메뉴 건너뛰기




Volumn 5, Issue 12, 2013, Pages

Replicating damaged DNA in eukaryotes

Author keywords

[No Author keywords available]

Indexed keywords

CELL CYCLE; CHEMICAL STRUCTURE; CYTOLOGY; DNA DAMAGE; DNA REPAIR; DNA REPLICATION; EUKARYOTE; METABOLISM; PHYSIOLOGY; REVIEW;

EID: 84885391226     PISSN: None     EISSN: 19430264     Source Type: Journal    
DOI: 10.1101/cshperspect.a019836     Document Type: Article
Times cited : (9)

References (169)
  • 2
    • 33845427432 scopus 로고    scopus 로고
    • Complex formation with Rev1 enhances the proficiency of Saccharomyces cerevisiae DNA polymerase z for mismatch extension and for extension opposite from DNA lesions
    • Acharya N, Johnson RE, Prakash S, Prakash L. 2006. Complex formation with Rev1 enhances the proficiency of Saccharomyces cerevisiae DNA polymerase z for mismatch extension and for extension opposite from DNA lesions. Mol Cell Biol 26: 9555-9563.
    • (2006) Mol Cell Biol , vol.26 , pp. 9555-9563
    • Acharya, N.1    Johnson, R.E.2    Prakash, S.3    Prakash, L.4
  • 3
    • 35048833315 scopus 로고    scopus 로고
    • Mutations in the ubiquitin binding UBZ motif of DNA polymerase h do not impair its function in translesion synthesis during replication
    • Acharya N, Brahma A, Haracska L, Prakash L, Prakash S. 2007. Mutations in the ubiquitin binding UBZ motif of DNA polymerase h do not impair its function in translesion synthesis during replication. Mol Cell Biol 27: 7266-7272.
    • (2007) Mol Cell Biol , vol.27 , pp. 7266-7272
    • Acharya, N.1    Brahma, A.2    Haracska, L.3    Prakash, L.4    Prakash, S.5
  • 4
    • 30944462801 scopus 로고    scopus 로고
    • Cycles of chromosome instability are associated with a fragile site and are increased by defects in DNA replication and checkpoint controls in yeast
    • Admire A, Shanks L, Danzl N, Wang M, Weier U, Stevens W, Hunt E, Weinert T. 2006. Cycles of chromosome instability are associated with a fragile site and are increased by defects in DNA replication and checkpoint controls in yeast. Genes Dev 20: 159-173.
    • (2006) Genes Dev , vol.20 , pp. 159-173
    • Admire, A.1    Shanks, L.2    Danzl, N.3    Wang, M.4    Weier, U.5    Stevens, W.6    Hunt, E.7    Weinert, T.8
  • 5
    • 84875078406 scopus 로고    scopus 로고
    • In vivo and in silico analysis of PCNA ubiquitylation in the activation of the post replication repair pathway in S. cerevisiae
    • Amara F, Colombo R, Cazzaniga P, Pescini D, Csikasz-Nagy A, Muzi Falconi M, Besozzi D, Plevani P. 2013. In vivo and in silico analysis of PCNA ubiquitylation in the activation of the post replication repair pathway in S. cerevisiae. BMC Syst Biol 7: 24.
    • (2013) BMC Syst Biol , vol.7 , pp. 24
    • Amara, F.1    Colombo, R.2    Cazzaniga, P.3    Pescini, D.4    Csikasz-Nagy, A.5    Muzi, F.M.6    Besozzi, D.7    Plevani, P.8
  • 6
    • 77956881105 scopus 로고    scopus 로고
    • ATR and ATM differently regulate WRN to prevent DSBs at stalled replication forks and promote replication fork recovery
    • Ammazzalorso F, Pirzio LM, Bignami M, Franchitto A, Pichierri P. 2010. ATR and ATM differently regulate WRN to prevent DSBs at stalled replication forks and promote replication fork recovery. EMBO J 29: 3156-3169.
