phys. Rev B
, vol.17
, pp. 1785
-
-
Dorda, G.1
Eisele, I.2
Gesch, H.3
-
28
-
-
9744237261
-
Giant low-Temperature piezoresistance effect in AlAs twodimensional electrons
-
Y.P. Shkolnikov, K. Vakili, E.P. De Poortere, and M. Shayegan: Giant low-Temperature piezoresistance effect in AlAs twodimensional electrons. Appl. Phys. Lett. 85, 3766 (2004).
-
(2004)
Appl. Phys. Lett
, vol.85
, pp. 3766
-
-
Shkolnikov, Y.P.1
Vakili, K.2
De Poortere, E.P.3
Shayegan, M.4
-
29
-
-
36049047370
-
Anisotropic low-Temperature piezoresistance in (311) A GaAs two-dimensional holes
-
B. Habib, J. Shabani, E.P. De Poortere, M. Shayegan, and R. Winkler: Anisotropic low-Temperature piezoresistance in (311) A GaAs two-dimensional holes. Appl. Phys. Lett. 91, 012107 (2007).
-
(2007)
Appl. Phys. Lett
, vol.91
, pp. 012107
-
-
Habib, B.1
Shabani, J.2
De Poortere, E.P.3
Shayegan, M.4
Winkler, R.5
-
30
-
-
84897428139
-
Characteristics of polycrystalline Si nano wire piezoresistors
-
T. Yasutada, T. Toriyama, and S. Sugiyama: Characteristics of polycrystalline Si nano wire piezoresistors. In Proceedings of the Technical Digest of the Sensor Symposium, Interlaken, Switzerland. Vol. 17, 1999; 195.
-
(1999)
Proceedings of the Technical Digest of the Sensor Symposium, Interlaken, Switzerland
, vol.17
, pp. 195
-
-
Yasutada, T.1
Toriyama, T.2
Sugiyama, S.3
-
31
-
-
0036772351
-
Single crystal silicon nano-wire piezoresistors for mechanical sensors
-
T. Toriyama, Y. Tanimoto, and S. Sugiyama: Single crystal silicon nano-wire piezoresistors for mechanical sensors. J. Microelectromech. Syst. 11, 605 (2002).
-
(2002)
J. Microelectromech. Syst
, vol.11
, pp. 605
-
-
Toriyama, T.1
Tanimoto, Y.2
Sugiyama, S.3
-
32
-
-
0037246482
-
Piezoresistance measurement on single crystal silicon nanowires
-
T. Toriyama, D. Funai, and S. Sugiyama: Piezoresistance measurement on single crystal silicon nanowires. J. Appl. Phys. 93, 561 (2003).
-
(2003)
J. Appl. Phys
, vol.93
, pp. 561
-
-
Toriyama, T.1
Funai, D.2
Sugiyama, S.3
-
33
-
-
78649307395
-
Evaluation of piezoresistive coefficient variation in silicon stress sensors using a four-point bending test fixture
-
R.E. Beaty, R.C. Jaeger, J.C. Suhling, R.W. Johnson, and R.D. Butler: Evaluation of piezoresistive coefficient variation in silicon stress sensors using a four-point bending test fixture. IEEE Trans. Comp. Hyb. Man. Tech. 15, 904 (1992).
-
(1992)
IEEE Trans. Comp. Hyb. Man. Tech
, vol.15
, pp. 904
-
-
Beaty, R.E.1
Jaeger, R.C.2
Suhling, J.C.3
Johnson, R.W.4
Butler, R.D.5
-
34
-
-
34347384837
-
Giant piezoresistance and its origin in Si (111) nanowires: First-principles calculations
-
J.X. Cao, X.G. Gong, and R.Q. Wu: Giant piezoresistance and its origin in Si (111) nanowires: First-principles calculations. Phys. Rev. B 75, 233302 (2007).
-
(2007)
Phys. Rev. B
, vol.75
, pp. 233302
-
-
Cao, J.X.1
Gong, X.G.2
Wu, R.Q.3
-
35
-
-
50249187022
-
Strain induced change of bandgap and effective mass in silicon nanowires
-
D. Shiri, Y. Kong, A. Buin, and M.P. Anantram: Strain induced change of bandgap and effective mass in silicon nanowires. Appl. Phys. Lett. 93, 073114 (2008).
