-
1
-
-
21644483769
-
A novel strain enhanced CMOS architecture using selectively deposited high tensile and high compressive silicon nitride films
-
S. Pidin, T. Mori, K. Inoue, S. Fukuta, N. Itoh et al., "A novel strain enhanced CMOS architecture using selectively deposited high tensile and high compressive silicon nitride films," in IEDM Tech. Dig., 2004, pp. 213-216.
-
(2004)
IEDM Tech. Dig
, pp. 213-216
-
-
Pidin, S.1
Mori, T.2
Inoue, K.3
Fukuta, S.4
Itoh, N.5
-
2
-
-
26444439083
-
Exploring the limits of stress-enhanced hole mobility
-
Sep
-
L. Smith, V. Moroz, G. Eneman, P. Verheyen, F. Nouri et al., "Exploring the limits of stress-enhanced hole mobility," IEEE Electron Device Lett., vol. 26, no. 9, pp. 652-654, Sep. 2005.
-
(2005)
IEEE Electron Device Lett
, vol.26
, Issue.9
, pp. 652-654
-
-
Smith, L.1
Moroz, V.2
Eneman, G.3
Verheyen, P.4
Nouri, F.5
-
3
-
-
33847755083
-
Thin body silicon-on-insulator n-MOSFET with silicon-carbon source/ drain regions for performance enhancement
-
K.-W. Ang, K.-J. Chui, V. Bliznetsov, Y. Wang, L.-Y. Wong et al., "Thin body silicon-on-insulator n-MOSFET with silicon-carbon source/ drain regions for performance enhancement," in IEDM Tech. Dig., 2005, pp. 497-500.
-
(2005)
IEDM Tech. Dig
, pp. 497-500
-
-
Ang, K.-W.1
Chui, K.-J.2
Bliznetsov, V.3
Wang, Y.4
Wong, L.-Y.5
-
4
-
-
0036923437
-
Novel locally strained channel technique for high performance 55 nm CMOS
-
K. Ota, K. Sugihara, H. Sayama, T. Uchida, H. Oda et al., "Novel locally strained channel technique for high performance 55 nm CMOS," in IEDM Tech. Dig., 2002, pp. 27-30.
-
(2002)
IEDM Tech. Dig
, pp. 27-30
-
-
Ota, K.1
Sugihara, K.2
Sayama, H.3
Uchida, T.4
Oda, H.5
-
5
-
-
8344236776
-
A 90-nm logic technology featuring strained-silicon
-
Nov
-
S. E. Thompson, M. Armstrong, C. Auth, M. Alavi, M. Buehler et al. "A 90-nm logic technology featuring strained-silicon," IEEE Trans. Electron Devices, vol. 51, no. 11, pp. 1790-1797, Nov. 2004.
-
(2004)
IEEE Trans. Electron Devices
, vol.51
, Issue.11
, pp. 1790-1797
-
-
Thompson, S.E.1
Armstrong, M.2
Auth, C.3
Alavi, M.4
Buehler, M.5
-
6
-
-
0442311973
-
Electrical analysis of external mechanical stress effects in short channel MOSFETs on (001) silicon
-
Apr
-
C. Gallon, G. Reimbold, G. Ghibaudo, R. A. Bianchi, and R. Gwoziecki, "Electrical analysis of external mechanical stress effects in short channel MOSFETs on (001) silicon," Solid State Electron., vol. 48, no. 4, pp. 561-566, Apr. 2004.
-
(2004)
Solid State Electron
, vol.48
, Issue.4
, pp. 561-566
-
-
Gallon, C.1
Reimbold, G.2
Ghibaudo, G.3
Bianchi, R.A.4
Gwoziecki, R.5
-
7
-
-
0033907557
-
CMOS stress sensors on (100) silicon
-
Jan
-
R. C. Jaeger, J. C. Suhling, R. Ramani, A. T. Bradley, and J. Xu, "CMOS stress sensors on (100) silicon," IEEE J. Solid-State Circuits, vol. 35, no. 1, pp. 85-95, Jan. 2000.
