메뉴 건너뛰기




Volumn 1, Issue 1, 2006, Pages 42-46

Giant piezoresistance effect in silicon nanowires

Author keywords

[No Author keywords available]

Indexed keywords

NANOTUBE; SILICON;

EID: 34248208452     PISSN: 17483387     EISSN: 17483395     Source Type: Journal    
DOI: 10.1038/nnano.2006.53     Document Type: Article
Times cited : (644)

References (30)
  • 1
    • 33846693940 scopus 로고
    • Piezoresistance effect in germanium and silicon
    • Smith, C.S. Piezoresistance effect in germanium and silicon. Phys. Rev. 94, 42–49 (1954).
    • (1954) Phys. Rev , vol.94 , pp. 42-49
    • Smith, C.S.1
  • 2
    • 0000392980 scopus 로고
    • Silicon diffused-element piezoresistive diaphragms
    • Tufte, O.N., Chapman, P.W. & Long, D. Silicon diffused-element piezoresistive diaphragms. J. Appl. Phys. 33, 3322–3327 (1962).
    • (1962) J. Appl. Phys , vol.33 , pp. 3322-3327
    • Tufte, O.N.1    Chapman, P.W.2    Long, D.3
  • 3
    • 21544472129 scopus 로고
    • Atomic resolution with an atomic force microscope using piezoresistive detection
    • Tortonese, M., Barrett, R.C. & Quate, C.F. Atomic resolution with an atomic force microscope using piezoresistive detection. Appl. Phys. Lett. 62, 834–836 (1992).
    • (1992) Appl. Phys. Lett , vol.62 , pp. 834-836
    • Tortonese, M.1    Barrett, R.C.2    Quate, C.F.3
  • 4
    • 14644415474 scopus 로고    scopus 로고
    • Novel electrical detection of label-free disease marker proteins using piezoresistive self-sensing micro-cantilevers
    • Wee, K.W. et al. Novel electrical detection of label-free disease marker proteins using piezoresistive self-sensing micro-cantilevers. Biosens. Bioelectron. 20, 1932–1938 (2005).
    • (2005) Biosens. Bioelectron , vol.20 , pp. 1932-1938
    • Wee, K.W.1
  • 5
    • 19944433396 scopus 로고    scopus 로고
    • Strained Si, SiGe and Ge channels for high-mobility metal-oxide–semiconductor field-effect transistors
    • Lee, M.L., Fitzgerald, E.A., Bulsara, M.T., Currie, M.T. & Lochtefeld, A. Strained Si, SiGe and Ge channels for high-mobility metal-oxide–semiconductor field-effect transistors. J. Appl. Phys. 97, 011101 (2005).
    • (2005) J. Appl. Phys , vol.97 , pp. 11101
    • Lee, M.L.1    Fitzgerald, E.A.2    Bulsara, M.T.3    Currie, M.T.4    Lochtefeld, A.5
  • 6
    • 0141921378 scopus 로고    scopus 로고
    • Mechanically induced strain enhancement of metal-oxide–semiconductor field-effect transistors
    • Haugerud, B.M., Bosworth, L.A. & Belford, R.E. Mechanically induced strain enhancement of metal-oxide–semiconductor field-effect transistors. J. Appl. Phys. 94, 4102–4107 (2003).
    • (2003) J. Appl. Phys , vol.94 , pp. 4102-4107
    • Haugerud, B.M.1    Bosworth, L.A.2    Belford, R.E.3
  • 7
    • 10844253101 scopus 로고    scopus 로고
    • Silicon device scaling to the sub-10-nm regime
    • Ieong, M., Doris, B., Kedzierski, J., Rim, K. & Yang, M. Silicon device scaling to the sub-10-nm regime. Science 306, 2057–2060 (2004).
    • (2004) Science , vol.306 , pp. 2057-2060
    • Ieong, M.1    Doris, B.2    Kedzierski, J.3    Rim, K.4    Yang, M.5
  • 8
    • 0034660575 scopus 로고    scopus 로고
    • Reversible electromechanical characteristics of carbon nanotubes under local-probe manipulation