    • (2010) EMBO J , vol.29 , pp. 3156-3169
    • Ammazzalorso, F.1    Pirzio, L.M.2    Bignami, M.3    Franchitto, A.4    Pichierri, P.5
  • 7
    • 4043133287 scopus 로고    scopus 로고
    • ATR couples FANCD2 monoubiquitination to the DNA-damage response
    • Andreassen PR, D'Andrea AD, Taniguchi T. 2004. ATR couples FANCD2 monoubiquitination to the DNA-damage response. Genes Dev 18: 1958-1963.
    • (2004) Genes Dev , vol.18 , pp. 1958-1963
    • Andreassen, P.R.1    D'Andrea, A.D.2    Taniguchi, T.3
  • 8
    • 84873044090 scopus 로고    scopus 로고
    • Location, location, location: It's all in the timing for replication origins
    • Aparicio OM. 2013. Location, location, location: It's all in the timing for replication origins. Genes Dev 27: 117-128.
    • (2013) Genes Dev , vol.27 , pp. 117-128
    • Aparicio, O.M.1
  • 9
    • 46249091563 scopus 로고    scopus 로고
    • The checkpoint kinases Chk1 and Chk2 regulate the functional associations between hBRCA2 and Rad51 in response to DNA damage
    • Bahassi EM, Ovesen JL, Riesenberg AL, Bernstein WZ, Hasty PE, Stambrook PJ. 2008. The checkpoint kinases Chk1 and Chk2 regulate the functional associations between hBRCA2 and Rad51 in response to DNA damage. Oncogene 27: 3977-3985.
    • (2008) Oncogene , vol.27 , pp. 3977-3985
    • Bahassi, E.M.1    Ovesen, J.L.2    Riesenberg, A.L.3    Bernstein, W.Z.4    Hasty, P.E.5    Stambrook, P.J.6
  • 10
    • 0030800865 scopus 로고    scopus 로고
    • Yeast DNA repair proteins Rad6 and Rad18 form a heterodimer that has ubiquitin conjugating, DNA binding, and ATP hydrolytic activities
    • Bailly V, Lauder S, Prakash S, Prakash L. 1997. Yeast DNA repair proteins Rad6 and Rad18 form a heterodimer that has ubiquitin conjugating, DNA binding, and ATP hydrolytic activities. J Biol Chem 272: 23360-23365.
    • (1997) J Biol Chem , vol.272 , pp. 23360-23365
    • Bailly, V.1    Lauder, S.2    Prakash, S.3    Prakash, L.4
  • 11
    • 67649447015 scopus 로고    scopus 로고
    • The yeast Shu complex couples error-free post-replication repair to homologous recombination
    • Ball LG, Zhang K, Cobb JA, Boone C, Xiao W. 2009. The yeast Shu complex couples error-free post-replication repair to homologous recombination. Mol Microbiol 73: 89-102.
    • (2009) Mol Microbiol , vol.73 , pp. 89-102
    • Ball, L.G.1    Zhang, K.2    Cobb, J.A.3    Boone, C.4    Xiao, W.5
  • 12
    • 70350111290 scopus 로고    scopus 로고
    • The annealing helicase SMARCAL1 maintains genome integrity at stalled replication forks
    • Bansbach CE, Betous R, Lovejoy CA, Glick GG, Cortez D. 2009. The annealing helicase SMARCAL1 maintains genome integrity at stalled replication forks. Genes Dev 23: 2405-2414.
    • (2009) Genes Dev , vol.23 , pp. 2405-2414
    • Bansbach, C.E.1    Betous, R.2    Lovejoy, C.A.3    Glick, G.G.4    Cortez, D.5
  • 15
    • 0035997368 scopus 로고    scopus 로고
    • DNA replication in eukaryotic cells
    • Bell SP, Dutta A. 2002. DNA replication in eukaryotic cells. Annu Rev Biochem 71: 333-374.
