메뉴 건너뛰기




Volumn 3, Issue , 2013, Pages

Voltage and power-controlled regimes in the progressive unipolar RESET transition of HfO 2-based RRAM

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84886884978     PISSN: None     EISSN: 20452322     Source Type: Journal    
DOI: 10.1038/srep02929     Document Type: Article
Times cited : (137)

References (46)
  • 1
    • 35748974883 scopus 로고    scopus 로고
    • Nanoionics-based resistive switching memories
    • DOI 10.1038/nmat2023, PII NMAT2023
    • Waser, R. & Aono, M. Nanoionics-based resistive switching memories. Nat. Mater. 6, 833-840 (2007). (Pubitemid 350064191)
    • (2007) Nature Materials , vol.6 , Issue.11 , pp. 833-840
    • Waser, R.1    Aono, M.2
  • 2
    • 67650102619 scopus 로고    scopus 로고
    • Redox-based resistive switching memories-Nanoionic mechanisms, prospects, and challenges
    • Waser, R., Dittmann, R., Staikov, G. & Szot, K. Redox-based resistive switching memories-Nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21, 2632-2663 (2009).
    • (2009) Adv. Mater. , vol.21 , pp. 2632-2663
    • Waser, R.1    Dittmann, R.2    Staikov, G.3    Szot, K.4
  • 3
    • 43549126477 scopus 로고    scopus 로고
    • Resistive switching in transition metal oxides
    • DOI 10.1016/S1369-7021(08)70119-6, PII S1369702108701196
    • Sawa, A. Resistive switching in transition metal oxides. Mater. Today 11, 28-36 (2008). (Pubitemid 351680723)
    • (2008) Materials Today , vol.11 , Issue.6 , pp. 28-36
    • Sawa, A.1
  • 4
    • 79960642086 scopus 로고    scopus 로고
    • A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O(52x)/TaO(22x) bilayer structures
    • Lee, M.-J. et al. A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O(52x)/TaO(22x) bilayer structures. Nat. Mater. 10, 625-630 (2011).
    • (2011) Nat. Mater. , vol.10 , pp. 625-630
    • Lee, M.1
  • 5
    • 55449122987 scopus 로고    scopus 로고
    • Overview of candidate device technologies for storage-class memory
    • Burr, G. W. et al. Overview of candidate device technologies for storage-class memory. IBM J. Res. & Dev. 52, 449-464 (2008).
    • (2008) IBM J. Res. & Dev. , vol.52 , pp. 449-464
    • Burr, G.W.1
  • 6
    • 84868276695 scopus 로고    scopus 로고
    • Dynamic-load-enabled ultra-low power multiple-state RRAM devices
    • Yang, X. & Chen, I.-W. Dynamic-load-enabled ultra-low power multiple-state RRAM devices. Sci. Rep. 2, 744 (2012).
    • (2012) Sci. Rep. , vol.2 , pp. 744
    • Yang, X.1    Chen, I.-W.2
  • 7
    • 43049126833 scopus 로고    scopus 로고
    • The missing memristor found
    • DOI 10.1038/nature06932, PII NATURE06932
    • Strukov, D. B., Snider, G. S., Stewart, D. R. & Williams, R. S. The missing memristor found. Nature 453, 80-83 (2008). (Pubitemid 351630336)
    • (2008) Nature , vol.453 , Issue.7191 , pp. 80-83
    • Strukov, D.B.1    Snider, G.S.2    Stewart, D.R.3    Williams, R.S.4
  • 10
    • 79956064739 scopus 로고    scopus 로고
    • Nanofilamentary resistive switching in binary oxide system: A review on the present status and outlook
    • Kim, K. M., Jeong, D. S. & Hwang, C. S. Nanofilamentary resistive switching in binary oxide system: a review on the present status and outlook. Nanotechnology 22, 254002 (2011).
    • (2011) Nanotechnology , vol.22 , pp. 254002
    • Kim, K.M.1    Jeong, D.S.2    Hwang, C.S.3
  • 11
    • 76649133422 scopus 로고    scopus 로고
    • Atomic structure of conducting nanofilaments in TiO2 resistive switching memory
    • Kwon, D. H. et al. Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nature Nanotech. 5, 148-153 (2010).