-
(2000)
IEEE J. Solid-State Circuits
, vol.35
, Issue.1
, pp. 85-95
-
-
Jaeger, R.C.1
Suhling, J.C.2
Ramani, R.3
Bradley, A.T.4
Xu, J.5
-
8
-
-
0000876593
-
Nonlinear piezoresistance effects in silicon
-
Feb
-
K. Matsuda, K. Suzuki, K. Yamamura, and Y. Kanda, "Nonlinear piezoresistance effects in silicon," J. Appl. Phys., vol. 73, no. 4, pp. 1838-1847, Feb. 1993.
-
(1993)
J. Appl. Phys
, vol.73
, Issue.4
, pp. 1838-1847
-
-
Matsuda, K.1
Suzuki, K.2
Yamamura, K.3
Kanda, Y.4
-
10
-
-
33846693940
-
Piezoresistance effect in germanium and silicon
-
Apr
-
C. S. Smith, "Piezoresistance effect in germanium and silicon," Phys. Rev., vol. 94, no. 1, pp. 42-49, Apr. 1954.
-
(1954)
Phys. Rev
, vol.94
, Issue.1
, pp. 42-49
-
-
Smith, C.S.1
-
11
-
-
46149113480
-
Future of strained Si/semiconductors in nanoscale MOSFETs
-
Invited paper
-
S. E. Thompson, S. Suthram, Y. Sun, G. Sun, S. Parthasarathy et al. "Future of strained Si/semiconductors in nanoscale MOSFETs," in IEDM Tech. Dig., 2006, pp. 681-684. Invited paper.
-
(2006)
IEDM Tech. Dig
, pp. 681-684
-
-
Thompson, S.E.1
Suthram, S.2
Sun, Y.3
Sun, G.4
Parthasarathy, S.5
-
12
-
-
33646043420
-
Uniaxial-process-induced strained-Si: Extending the CMOS roadmap
-
May
-
S. E. Thompson, G. Sun, Y. S. Choi, and T. Nishida, "Uniaxial-process-induced strained-Si: Extending the CMOS roadmap," IEEE Trans. Electron Devices, vol. 53, no. 5, pp. 1010-1020, May 2006.
-
(2006)
IEEE Trans. Electron Devices
, vol.53
, Issue.5
, pp. 1010-1020
-
-
Thompson, S.E.1
Sun, G.2
Choi, Y.S.3
Nishida, T.4
-
13
-
-
33846032325
-
Piezoresistance coefficients of (100) silicon nMOSFETs measured at low and high (∼1.5 GPa) channel stress
-
Jan
-
S. Suthram, J. C. Ziegert, T. Nishida, and S. E. Thompson, "Piezoresistance coefficients of (100) silicon nMOSFETs measured at low and high (∼1.5 GPa) channel stress," IEEE Electron Device Lett. vol. 28, no. 1, pp. 58-61, Jan. 2007.
-
(2007)
IEEE Electron Device Lett
, vol.28
, Issue.1
, pp. 58-61
-
-
Suthram, S.1
Ziegert, J.C.2
Nishida, T.3
Thompson, S.E.4
-
14
-
-
20444482091
-
Drive current enhancement in p-type metal-oxide-semiconductor field-effect transistors under shear uniaxial stress
-
Dec
-
L. Shifren, X. Wang, P. Matagne, B. Obradovic, C. Auth et al., "Drive current enhancement in p-type metal-oxide-semiconductor field-effect transistors under shear uniaxial stress," Appl. Phys. Lett., vol. 85, no. 25, pp. 6188-6190, Dec. 2004.
-
(2004)
Appl. Phys. Lett
, vol.85
, Issue.25
, pp. 6188-6190
-
-
Shifren, L.1
Wang, X.2
Matagne, P.3
Obradovic, B.4
Auth, C.5
-
15
-
-
21844457694
-
A physically-based analytic model for stress-induced hole mobility enhancement
-
B. Obradovic, P. Matagne, L. Shifren, X. Wang, M. Stettler et al., "A physically-based analytic model for stress-induced hole mobility enhancement," in Proc. 10th IWCE, 2004, pp. 26-27.