    • (2002) Annu Rev Biochem , vol.71 , pp. 333-374
    • Bell, S.P.1    Dutta, A.2
  • 17
    • 35148847451 scopus 로고    scopus 로고
    • Yeast Rad5 protein required for postreplication repair has a DNA helicase activity specific for replication fork regression
    • Blastyak A, Pinter L, Unk I, Prakash L, Prakash S, Haracska L. 2007. Yeast Rad5 protein required for postreplication repair has a DNA helicase activity specific for replication fork regression. Mol Cell 28: 167-175.
    • (2007) Mol Cell , vol.28 , pp. 167-175
    • Blastyak, A.1    Pinter, L.2    Unk, I.3    Prakash, L.4    Prakash, S.5    Haracska, L.6
  • 18
    • 75149143176 scopus 로고    scopus 로고
    • Role of double-stranded DNA translocase activity of human HLTF in replication of damaged DNA
    • Blastyak A, Hajdu I, Unk I, Haracska L. 2010. Role of double-stranded DNA translocase activity of human HLTF in replication of damaged DNA. Mol Cell Biol 30: 684-693.
    • (2010) Mol Cell Biol , vol.30 , pp. 684-693
    • Blastyak, A.1    Hajdu, I.2    Unk, I.3    Haracska, L.4
  • 19
    • 68249122027 scopus 로고    scopus 로고
    • The checkpoint response to replication stress
    • Branzei D, Foiani M. 2009. The checkpoint response to replication stress. DNA Repair (Amst) 8: 1038-1046.
    • (2009) DNA Repair (Amst) , vol.8 , pp. 1038-1046
    • Branzei, D.1    Foiani, M.2
  • 20
    • 77649165394 scopus 로고    scopus 로고
    • Maintaining genome stability at the replication fork
    • Branzei D, Foiani M. 2010. Maintaining genome stability at the replication fork. Nat Rev Mol Cell Biol 11: 208-219.
    • (2010) Nat Rev Mol Cell Biol , vol.11 , pp. 208-219
    • Branzei, D.1    Foiani, M.2
  • 21
    • 33750437743 scopus 로고    scopus 로고
    • Ubc9 and Mms21 mediated sumoylation counteracts recombinogenic events at damaged replication forks
    • Branzei D, Sollier J, Liberi G, Zhao X, Maeda D, Seki M, Enomoto T, Ohta K, Foiani M. 2006. Ubc9 and Mms21 mediated sumoylation counteracts recombinogenic events at damaged replication forks. Cell 127: 509-522.
    • (2006) Cell , vol.127 , pp. 509-522
    • Branzei, D.1    Sollier, J.2    Liberi, G.3    Zhao, X.4    Maeda, D.5    Seki, M.6    Enomoto, T.7    Ohta, K.8    Foiani, M.9
  • 22
    • 57749169348 scopus 로고    scopus 로고
    • SUMOylation regulates Rad18-mediated template switch
    • Branzei D, Vanoli F, Foiani M. 2008. SUMOylation regulates Rad18-mediated template switch. Nature 456: 915-920.
    • (2008) Nature , vol.456 , pp. 915-920
    • Branzei, D.1    Vanoli, F.2    Foiani, M.3
  • 23
    • 0032510731 scopus 로고    scopus 로고
    • MMS2, encoding a ubiquitin-conjugating-enzyme-like protein, is a member of the yeast error-free postreplication repair pathway
    • Broomfield S, Chow BL, Xiao W. 1998. MMS2, encoding a ubiquitin-conjugating-enzyme-like protein, is a member of the yeast error-free postreplication repair pathway. Proc Natl Acad Sci 95: 5678-5683.
    • (1998) Proc Natl Acad Sci , vol.95 , pp. 5678-5683
    • Broomfield, S.1    Chow, B.L.2    Xiao, W.3
  • 25
    • 18244371925 scopus 로고    scopus 로고
    • Functional uncoupling of MCM helicase and DNA polymerase activities activates the ATR-dependent checkpoint
    • Byun TS, Pacek M, Yee M-C, Walter JC, Cimprich KA. 2005. Functional uncoupling of MCM helicase and DNA polymerase activities activates the ATR-dependent checkpoint. Genes Dev 19: 1040-1052.