-
(2008)
Appl. Phys. Lett
, vol.93
, pp. 073114
-
-
Shiri, D.1
Kong, Y.2
Buin, A.3
Anantram, M.P.4
-
36
-
-
77950932996
-
Piezoresistive effect in silicon nanowires-A comprehensive analysis based on first-principles calculations
-
K. Nakamura, D.V. Dao, B.T. Tung, T. Toriyama, and S. Sugiyama: Piezoresistive effect in silicon nanowires-A comprehensive analysis based on first-principles calculations. International symposium on Micro-NanoMechanics and Human Science, 2009. 2009; 38.
-
(2009)
International Symposium on Micro-NanoMechanics and Human Science
, vol.2009
, pp. 38
-
-
Nakamura, K.1
Dao, D.V.2
Tung, B.T.3
Toriyama, T.4
Sugiyama, S.5
-
37
-
-
45249124905
-
Ab initio calculations of the mechanical and electronic properties of strained Si nanowires
-
P.W. Leu, A. Svizhenko, and K. Cho: Ab initio calculations of the mechanical and electronic properties of strained Si nanowires. Phys. Rev. B 77, 235305 (2008).
-
(2008)
Phys. Rev B
, vol.77
, pp. 235305
-
-
Leu, P.W.1
Svizhenko, A.2
Cho, K.3
-
38
-
-
84863837836
-
Effects of strain on the carrier mobility in silicon nanowires
-
Y-M. Niquet, C. Delerue, and C. Krzeminski: Effects of strain on the carrier mobility in silicon nanowires. Nano Lett. 12, 3545 (2012).
-
(2012)
Nano Lett
, vol.12
, pp. 3545
-
-
Niquet, Y.-M.1
Delerue, C.2
Krzeminski, C.3
-
39
-
-
0141775174
-
Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers
-
L.T. Canham: Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl. Phys. Lett. 57, 1046 (1990).
-
(1990)
Appl. Phys. Lett
, vol.57
, pp. 1046
-
-
Canham, L.T.1
-
40
-
-
3242701624
-
Quantumconfinement and electronic properties of silicon nanowires
-
X. Zhao, C.M.Wei, L.Yang, andM.Y. Chou: Quantumconfinement and electronic properties of silicon nanowires. Phys. Rev. Lett. 92, 236805 (2004).
-
(2004)
Phys. Rev. Lett
, vol.92
, pp. 236805
-
-
Zhao, X.1
Wei, C.M.2
Yang, L.3
Chou, M.Y.4
-
41
-
-
44949254989
-
Silicon nanowires feel the pinch
-
A.C.H. Rowe: Silicon nanowires feel the pinch. Nat. Nanotech. 3, 312 (2008).
-
(2008)
Nat. Nanotech
, vol.3
, pp. 312
-
-
Rowe, A.C.H.1
-
42
-
-
79957547199
-
Monte Carlo simulation of giant piezoresistance effect in p-Type silicon nanostructures
-
T.T. Nghiem, V. Aubry-Fortuna, C. Chassat, A. Bosseboeuf, and P. Dollfus: Monte Carlo simulation of giant piezoresistance effect in p-Type silicon nanostructures. Mod. Phys. Lett. B 25, 995 (2011).
-
(2011)
Mod. Phys. Lett B
, vol.25
, pp. 995
-
-
Nghiem, T.T.1
Aubry-Fortuna, V.2
Chassat, C.3
Bosseboeuf, A.4
Dollfus, P.5
-
43
-
-
0028194461
-
Hot-electron trapping activation energy in PMOSFETs under mechanical stress
-
A. Hamada and E. Takeda: Hot-electron trapping activation energy in PMOSFETs under mechanical stress. IEEE Trans. Electron Devices 15, 31 (1994).
-
(1994)
IEEE Trans. Electron Devices
, vol.15
, pp. 31
-
-
Hamada, A.1
Takeda, E.2
-
44
-
-
84859328859
-
Large piezoresistance of single silicon nano-needles induced by non-uniaxial strain
-
Z. Xiao, J. She, S. Deng, and N. Xu: Large piezoresistance of single silicon nano-needles induced by non-uniaxial strain. J. Appl. Phys. 110, 114323 (2011).