    • Tombler, T.W. et al. Reversible electromechanical characteristics of carbon nanotubes under local-probe manipulation. Nature 405, 769–772 (2000).
    • (2000) Nature , vol.405 , pp. 769-772
    • Tombler, T.W.1
  • 9
    • 0010308048 scopus 로고    scopus 로고
    • Electronic transport through carbon nanotubes: Effects of structural deformation and tube chirality
    • Maiti, A., Svizhenko, A. & Anantram, M.P. Electronic transport through carbon nanotubes: Effects of structural deformation and tube chirality. Phys. Rev. Lett. 88, 126805 (2002).
    • (2002) Phys. Rev. Lett , vol.88 , pp. 126805
    • Maiti, A.1    Svizhenko, A.2    Anantram, M.P.3
  • 10
    • 21844473049 scopus 로고    scopus 로고
    • Mechanical properties of ultrahigh-strength gold nanowires
    • Wu, B., Heidelberg, A. & Boland, J.J. Mechanical properties of ultrahigh-strength gold nanowires. Nature Mater. 4, 525–529 (2005).
    • (2005) Nature Mater , vol.4 , pp. 525-529
    • Wu, B.1    Heidelberg, A.2    Boland, J.J.3
  • 11
    • 24644509302 scopus 로고    scopus 로고
    • Si nanowire bridges in microtrenches: Integration of growth into device fabrication
    • He, R. et al. Si nanowire bridges in microtrenches: Integration of growth into device fabrication. Adv. Mater. 17, 2098–2102 (2005).
    • (2005) Adv. Mater , vol.17 , pp. 2098-2102
    • He, R.1
  • 12
    • 33645502737 scopus 로고    scopus 로고
    • Mechanical elasticity of single and double clamped silicon nanobeams fabricated by the vapor–liquid–solid method
    • San Paulo, A. et al. Mechanical elasticity of single and double clamped silicon nanobeams fabricated by the vapor–liquid–solid method. Appl. Phys. Lett. 87, 053111 (2005).
    • (2005) Appl. Phys. Lett , vol.87 , pp. 53111
    • San Paulo, A.1
  • 13
    • 0001558496 scopus 로고
    • Use of piezoresistive materials in the measurement of displacement, force, and torque
    • Mason, W.P. & Thurston, R.N. Use of piezoresistive materials in the measurement of displacement, force, and torque. J. Acoust. Soc. Am. 29, 1096–1101 (1957).
    • (1957) J. Acoust. Soc. Am , vol.29 , pp. 1096-1101
    • Mason, W.P.1    Thurston, R.N.2
  • 14
    • 78649307395 scopus 로고
    • Evaluation of piezoresistive coefficient variation in silicon stress sensors using a four-point-bending test fixture
    • Beaty, R.E., Jaeger, R.C., Suhling, J.C., Johnson, R.W. & Butler, R.D. Evaluation of piezoresistive coefficient variation in silicon stress sensors using a four-point-bending test fixture. IEEE Trans. Compon. Hybr. 15, 904–914 (1992).
    • (1992) IEEE Trans. Compon. Hybr , vol.15 , pp. 904-914
    • Beaty, R.E.1    Jaeger, R.C.2    Suhling, J.C.3    Johnson, R.W.4    Butler, R.D.5
  • 15
    • 0000876593 scopus 로고
    • Nonlinear piezoresistance effects in silicon
    • Matsuda, K., Suzuki, K., Yamamura, K. & Kanda, Y. Nonlinear piezoresistance effects in silicon. J. Appl. Phys. 73, 1838–1847 (1993).
    • (1993) J. Appl. Phys , vol.73 , pp. 1838-1847
    • Matsuda, K.1    Suzuki, K.2    Yamamura, K.3    Kanda, Y.4
  • 16
    • 0019916789 scopus 로고
    • A graphical representation of the piezoresistance coefficients in silicon