-
(2004)
Proc. 10th IWCE
, pp. 26-27
-
-
Obradovic, B.1
Matagne, P.2
Shifren, L.3
Wang, X.4
Stettler, M.5
-
16
-
-
0043269756
-
Six-band k.p calculation of the hole mobility in silicon inversion layers: Dependence on surface orientation, strain, and silicon thickness
-
Jul
-
M. V. Fischetti, Z. Ren, P. M. Solomon, M. Yang, and K. Rim, "Six-band k.p calculation of the hole mobility in silicon inversion layers: Dependence on surface orientation, strain, and silicon thickness," J. Appl. Phys., vol. 94, no. 2, pp. 1079-1095, Jul. 2003.
-
(2003)
J. Appl. Phys
, vol.94
, Issue.2
, pp. 1079-1095
-
-
Fischetti, M.V.1
Ren, Z.2
Solomon, P.M.3
Yang, M.4
Rim, K.5
-
17
-
-
33746660404
-
Physics of hole transport in strained silicon MOSFET inversion layers
-
Aug
-
E. X. Wang, P. Matagne, L. Shifren, B. Obradovic, R. Kotlyar et al. "Physics of hole transport in strained silicon MOSFET inversion layers," IEEE Trans. Electron Devices, vol. 53, no. 8, pp. 1840-1851, Aug. 2006.
-
(2006)
IEEE Trans. Electron Devices
, vol.53
, Issue.8
, pp. 1840-1851
-
-
Wang, E.X.1
Matagne, P.2
Shifren, L.3
Obradovic, B.4
Kotlyar, R.5
-
18
-
-
33847653208
-
-
X.-F. Fan, L. F. Register, B. Winstead, M. C. Foisy, W. Chen et al. Hole mobility and thermal velocity enhancement for uniaxial stress in Si up to 4 GPa, IEEE Trans. Electron Devices, 54, no. 2, pp. 291-296, Feb. 2007.
-
X.-F. Fan, L. F. Register, B. Winstead, M. C. Foisy, W. Chen et al. "Hole mobility and thermal velocity enhancement for uniaxial stress in Si up to 4 GPa," IEEE Trans. Electron Devices, vol. 54, no. 2, pp. 291-296, Feb. 2007.
-
-
-
-
19
-
-
34248208452
-
Giant piezoresistance effect in silicon nanowires
-
Oct
-
R. He and P. Yang, "Giant piezoresistance effect in silicon nanowires," Nature Nanotechnol., vol. 1, no. 1, pp. 42-46, Oct. 2006.
-
(2006)
Nature Nanotechnol
, vol.1
, Issue.1
, pp. 42-46
-
-
He, R.1
Yang, P.2
-
20
-
-
0024753505
-
Second-order piezoresistance coefficients of n-type silicon
-
Oct
-
K. Matsuda, Y. Kanda, and K. Suzuki, "Second-order piezoresistance coefficients of n-type silicon," Jpn. J. Appl. Phys., vol. 28, no. 10, pp. L1676-L1677, Oct. 1989.
-
(1989)
Jpn. J. Appl. Phys
, vol.28
, Issue.10
-
-
Matsuda, K.1
Kanda, Y.2
Suzuki, K.3
-
21
-
-
0034206503
-
Fourth-order piezoresistance coefficients in cubic semiconductors
-
Jun
-
Y. Ohmura and W. Morinaga, "Fourth-order piezoresistance coefficients in cubic semiconductors," Jpn. J. Appl. Phys., vol. 39, no. 6A, pp. 3483-3487, Jun. 2000.
-
(2000)
Jpn. J. Appl. Phys
, vol.39
, Issue.6 A
, pp. 3483-3487
-
-
Ohmura, Y.1
Morinaga, W.2
|