-
(2011)
J. Appl. Phys
, vol.110
, pp. 114323
-
-
Xiao, Z.1
She, J.2
Deng, S.3
Xu, N.4
-
45
-
-
84880692699
-
Surface states and conductivity of silicon nano-wires
-
U. Kumar Bhaskar, T. Pardoen, V. Passi, and J-P. Raskin: Surface states and conductivity of silicon nano-wires. J. Appl. Phys. 113, 134502 (2013).
-
(2013)
J. Appl. Phys
, vol.113
, pp. 134502
-
-
Kumar Bhaskar, U.1
Pardoen, T.2
Passi, V.3
Raskin, J.-P.4
-
46
-
-
50149109015
-
Piezoresistive effect in top-down fabricated silicon nanowires
-
Tuscon, AZ
-
K. Reck, J. Richter, O. Hansen, and E.V. Thomsen: Piezoresistive effect in top-down fabricated silicon nanowires. International Conference on Micro Electro Mechanical Systems, Tuscon, AZ, 2008. Vol. 217. 2008.
-
(2008)
International Conference on Micro Electro Mechanical Systems
, vol.217
, pp. 2008
-
-
Reck, K.1
Richter, J.2
Hansen, O.3
Thomsen, E.V.4
-
47
-
-
77951099099
-
Evaluation of the piezoresistive effect in single crystalline silicon nanowires
-
T.T. Bui, D.V. Dao, K. Nakamura, T. Toriyama, and S. Sugiyama: Evaluation of the piezoresistive effect in single crystalline silicon nanowires. IEEE Sens. 1-3, 41 (2009).
-
(2009)
IEEE Sens
, vol.1-3
, pp. 41
-
-
Bui, T.T.1
Dao, D.V.2
Nakamura, K.3
Toriyama, T.4
Sugiyama, S.5
-
48
-
-
53349098799
-
Increased piezoresistive effect in crystalline and polycrystalline Si nanowires
-
K. Reck, J. Richter, O. Hansen, and E.V. Thomsen: Increased piezoresistive effect in crystalline and polycrystalline Si nanowires. NTSI Nanotech. 1, 920 (2008).
-
(2008)
NTSI Nanotech
, vol.1
, pp. 920
-
-
Reck, K.1
Richter, J.2
Hansen, O.3
Thomsen, E.V.4
-
49
-
-
78649368594
-
Giant piezoresistance effects in silicon nanowires and microwires
-
J.S. Milne, A.C.H. Rowe, S. Arscott, and C. Renner: Giant piezoresistance effects in silicon nanowires and microwires. Phys. Rev. Lett. 105, 226802 (2010).
-
(2010)
Phys. Rev. Lett
, vol.105
, pp. 226802
-
-
Milne, J.S.1
Rowe, A.C.H.2
Arscott, S.3
Renner, C.4
-
50
-
-
80052549152
-
Piezoresistance of top-down suspended Si nanowires
-
A. Koumela, D.Mercier, C. Dupr, G. Jourdan, C.Marcoux, E. Ollier, S.T. Purcell, and L. Duraffourg: Piezoresistance of top-down suspended Si nanowires. Nanotechnology 22, 395701 (2011).
-
(2011)
Nanotechnology
, vol.22
, pp. 395701
-
-
Koumela, A.1
Mercier, D.2
Dupr, C.3
Jourdan, G.4
Marcoux, C.5
Ollier, E.6
Purcell, S.T.7
Duraffourg, L.8
-
51
-
-
77955133241
-
Silicon nanowire piezoresistance: Impact of surface crystallographic orientation
-
T. Barwicz, L. Klein, S.J. Koester, and H. Hamann: Silicon nanowire piezoresistance: Impact of surface crystallographic orientation. Appl. Phys. Lett. 97, 023110 (2010).