    • (2005) Genes Dev , vol.19 , pp. 1040-1052
    • Byun, T.S.1    Pacek, M.2    Yee, M.-C.3    Walter, J.C.4    Cimprich, K.A.5
  • 26
    • 77952413358 scopus 로고    scopus 로고
    • Postreplication gaps at UV lesions are signals for checkpoint activation
    • Callegari AJ, Clark E, Pneuman A, Kelly TJ. 2010. Postreplication gaps at UV lesions are signals for checkpoint activation. Proc Natl Acad Sci 107: 8219-8224.
    • (2010) Proc Natl Acad Sci , vol.107 , pp. 8219-8224
    • Callegari, A.J.1    Clark, E.2    Pneuman, A.3    Kelly, T.J.4
  • 27
    • 0037178723 scopus 로고    scopus 로고
    • ATR Homolog Mec1 promotes fork progression, thus averting breaks in replication slow zones
    • Cha RS, Kleckner N. 2002. ATR Homolog Mec1 promotes fork progression, thus averting breaks in replication slow zones. Science 297: 602-606.
    • (2002) Science , vol.297 , pp. 602-606
    • Cha, R.S.1    Kleckner, N.2
  • 28
    • 3242879828 scopus 로고    scopus 로고
    • Chk1 in the DNA damage response: Conserved roles from yeasts to mammals
    • Chen Y, Sanchez Y. 2004. Chk1 in the DNA damage response: Conserved roles from yeasts to mammals. DNA Repair (Amst) 3: 1025-1032.
    • (2004) DNA Repair (Amst) , vol.3 , pp. 1025-1032
    • Chen, Y.1    Sanchez, Y.2
  • 29
    • 3242878502 scopus 로고    scopus 로고
    • Claspin, a regulator of Chk1 in replication stress pathway
    • Chini C, Chen J. 2004. Claspin, a regulator of Chk1 in replication stress pathway. DNA Repair (Amst) 3: 1033-1037.
    • (2004) DNA Repair (Amst) , vol.3 , pp. 1033-1037
    • Chini, C.1    Chen, J.2
  • 30
    • 33845320139 scopus 로고    scopus 로고
    • Tipin and Timeless form a mutually protective complex required for genotoxic stress resistance and checkpoint function
    • Chou DM, Elledge SJ. 2006. Tipin and Timeless form a mutually protective complex required for genotoxic stress resistance and checkpoint function. Proc Natl Acad Sci 103: 18143-18147.
    • (2006) Proc Natl Acad Sci , vol.103 , pp. 18143-18147
    • Chou, D.M.1    Elledge, S.J.2
  • 31
    • 78649336706 scopus 로고    scopus 로고
    • The DNA damage response: Making it safe to play with knives
    • Ciccia A, Elledge SJ. 2010. The DNA damage response: Making it safe to play with knives. Mol Cell 40: 179-204.
    • (2010) Mol Cell , vol.40 , pp. 179-204
    • Ciccia, A.1    Elledge, S.J.2
  • 33
    • 84885024085 scopus 로고    scopus 로고
    • Advances in understanding the complex mechanisms of DNA interstrand cross-link repair
    • doi: 10.1101/cshperspect.a012732
    • Clauson C, Schärer OD, Niedernhofer L. 2013. Advances in understanding the complex mechanisms of DNA interstrand cross-link repair. Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a012732.
    • (2013) Cold Spring Harb Perspect Biol
    • Clauson, C.1    Schärer, O.D.2    Niedernhofer, L.3
  • 34
    • 67650080515 scopus 로고    scopus 로고
    • Chromatin assembly controls replication fork stability
    • Clemente-Ruiz M, Prado F. 2009. Chromatin assembly controls replication fork stability. EMBO Rep 10: 790-796.