    • (2010) Nature Nanotech. , vol.5 , pp. 148-153
    • Kwon, D.H.1
  • 12
    • 68349158917 scopus 로고    scopus 로고
    • Modeling of set/reset operations in NiO-based resistive-switching memory (RRAM) device
    • Cagli, C., Nardi, F. & Ielmini, D. Modeling of set/reset operations in NiO-based resistive-switching memory (RRAM) devices. IEEE Trans. Electron Devices 56, 1712-1720 (2009).
    • (2009) IEEE Trans. Electron Devices , vol.56 , pp. 1712-1720
    • Cagli, C.1    Nardi, F.2    Ielmini, D.3
  • 13
    • 84856997746 scopus 로고    scopus 로고
    • Experimental and theoretical study of electrode effects in HfO2 based RRAM
    • Cagli, C. et al. Experimental and theoretical study of electrode effects in HfO2 based RRAM. IEDM Tech. Dig. 658-661 (2011).
    • (2011) IEDM Tech. Dig. , pp. 658-661
    • Cagli, C.1
  • 14
    • 84856999285 scopus 로고    scopus 로고
    • On the stochastic nature of resistive switching in metal oxide RRAM: Physical modeling, Monte Carlo simulation, and experimental characterization
    • Yu, S., Guan, X.&Wong, H.-S. P. On the stochastic nature of resistive switching in metal oxide RRAM: physical modeling, Monte Carlo simulation, and experimental characterization. IEDM Tech. Dig. 413-416 (2011).
    • (2011) IEDM Tech. Dig. , pp. 413-416
    • Yu, S.1    Guan, X.2    Wong, H.-S.P.3
  • 15
    • 84859747018 scopus 로고    scopus 로고
    • In situ imaging of the conducting filament in a silicon oxide resistive switch
    • Yao, J. et al. In situ imaging of the conducting filament in a silicon oxide resistive switch. Sci. Rep. 2, 242 (2012).
    • (2012) Sci. Rep. , vol.2 , pp. 242
    • Yao, J.1
  • 16
    • 84859582233 scopus 로고    scopus 로고
    • Real-time observation on dynamic growth/dissolution of conductive filaments in oxide-electrolyte-based ReRAM
    • Liu, Q. et al. Real-time observation on dynamic growth/dissolution of conductive filaments in oxide-electrolyte-based ReRAM. Adv. Mater. 24, 1844-1849 (2012).
    • (2012) Adv. Mater. , vol.24 , pp. 1844-1849
    • Liu, Q.1
  • 17
    • 84859206837 scopus 로고    scopus 로고
    • Observation of conducting filament growth in nanoscale resistive memories
    • Yang, Y. et al. Observation of conducting filament growth in nanoscale resistive memories. Nat. Commun. 3, 732-739 (2012).
    • (2012) Nat. Commun. , vol.3 , pp. 732-739
    • Yang, Y.1
  • 18
    • 33645641019 scopus 로고    scopus 로고
    • Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3
    • Szot, K., Speier, W., Bihlmayer, G. &Waser, R. Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3. Nat. Mater. 5, 312-320 (2006).
    • (2006) Nat. Mater. , vol.5 , pp. 312-320
    • Szot, K.1    Speier, W.2    Bihlmayer, G.3    Waser, R.4
  • 19
    • 34147108217 scopus 로고    scopus 로고
    • Evidence for an oxygen diffusion model for the electric pulse induced resistance change effect in transition-metal oxides
    • Nian, Y. B., Strozier, J., Wu, N. J., Chen, X. & Ignatiev, A. Evidence for an oxygen diffusion model for the electric pulse induced resistance change effect in transition-metal oxides. Phys. Rev. Lett. 98, 146403 (2007).
    • (2007) Phys. Rev. Lett. , vol.98 , pp. 146403
    • Nian, Y.B.1    Strozier, J.2    Wu, N.J.3    Chen, X.4    Ignatiev, A.5
  • 20
    • 84877790976 scopus 로고    scopus 로고
    • Physical electro-thermal model of resistive switching in bi-layered resistance-change memory
    • Kim, S. et al. Physical electro-thermal model of resistive switching in bi-layered resistance-change memory. Sci. Rep. 3, 1680 (2013).