-
(2010)
Appl. Phys. Lett
, vol.97
, pp. 023110
-
-
Barwicz, T.1
Klein, L.2
Koester, S.J.3
Hamann, H.4
-
52
-
-
61349104284
-
Piezoresistance effect of strained and unstrained fully-depleted silicon-on-insulator MOSFETs integrating a HfO2/TiN gate stack
-
F. Rochette, M. Cass, M. Mouis, A. Haziot, T. Pioger, G. Ghibaudo, and F. Boulanger: Piezoresistance effect of strained and unstrained fully-depleted silicon-on-insulator MOSFETs integrating a HfO2/TiN gate stack. Solid State Electron. 53, 392 (2009).
-
(2009)
Solid State Electron
, vol.53
, pp. 392
-
-
Rochette, F.1
Cass, M.2
Mouis, M.3
Haziot, A.4
Pioger, T.5
Ghibaudo, G.6
Boulanger, F.7
-
53
-
-
77952778307
-
Backgate bias and stress level impact on giant piezoresistance effect in thin silicon films and nanowires
-
Wanchai, Hong Kong
-
V. Passi, F. Ravaux, E. Dubois, and J.P. Raskin: Backgate bias and stress level impact on giant piezoresistance effect in thin silicon films and nanowires. International Conference on Micro Electro Mechanical Systems, Wanchai, Hong Kong, 2010; 464.
-
(2010)
International Conference on Micro Electro Mechanical Systems
, vol.464
-
-
Passi, V.1
Ravaux, F.2
Dubois, E.3
Raskin, J.P.4
-
54
-
-
84868094449
-
The piezoresistive effect in n-Type junctionless silicon nanowire transistors
-
T.K. Kang: The piezoresistive effect in n-Type junctionless silicon nanowire transistors. Nanotechnology 23, 475203 (2012).
-
(2012)
Nanotechnology
, vol.23
, pp. 475203
-
-
Kang, T.K.1
-
55
-
-
84859980547
-
Evidence for giant piezoresistance effect in n-Type silicon nanowire field-effect transistors
-
T.K. Kang: Evidence for giant piezoresistance effect in n-Type silicon nanowire field-effect transistors. Appl. Phys. Lett. 100, 163501 (2012).
-
(2012)
Appl. Phys. Lett
, vol.100
, pp. 163501
-
-
Kang, T.K.1
-
56
-
-
84857226972
-
Tunable piezoresistance and noise in gate-All-Around nanowire field-effect-Transistor
-
P. Singh, W.T. Park, J. Miao, L. Shao, R. Krishna Kotlanka, and D.L. Kwong: Tunable piezoresistance and noise in gate-All-Around nanowire field-effect-Transistor. Appl. Phys. Lett. 100, 063106 (2012).
-
(2012)
Appl. Phys. Lett
, vol.100
, pp. 063106
-
-
Singh, P.1
Park, W.T.2
Miao, J.3
Shao, L.4
Krishna Kotlanka, R.5
Kwong, D.L.6
-
57
-
-
77951034966
-
Electrically controlled giant piezoresistance in silicon nanowires
-
P. Neuzil, C.C. Wong, and J. Reboud: Electrically controlled giant piezoresistance in silicon nanowires. Nano Lett. 10, 1248 (2010).
-
(2010)
Nano Lett
, vol.10
, pp. 1248
-
-
Neuzil, P.1
Wong, C.C.2
Reboud, J.3
-
58
-
-
79251546083
-
Giant piezoresistance of p-Type nano-Thick silicon induced by interface electron trapping instead of 2D quantum confinement
-
Y. Yang and X. Li: Giant piezoresistance of p-Type nano-Thick silicon induced by interface electron trapping instead of 2D quantum confinement. Nanotechnology 22, 015501 (2011).
-
(2011)
Nanotechnology
, vol.22
, pp. 015501
-
-
Yang, Y.1
Li, X.2
-
59
-
-
77955561358
-
Anomalous piezoresistance effect in ultrastrained silicon nanowires
-
A. Lugstein,M. Steinmair, A. Steiger, H. Kosina, and E. Bertagnolli: Anomalous piezoresistance effect in ultrastrained silicon nanowires. Nano Lett. 10, 3204 (2010).