    • (2009) EMBO Rep , vol.10 , pp. 790-796
    • Clemente-Ruiz, M.1    Prado, F.2
  • 35
    • 3042798440 scopus 로고    scopus 로고
    • Minichromosome maintenance proteins are direct targets of the ATM and ATR checkpoint kinases
    • Cortez D, Glick G, Elledge SJ. 2004. Minichromosome maintenance proteins are direct targets of the ATM and ATR checkpoint kinases. Proc Natl Acad Sci 101: 10078-10083.
    • (2004) Proc Natl Acad Sci , vol.101 , pp. 10078-10083
    • Cortez, D.1    Glick, G.2    Elledge, S.J.3
  • 37
  • 38
    • 11344268431 scopus 로고    scopus 로고
    • Exo1 processes stalled replication forks and counteracts fork reversal in checkpointdefective cells
    • Cotta-Ramusino C, Fachinetti D, Lucca C, Doksani Y, Lopes M, Sogo J, Foiani M. 2005. Exo1 processes stalled replication forks and counteracts fork reversal in checkpointdefective cells. Mol Cell 17: 153-159.
    • (2005) Mol Cell , vol.17 , pp. 153-159
    • Cotta-Ramusino, C.1    Fachinetti, D.2    Lucca, C.3    Doksani, Y.4    Lopes, M.5    Sogo, J.6    Foiani, M.7
  • 39
    • 77953617613 scopus 로고    scopus 로고
    • Rad8Rad5/Mms2-Ubc13 ubiquitin ligase complex controls translesion synthesis in fission yeast
    • Coulon S, Ramasubramanyan S, Alies C, Philippin G, Lehmann A, Fuchs RP. 2010. Rad8Rad5/Mms2-Ubc13 ubiquitin ligase complex controls translesion synthesis in fission yeast. EMBO J 29: 2048-2058.
    • (2010) EMBO J , vol.29 , pp. 2048-2058
    • Coulon, S.1    Ramasubramanyan, S.2    Alies, C.3    Philippin, G.4    Lehmann, A.5    Fuchs, R.P.6
  • 40
    • 84862783021 scopus 로고    scopus 로고
    • Extensive DNA damage-induced sumoylation contributes to replication and repair and acts in addition to the Mec1 checkpoint
    • Cremona CA, Sarangi P, Yang Y, Hang LE, Rahman S, Zhao X. 2012. Extensive DNA damage-induced sumoylation contributes to replication and repair and acts in addition to the Mec1 checkpoint. Mol Cell 45: 422-432.
    • (2012) Mol Cell , vol.45 , pp. 422-432
    • Cremona, C.A.1    Sarangi, P.2    Yang, Y.3    Hang, L.E.4    Rahman, S.5    Zhao, X.6
  • 41
    • 41649088278 scopus 로고    scopus 로고
    • A topoisomerase II-dependent mechanism for resetting replicons at the S-M-phase transition
    • Cuvier O, Stanojcic S, Lemaitre JM, Mechali M. 2008. A topoisomerase II-dependent mechanism for resetting replicons at the S-M-phase transition. Genes Dev 22: 860-865.
    • (2008) Genes Dev , vol.22 , pp. 860-865
    • Cuvier, O.1    Stanojcic, S.2    Lemaitre, J.M.3    Mechali, M.4
  • 42
    • 77953694683 scopus 로고    scopus 로고
    • Ubiquitin-dependent DNA damage bypass is separable from genome replication
    • Daigaku Y, Davies AA, Ulrich HD. 2010. Ubiquitin-dependent DNA damage bypass is separable from genome replication. Nature 465: 951-955.
    • (2010) Nature , vol.465 , pp. 951-955
    • Daigaku, Y.1    Davies, A.A.2    Ulrich, H.D.3
  • 43
    • 1642458364 scopus 로고    scopus 로고
    • Phosphorylation of the Bloom's syndrome helicase and its role in recovery from S-phase arrest
    • Davies SL, North PS, Dart A, Lakin ND, Hickson ID. 2004. Phosphorylation of the Bloom's syndrome helicase and its role in recovery from S-phase arrest. Mol Cell Biol 24: 1279-1291.