    • Kanda, Y. A graphical representation of the piezoresistance coefficients in silicon. IEEE Trans. Electron. Devices 29, 64–70 (1982).
    • (1982) IEEE Trans. Electron. Devices , vol.29 , pp. 64-70
    • Kanda, Y.1
  • 18
    • 2342576181 scopus 로고    scopus 로고
    • Polymer electrolyte-gated carbon nanotube field-effect transistor
    • Lu, C., Fu, Q., Huang, S. & Liu, J. Polymer electrolyte-gated carbon nanotube field-effect transistor, Nano Lett. 4, 623–627 (2004).
    • (2004) Nano Lett , vol.4 , pp. 623-627
    • Lu, C.1    Fu, Q.2    Huang, S.3    Liu, J.4
  • 20
    • 0344514609 scopus 로고    scopus 로고
    • Single crystal silicon piezoresistive nanowire bridge
    • Toriyama, T. & Sugiyama, S. Single crystal silicon piezoresistive nanowire bridge. Sens. Actuat. A 108, 244–249 (2003).
    • (2003) Sens. Actuat. A , vol.108 , pp. 244-249
    • Toriyama, T.1    Sugiyama, S.2
  • 21
    • 0000863124 scopus 로고
    • Mobility anisotropy and piezoresistance in silicon p-type inversion layers
    • Colman, D., Bate, R.T. & Mize, J.P. Mobility anisotropy and piezoresistance in silicon p-type inversion layers. J. Appl. Phys. 39, 1923–1931 (1967).
    • (1967) J. Appl. Phys , vol.39 , pp. 1923-1931
    • Colman, D.1    Bate, R.T.2    Mize, J.P.3
  • 22
    • 0015048648 scopus 로고
    • Piezoresistance in quantized conduction bands in silicon inversion layers
    • Dorda, G. Piezoresistance in quantized conduction bands in silicon inversion layers. J. Appl. Phys. 42, 2053–2060 (1970).
    • (1970) J. Appl. Phys , vol.42 , pp. 2053-2060
    • Dorda, G.1
  • 23
    • 0027617117 scopus 로고
    • Piezoresistive simulation in MOSFETs
    • Wang, Z.Z., Suski, J. & Collard, D. Piezoresistive simulation in MOSFETs. Sens. Actuat. A 37–38, 357–364 (1993).
    • (1993) Sens. Actuat. A , vol.37-38 , pp. 357-364
    • Wang, Z.Z.1    Suski, J.2    Collard, D.3
  • 24
    • 32544460869 scopus 로고    scopus 로고
    • Electronic transport in nanometer-scale silicon-on-insulator membranes
    • Zhang, P. et al. Electronic transport in nanometer-scale silicon-on-insulator membranes. Nature 439, 703–706 (2006).
    • (2006) Nature , vol.439 , pp. 703-706
    • Zhang, P.1
  • 25
    • 0021423828 scopus 로고
    • Band bending variation of the Si(111) surface during its thermal oxidation
    • Derrien, J. & Ringeisen, F. Band bending variation of the Si(111) surface during its thermal oxidation. Solid State Commun. 50, 627–628 (1984).
    • (1984) Solid State Commun , vol.50 , pp. 627-628
    • Derrien, J.1    Ringeisen, F.2
  • 26
  • 28
    • 30844433983 scopus 로고    scopus 로고
    • A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates
    • Khang, D.Y., Jiang, H., Huang, Y. & Rogers, J.A. A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science 311, 208–212 (2006).
    • (2006) Science , vol.311 , pp. 208-212
    • Khang, D.Y.1    Jiang, H.2    Huang, Y.3    Rogers, J.A.4
  • 29
    • 3342920063 scopus 로고    scopus 로고
    • Crystallographic alignment of high-density gallium nitride nanowire arrays
    • Kuykendall, T. et al. Crystallographic alignment of high-density gallium nitride nanowire arrays. Nature Mater. 3, 524–528 (2004).
    • (2004) Nature Mater , vol.3 , pp. 524-528
    • Kuykendall, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.