-
(2010)
Nano Lett
, vol.10
, pp. 3204
-
-
Lugstein, M.1
Steinmair, A.2
Steiger, A.3
Kosina, H.4
Bertagnolli, E.5
-
60
-
-
79961208410
-
Piezoresistivity characterization of synthetic silicon nanowires using a MEMS device
-
Y. Zhang, X.Y. Liu, C.H. Ru, Y.L. Zhang, L.X. Dong, and Y. Sun: Piezoresistivity characterization of synthetic silicon nanowires using a MEMS device. J. Microelectromech. Syst. 20, 959 (2011).
-
(2011)
J. Microelectromech. Syst
, vol.20
, pp. 959
-
-
Zhang, Y.1
Liu, X.Y.2
Ru, C.H.3
Zhang, Y.L.4
Dong, L.X.5
Sun, Y.6
-
61
-
-
36849141789
-
Youngs modulus, shear modulus, and Poissons ratio in silicon and germanium
-
J.J. Wortman and R.A. Evans: Youngs modulus, shear modulus, and Poissons ratio in silicon and germanium. J. Appl. Phys. 36, 153 (1965).
-
(1965)
J. Appl. Phys
, vol.36
, pp. 153
-
-
Wortman, J.J.1
Evans, R.A.2
-
62
-
-
84872908973
-
Piezoresistance of nano-scale silicon up to 2 GPa in tension
-
U. Kumar Bhaskar, T. Pardoen, V. Passi, and J-P. Raskin: Piezoresistance of nano-scale silicon up to 2 GPa in tension. Appl. Phys. Lett. 102, 031911 (2013).
-
(2013)
Appl. Phys. Lett
, vol.102
, pp. 031911
-
-
Kumar Bhaskar, U.1
Pardoen, T.2
Passi, V.3
Raskin, J.-P.4
-
63
-
-
77957572227
-
Photoassisted tunneling from free-standing GaAs thin films into metallic surfaces
-
D. Vu, S. Arscott, E. Peytavit, R. Ramdani, E. Gil, Y. Andr, S. Bansropun, B. Grard, A.C.H. Rowe, and D. Paget: Photoassisted tunneling from free-standing GaAs thin films into metallic surfaces. Phys. Rev. B 82, 115331 (2010).
-
(2010)
Phys. Rev B
, vol.82
, pp. 115331
-
-
Vu, D.1
Arscott, S.2
Peytavit, E.3
Ramdani, R.4
Gil, E.5
Andr, Y.6
Bansropun, S.7
Grard, B.8
Rowe, A.C.H.9
Paget, D.10
-
64
-
-
0000662827
-
Determination of the Fermi-level pinning position at Si (111) surfaces
-
F.J. Himpsel, G. Hollinger, and R.A. Pollak: Determination of the Fermi-level pinning position at Si (111) surfaces. Phys. Rev. B 28, 7014 (1983).
-
(1983)
Phys. Rev. B
, vol.28
, pp. 7014
-
-
Himpsel, F.J.1
Hollinger, G.2
Pollak, R.A.3
-
65
-
-
0001188528
-
An investigation of surface states at a silicon/silicon oxide interface employing metal-oxide-silicon diodes
-
L.M. Terman: An investigation of surface states at a silicon/silicon oxide interface employing metal-oxide-silicon diodes. Solid State Electron. 5, 285 (1962).
-
(1962)
Solid State Electron
, vol.5
, pp. 285
-
-
Terman, L.M.1
-
66
-
-
0001572772
-
Fermi-level-pinning defects in highly n-doped silicon
-
D.J. Chadi, P.H. Citrin, C.H. Park, D.L. Adler, M.A. Marcus, and H-J. Gossman: Fermi-level-pinning defects in highly n-doped silicon. Phys. Rev. Lett. 79, 4843 (1997).
-
(1997)
Phys. Rev. Lett
, vol.79
, pp. 4843
-
-
Chadi, D.J.1
Citrin, P.H.2
Park, C.H.3
Adler, D.L.4
Marcus, M.A.5
Gossman, H.-J.6
-
67
-
-
23544450983
-
Photoemission study of the effect of bulk doping and oxygen exposure on silicon surface states
-
L.F. Wagner and W.E. Spicer: Photoemission study of the effect of bulk doping and oxygen exposure on silicon surface states. Phys. Rev. B 9, 1512 (1974).