    • (2013) Sci. Rep. , vol.3 , pp. 1680
    • Kim, S.1
  • 21
    • 43349101629 scopus 로고    scopus 로고
    • Random circuit breaker network model for unipolar resistance switching
    • Chae, S. C. et al. Random circuit breaker network model for unipolar resistance switching. Adv. Mater. 20, 1154-1159 (2008).
    • (2008) Adv. Mater. , vol.20 , pp. 1154-1159
    • Chae, S.C.1
  • 22
    • 57049104587 scopus 로고    scopus 로고
    • W. Scaling behaviors of reset voltages and currents in unipolar resistance switching
    • Lee, S. B. et al. W. Scaling behaviors of reset voltages and currents in unipolar resistance switching. Appl. Phys. Lett. 93, 212105 (2008).
    • (2008) Appl. Phys. Lett. , vol.93 , pp. 212105
    • Lee, S.B.1
  • 23
    • 78149290994 scopus 로고    scopus 로고
    • Scaling theory for unipolar resistance switching
    • Lee, J. S. et al. Scaling theory for unipolar resistance switching. Phys. Rev. Lett. 105, 205701 (2010).
    • (2010) Phys. Rev. Lett. , vol.105 , pp. 205701
    • Lee, J.S.1
  • 24
    • 77954962853 scopus 로고    scopus 로고
    • Mechanism for bipolar resistive switching in transitionmetal oxides
    • Rozenberg, M. J. et al. Mechanism for bipolar resistive switching in transitionmetal oxides. Phys. Rev. B 81, 115101 (2010).
    • (2010) Phys. Rev. B , vol.81 , pp. 115101
    • Rozenberg, M.J.1
  • 25
    • 79953048048 scopus 로고    scopus 로고
    • Redox reaction switching mechanism in RRAM device with Pt/CoSiOX/TiN structure
    • Syu, Y.-E. et al. Redox reaction switching mechanism in RRAM device with Pt/CoSiOX/TiN structure. IEEE Electron Device Lett. 32, 545-547 (2011).
    • (2011) IEEE Electron Device Lett. , vol.32 , pp. 545-547
    • Syu, Y.-E.1
  • 26
    • 84876971083 scopus 로고    scopus 로고
    • Origin of hopping conduction in graphene-oxide-doped silicon oxide resistance random access memory devices
    • Chang, K.-C. et al.Origin of hopping conduction in graphene-oxide-doped silicon oxide resistance random access memory devices. IEEE Electron Device Lett. 34, 677-679 (2013).
    • (2013) IEEE Electron Device Lett. , vol.34 , pp. 677-679
    • Chang, K.-C.1
  • 27
    • 84859218369 scopus 로고    scopus 로고
    • On the switching parameter variation of metaloxide RRAM-Part I: Physical modeling and simulation methodology
    • Guan, X., Yu, S. &Wong, H.-S. P. On the switching parameter variation of metaloxide RRAM-Part I: physical modeling and simulation methodology. IEEE Trans. Electron Devices 59, 1172-1182 (2012).
    • (2012) IEEE Trans. Electron Devices , vol.59 , pp. 1172-1182
    • Guan, X.1    Yu, S.2    Wong, H.-S.P.3
  • 28
    • 84859216579 scopus 로고    scopus 로고
    • On the switching parameter variation of metaloxide RRAM-Part II: Model corroboration and device design strategy
    • Yu, S., Guan, X. & Wong, H.-S. P. On the switching parameter variation of metaloxide RRAM-Part II: model corroboration and device design strategy. IEEE Trans. Electron Devices 59, 1183-1188 (2012).
    • (2012) IEEE Trans. Electron Devices , vol.59 , pp. 1183-1188
    • Yu, S.1    Guan, X.2    Wong, H.-S.P.3
  • 29
    • 80054972528 scopus 로고    scopus 로고
    • Reset statistics of NiO-based resistive switching memories
    • Long, S. et al. Reset statistics of NiO-based resistive switching memories. IEEE Electron Device Lett. 32, 1570-1572 (2011).