    • (2004) Mol Cell Biol , vol.24 , pp. 1279-1291
    • Davies, S.L.1    North, P.S.2    Dart, A.3    Lakin, N.D.4    Hickson, I.D.5
  • 44
    • 34447115757 scopus 로고    scopus 로고
    • Role for BLM in replication-fork restart and suppression of origin firing after replicative stress
    • Davies SL, North PS, Hickson ID. 2007. Role for BLM in replication-fork restart and suppression of origin firing after replicative stress. Nat Struct Mol Biol 14: 677-679.
    • (2007) Nat Struct Mol Biol , vol.14 , pp. 677-679
    • Davies, S.L.1    North, P.S.2    Hickson, I.D.3
  • 45
    • 0032530824 scopus 로고    scopus 로고
    • Recovery from DNA replicational stress is the essential function of the S-phase checkpoint pathway
    • Desany BA, Alcasabas AA, Bachant JB, Elledge SJ. 1998. Recovery from DNA replicational stress is the essential function of the S-phase checkpoint pathway. Genes Dev 12: 2956-2970.
    • (1998) Genes Dev , vol.12 , pp. 2956-2970
    • Desany, B.A.1    Alcasabas, A.A.2    Bachant, J.B.3    Elledge, S.J.4
  • 46
    • 84861956582 scopus 로고    scopus 로고
    • Structure, replication efficiency and fragility of yeast ARS elements
    • Dhar MK, Sehgal S, Kaul S. 2012. Structure, replication efficiency and fragility of yeast ARS elements. Res Microbiol 163: 243-253.
    • (2012) Res Microbiol , vol.163 , pp. 243-253
    • Dhar, M.K.1    Sehgal, S.2    Kaul, S.3
  • 47
    • 64249120749 scopus 로고    scopus 로고
    • Replicon dynamics, dormant origin firing, and terminal fork integrity after double-strand break formation
    • Doksani Y, Bermejo R, Fiorani S, Haber JE, Foiani M. 2009. Replicon dynamics, dormant origin firing, and terminal fork integrity after double-strand break formation. Cell 137: 247-258.
    • (2009) Cell , vol.137 , pp. 247-258
    • Doksani, Y.1    Bermejo, R.2    Fiorani, S.3    Haber, J.E.4    Foiani, M.5
  • 48
    • 84876358523 scopus 로고    scopus 로고
    • A non-catalytic role of DNA polymerase h in recruiting Rad18 and promoting PCNA monoubiquitination at stalled replication forks
    • Durando M, Tateishi S, Vaziri C. 2013. A non-catalytic role of DNA polymerase h in recruiting Rad18 and promoting PCNA monoubiquitination at stalled replication forks. Nucleic Acids Res 41: 3079-3093.
    • (2013) Nucleic Acids Res , vol.41 , pp. 3079-3093
    • Durando, M.1    Tateishi, S.2    Vaziri, C.3
  • 49
    • 0031467141 scopus 로고    scopus 로고
    • Initiation of DNA replication in eukaryotic cells
    • Dutta A, Bell SP. 1997. Initiation of DNA replication in eukaryotic cells. Annu Rev Cell Dev Biol 13: 293-332.
    • (1997) Annu Rev Cell Dev Biol , vol.13 , pp. 293-332
    • Dutta, A.1    Bell, S.P.2
  • 50
    • 43449133259 scopus 로고    scopus 로고
    • PCNA ubiquitination and REV1 define temporally distinct mechanisms for controlling translesion synthesis in the avian cell line DT40
    • Edmunds CE, Simpson LJ, Sale JE. 2008. PCNA ubiquitination and REV1 define temporally distinct mechanisms for controlling translesion synthesis in the avian cell line DT40. Mol Cell 30: 519-529.