-
(1974)
Phys. Rev B
, vol.9
, pp. 1512
-
-
Wagner, L.F.1
Spicer, W.E.2
-
68
-
-
71549171107
-
Resistance electric field dependence and time drift of piezoresistive single crystalline silicon nanofilms
-
E. Anders, L. Vestling, J. Olsson, and I. Katardjiev: Resistance electric field dependence and time drift of piezoresistive single crystalline silicon nanofilms. Proc. Chem. 1, 80 (2009).
-
(2009)
Proc. Chem
, vol.1
, pp. 80
-
-
Anders, E.1
Vestling, L.2
Olsson, J.3
Katardjiev, I.4
-
70
-
-
0034511116
-
On the design of piezoresistive silicon cantilevers with stress concentration regions for scanning probe microscopy applications
-
R. Bashir, A. Gupta, G.W. Neudeck, M. McElfresh, and R. Gomez: On the design of piezoresistive silicon cantilevers with stress concentration regions for scanning probe microscopy applications. J. Micromech. Microeng. 10, 483 (2000).
-
(2000)
J. Micromech. Microeng
, vol.10
, pp. 483
-
-
Bashir, R.1
Gupta, A.2
Neudeck, G.W.3
McElfresh, M.4
Gomez, R.5
-
71
-
-
33644780780
-
The influence of the surface migration of gold on the growth of silicon nanowires
-
J.B. Hannon, S. Kodambaka, F.M. Ross, and R.M. Tromp: The influence of the surface migration of gold on the growth of silicon nanowires. Nature 440, 69 (2006).
-
(2006)
Nature
, vol.440
, pp. 69
-
-
Hannon, J.B.1
Kodambaka, S.2
Ross, F.M.3
Tromp, R.M.4
-
72
-
-
0000667441
-
Complex nature of gold-related deep levels in silicon
-
D.V. Lang, H.G. Grimmeiss, E. Meijer, and M. Jaros: Complex nature of gold-related deep levels in silicon. Phys. Rev. B 22, 3917 (1980).
-
(1980)
Phys. Rev B
, vol.22
, pp. 3917
-
-
Lang, D.V.1
Grimmeiss, H.G.2
Meijer, E.3
Jaros, M.4
-
73
-
-
84866526723
-
A 22nm high performance and low-power CMOS technology featuring fully-depleted tri-gate transistors, self-Aligned contacts and high density MIM capacitors
-
C. Auth, C. Allen, A. Blattner, and D. Bergstrom: A 22nm high performance and low-power CMOS technology featuring fully-depleted tri-gate transistors, self-Aligned contacts and high density MIM capacitors. Symposium on VLSI Technology, Honolulu, HI, 2012; 131.
-
(2012)
Symposium on VLSI Technology, Honolulu, HI
, pp. 131
-
-
Auth, C.1
Allen, C.2
Blattner, A.3
Bergstrom, D.4
-
74
-
-
0342394322
-
Acoustic?wave detection via a piezoelectric field?effect transducer
-
E.W. Greeneich and R.S. Muller: Acoustic?wave detection via a piezoelectric field?effect transducer. Appl. Phys. Lett. 20, 156 (1972).
-
(1972)
Appl. Phys. Lett
, vol.20
, pp. 156
-
-
Greeneich, E.W.1
Muller, R.S.2
-
75
-
-
48449083960
-
Self-Transducing silicon nanowire electromechanical systems at room temperature
-
R. He, X. Feng, M.L. Roukes, and P. Yang: Self-Transducing silicon nanowire electromechanical systems at room temperature. Nano Lett. 8, 1756 (2008).
-
(2008)
Nano Lett
, vol.8
, pp. 1756
-
-
He, R.1
Feng, X.2
Roukes, M.L.3
Yang, P.4
-
76
-
-
77950509053
-
In-plane nanoelectromechanical resonators based on silicon nanowire piezoresistive detection
-
E. Mile, G. Jourdan, I. Bargatin, S. Labarthe, C. Marcoux, P. Andreucci, S. Hentz, C. Kharrat, E. Colinet, and L. Duraffourg: In-plane nanoelectromechanical resonators based on silicon nanowire piezoresistive detection. Nanotechnology 21, 165504 (2010).