    • (2011) IEEE Electron Device Lett , vol.32 , pp. 1570-1572
    • Long, S.1
  • 30
    • 84876966134 scopus 로고    scopus 로고
    • Cycle-to-cycle intrinsic RESET statistics in HfO2-based unipolar RRAM devices
    • Long, S. et al. Cycle-to-cycle intrinsic RESET statistics in HfO2-based unipolar RRAM devices. IEEE Electron Device Lett. 34, 623-625 (2013).
    • (2013) IEEE Electron Device Lett , vol.34 , pp. 623-625
    • Long, S.1
  • 31
    • 84881011161 scopus 로고    scopus 로고
    • A model for the set statistics of RRAM inspired in the percolation model of oxide breakdown
    • Long, S. et al. A model for the set statistics of RRAM inspired in the percolation model of oxide breakdown. IEEE Electron Device Lett. 34, 999-1001 (2013).
    • (2013) IEEE Electron Device Lett , vol.34 , pp. 999-1001
    • Long, S.1
  • 32
    • 78049340534 scopus 로고    scopus 로고
    • Controllable growth of nanoscale conductive filaments in solidelectrolyte-based ReRAM by using a metal nanocrystal covered bottom electrode
    • Liu, Q. et al. Controllable growth of nanoscale conductive filaments in solidelectrolyte-based ReRAM by using a metal nanocrystal covered bottom electrode. ACS Nano 10, 6162-6168 (2010).
    • (2010) ACS Nano , vol.10 , pp. 6162-6168
    • Liu, Q.1
  • 33
    • 59849099356 scopus 로고    scopus 로고
    • Filament conduction and reset mechanism in NiO-based resistive-switching memory (RRAM) devices
    • Russo, U., Ielmini, D., Cagli, C. & Lacaita, A. L. Filament conduction and reset mechanism in NiO-based resistive-switching memory (RRAM) devices. IEEE Trans. Electron Devices 56, 186-192 (2009).
    • (2009) IEEE Trans. Electron Devices , vol.56 , pp. 186-192
    • Russo, U.1    Ielmini, D.2    Cagli, C.3    Lacaita, A.L.4
  • 34
    • 59849127081 scopus 로고    scopus 로고
    • Self-accelerated thermal dissolution model for reset programming in unipolar resistive-switchingmemory (RRAM) devices
    • Russo, U., Ielmini, D., Cagli, C. & Lacaita, A. L. Self-accelerated thermal dissolution model for reset programming in unipolar resistive- switchingmemory (RRAM) devices. IEEE Trans. Electron Devices 56, 193-200 (2009).
    • (2009) IEEE Trans. Electron Devices , vol.56 , pp. 193-200
    • Russo, U.1    Ielmini, D.2    Cagli, C.3    Lacaita, A.L.4
  • 35
    • 79956107859 scopus 로고    scopus 로고
    • Physical models of size-dependent nanofilament formation and rupture in NiO resistive switching memories
    • 254022
    • Ielmini, D., Nardi, F. & Cagli, C. Physical models of size-dependent nanofilament formation and rupture in NiO resistive switching memories. Nanotechnology 22, 254022 (2011).
    • (2011) Nanotechnology , vol.22
    • Ielmini, D.1    Nardi, F.2    Cagli, C.3
  • 36
    • 84865366777 scopus 로고    scopus 로고
    • Resistive switching by voltage-driven ion migration in bipolar RRAM-Part I: Experimental study
    • Nardi, F., Larentis, S., Balatti, S., Gilmer, D. C. & Ielmini, D. Resistive switching by voltage-driven ion migration in bipolar RRAM-Part I: experimental study. IEEE Trans. Electron Devices 59, 2461-2467 (2012).
    • (2012) IEEE Trans. Electron Devices , vol.59 , pp. 2461-2467
    • Nardi, F.1    Larentis, S.2    Balatti, S.3    Gilmer, D.C.4    Ielmini, D.5
  • 37
    • 84865451112 scopus 로고    scopus 로고
    • Resistive switching by voltage-driven ion migration in bipolar RRAM-Part II: Modeling
    • Larentis, S., Nardi, F., Balatti, S., Gilmer, D. C. & Ielmini, D. Resistive switching by voltage-driven ion migration in bipolar RRAM-Part II: modeling. IEEE Trans. Electron Devices 59, 2468-2475 (2012).