-
(2010)
Nanotechnology
, vol.21
, pp. 165504
-
-
Mile, E.1
Jourdan, G.2
Bargatin, I.3
Labarthe, S.4
Marcoux, C.5
Andreucci, P.6
Hentz, S.7
Kharrat, C.8
Colinet, E.9
Duraffourg, L.10
-
77
-
-
84870425287
-
Piezoresistive sensing performance of junctionless nanowire FET
-
P. Singh, J. Miao, V. Pott, W.T. Park, and D.L. Kwong: Piezoresistive sensing performance of junctionless nanowire FET. IEEE Electron Devices Lett. 33, 1759 (2012).
-
(2012)
IEEE Electron Devices Lett
, vol.33
, pp. 1759
-
-
Singh, P.1
Miao, J.2
Pott, V.3
Park, W.T.4
Kwong, D.L.5
-
78
-
-
84862908325
-
Piezoresistive silicon nanowire based nanoelectromechanical system cantilever air flow sensor
-
S. Zhang, L. Lou, and C. Lee: Piezoresistive silicon nanowire based nanoelectromechanical system cantilever air flow sensor. Appl. Phys. Lett. 100, 023111 (2012).
-
(2012)
Appl. Phys. Lett
, vol.100
, pp. 023111
-
-
Zhang, S.1
Lou, L.2
Lee, C.3
-
79
-
-
84871321556
-
Electrical transduction in nanomechanical resonators based on doubly clamped bottom-up silicon nanowires
-
M. Sansa,M. Fernandez-Regulez,A. San Paulo, and F. Perez-Murano: Electrical transduction in nanomechanical resonators based on doubly clamped bottom-up silicon nanowires. Appl. Phys. Lett. 101, 243115 (2012).
-
(2012)
Appl. Phys. Lett
, vol.101
, pp. 243115
-
-
Sansa, M.1
Fernandez-Regulez, M.2
San Paulo, A.3
Perez-Murano, F.4
-
80
-
-
84878589181
-
Large-rangeMEMSmotion detection with Subangström noise level using an integrated piezoresistive silicon nanowire
-
P.E. Allain, F. Parrain, A. Bosseboeuf, S. Mâaroufi, P. Coste, and A.Walther: Large-rangeMEMSmotion detection with Subangström noise level using an integrated piezoresistive silicon nanowire. J. Microelectromech. Syst. 22, 716 (2013).
-
(2013)
J. Microelectromech. Syst
, vol.22
, pp. 716
-
-
Allain, P.E.1
Parrain, F.2
Bosseboeuf, A.3
Mâaroufi, S.4
Coste, P.5
Walther, A.6
-
81
-
-
0000150332
-
Residual lattice strain in thin silicon-on-insulator bonded wafers: Thermal behavior and formation mechanisms
-
T. Iida, T. Itoh, D. Noguchi, and Y. Takano: Residual lattice strain in thin silicon-on-insulator bonded wafers: Thermal behavior and formation mechanisms. J. Appl. Phys. 87, 675 (2000).
-
(2000)
J. Appl. Phys
, vol.87
, pp. 675
-
-
Iida, T.1
Itoh, T.2
Noguchi, D.3
Takano, Y.4
-
82
-
-
84877962999
-
Large initial compressive stress in top-down fabricated silicon nanowires evidenced by static buckling
-
P.E. Allain, X. Le Roux, F. Parrain, and A. Bosseboeuf: Large initial compressive stress in top-down fabricated silicon nanowires evidenced by static buckling. J. Micromech. Microeng. 23, 015014 (2013).
-
(2013)
J. Micromech. Microeng
, vol.23
, pp. 015014
-
-
Allain, P.E.1
Le Roux, X.2
Parrain, F.3
Bosseboeuf, A.4
-
84
-
-
1242331610
-
The piezojunction effect in silicon sensors and circuits and its relation to piezoresistance
-
J.F. Creemer, F. Fruett,G.Meijer, and P.J. French: The piezojunction effect in silicon sensors and circuits and its relation to piezoresistance. IEEE Sens. J 1, 98 (2001).
-
(2001)
IEEE Sens
, vol.1
, pp. 98
-
-
Creemer, J.F.1
Fruett, F.2
Meijer, G.3
French, P.J.4
|