    • (2012) IEEE Trans. Electron Devices , vol.59 , pp. 2468-2475
    • Larentis, S.1    Nardi, F.2    Balatti, S.3    Gilmer, D.C.4    Ielmini, D.5
  • 38
    • 84868273886 scopus 로고    scopus 로고
    • Transport properties of oxygen vacancy filaments in metal/crystalline or amorphous HfO2/metal structures
    • Cartoixà, X., Rurali, R. & Suñé, J. Transport properties of oxygen vacancy filaments in metal/crystalline or amorphous HfO2/metal structures. Phys. Rev. B 86, 165445 (2012).
    • (2012) Phys. Rev. B , vol.86 , pp. 165445
    • Cartoixà, X.1    Rurali, R.2    Suñé, J.3
  • 39
    • 84877771146 scopus 로고    scopus 로고
    • Quantum-size effects in hafnium-oxide resistive switching
    • 183505
    • Long, S. et al. Quantum-size effects in hafnium-oxide resistive switching. Appl. Phys. Lett. 102, 183505 (2013).
    • (2013) Appl. Phys. Lett. , vol.102
    • Long, S.1
  • 40
    • 84863687001 scopus 로고    scopus 로고
    • Nonlinear conductance quantization effects in CeOX/SiO2-based resistive switching devices
    • Miranda, E. et al. Nonlinear conductance quantization effects in CeOX/SiO2-based resistive switching devices. Appl. Phys. Lett. 101, 012910 (2012).
    • (2012) Appl. Phys. Lett. , vol.101 , pp. 012910
    • Miranda, E.1
  • 41
    • 84864409909 scopus 로고    scopus 로고
    • Observation of conductance quantization in oxide-based resistive switching memory
    • Zhu, X. et al. Observation of conductance quantization in oxide-based resistive switching memory. Adv. Mater. 24, 3941-3946 (2012).
    • (2012) Adv. Mater. , vol.24 , pp. 3941-3946
    • Zhu, X.1
  • 42
    • 79953736382 scopus 로고    scopus 로고
    • From stochastic single atomic switch to nanoscale resistive memory device
    • Geresdi, A., Halbritter, A., Gyenis, A., Makk, P. & Mihály, G. From stochastic single atomic switch to nanoscale resistive memory device. Nanoscale 3, 1504-1508 (2011).
    • (2011) Nanoscale , vol.3 , pp. 1504-1508
    • Geresdi, A.1    Halbritter, A.2    Gyenis, A.3    Makk, P.4    Mihály, G.5
  • 43
    • 84856243482 scopus 로고    scopus 로고
    • Quantized conductance in Ag/GeS2/W conductive-bridge memory cells
    • Jameson, J. R. et al. Quantized conductance in Ag/GeS2/W conductive-bridge memory cells. IEEE Electron Device Lett. 33, 257-259 (2012).
    • (2012) IEEE Electron Device Lett , vol.33 , pp. 257-259
    • Jameson, J.R.1
  • 44
    • 84858841595 scopus 로고    scopus 로고
    • Quantum conductance and switching kinetics of AgI-based microcrossbar cells
    • Tappertzhofen, S., Valov, I. & Waser, R. Quantum conductance and switching kinetics of AgI-based microcrossbar cells. Nanotechnology 23, 145703 (2012).
    • (2012) Nanotechnology , vol.23 , pp. 145703
    • Tappertzhofen, S.1    Valov, I.2    Waser, R.3
  • 45
    • 84867460266 scopus 로고    scopus 로고
    • Conductance quantization and synaptic behavior in a Ta2O5-based atomic switch
    • Tsuruoka, T., Hasegawa, T., Terabe, K. & Aono, M. Conductance quantization and synaptic behavior in a Ta2O5-based atomic switch. Nanotechnology 23, 435705 (2012).
    • (2012) Nanotechnology , vol.23 , pp. 435705
    • Tsuruoka, T.1    Hasegawa, T.2    Terabe, K.3    Aono, M.4
  • 46
    • 84877273642 scopus 로고    scopus 로고
    • Atomic-level quantized reaction of HfOX memristor
    • Syu, Y.-E. et al. Atomic-level quantized reaction of HfOX memristor. Appl. Phys. Lett. 102, 172903 (2013).
    • (2013) Appl. Phys. Lett. , vol.102 , pp. 172903
    • Syu, Y.-E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.