    • (2008) Mol Cell , vol.30 , pp. 519-529
    • Edmunds, C.E.1    Simpson, L.J.2    Sale, J.E.3
  • 53
    • 71249085585 scopus 로고    scopus 로고
    • Tipin/Tim1/And1 protein complex promotes Pol a chromatin binding and sister chromatid cohesion
    • Errico A, Cosentino C, Rivera T, Losada A, Schwob E, Hunt T, Costanzo V. 2009. Tipin/Tim1/And1 protein complex promotes Pol a chromatin binding and sister chromatid cohesion. EMBO J 28: 3681-3692.
    • (2009) EMBO J , vol.28 , pp. 3681-3692
    • Errico, A.1    Cosentino, C.2    Rivera, T.3    Losada, A.4    Schwob, E.5    Hunt, T.6    Costanzo, V.7
  • 54
    • 0035848819 scopus 로고    scopus 로고
    • The ATM-Chk2-Cdc25A checkpoint pathway guards against radioresistant DNA synthesis
    • Falck J, Mailand N, Syljuasen RG, Bartek J, Lukas J. 2001. The ATM-Chk2-Cdc25A checkpoint pathway guards against radioresistant DNA synthesis. Nature 410: 842-847.
    • (2001) Nature , vol.410 , pp. 842-847
    • Falck, J.1    Mailand, N.2    Rg, S.3    Bartek, J.4    Lukas, J.5
  • 57
    • 33749617398 scopus 로고    scopus 로고
    • Mms2-Ubc13-dependent and -independent roles of Rad5 ubiquitin ligase in postreplication repair and translesion DNA synthesis in Saccharomyces cerevisiae
    • Gangavarapu V, Haracska L, Unk I, Johnson RE, Prakash S, Prakash L. 2006. Mms2-Ubc13-dependent and -independent roles of Rad5 ubiquitin ligase in postreplication repair and translesion DNA synthesis in Saccharomyces cerevisiae. Mol Cell Biol 26: 7783-7790.
    • (2006) Mol Cell Biol , vol.26 , pp. 7783-7790
    • Gangavarapu, V.1    Haracska, L.2    Unk, I.3    Johnson, R.E.4    Prakash, S.5    Prakash, L.6
  • 58
    • 29444454665 scopus 로고    scopus 로고
    • Ubiquitinated proliferating cell nuclear antigen activates translesion DNA polymerases h and REV1
    • Garg P, Burgers PM. 2005. Ubiquitinated proliferating cell nuclear antigen activates translesion DNA polymerases h and REV1. Proc Natl Acad Sci 102: 18361-18366.
    • (2005) Proc Natl Acad Sci , vol.102 , pp. 18361-18366
    • Garg, P.1    Burgers, P.M.2
  • 59
    • 37249025795 scopus 로고    scopus 로고
    • Dormant origins licensed by excess Mcm2-7 are required for human cells to survive replicative stress
    • Ge XQ, Jackson DA, Blow JJ. 2007. Dormant origins licensed by excess Mcm2-7 are required for human cells to survive replicative stress. Genes Dev 21: 3331-3341.
    • (2007) Genes Dev , vol.21 , pp. 3331-3341
    • Ge, X.Q.1    Jackson, D.A.2    Blow, J.J.3
  • 61
    • 77955739839 scopus 로고    scopus 로고
    • Clusters, factories and domains: The complex structure of S-phase comes into focus
    • Gillespie PJ, Blow JJ. 2010. Clusters, factories and domains: The complex structure of S-phase comes into focus. Cell Cycle 9: 3218-3226.
    • (2010) Cell Cycle , vol.9 , pp. 3218-3226
    • Gillespie, P.J.1    Blow, J.J.2
  • 62
    • 0037386947 scopus 로고    scopus 로고
    • Human Tousled like kinases are targeted by an ATM and Chk1-dependent DNA damage checkpoint
    • Groth A, Lukas J, Nigg EA, Sillje HH, Wernstedt C, Bartek J, Hansen K. 2003. Human Tousled like kinases are targeted by an ATM and Chk1-dependent DNA damage checkpoint. EMBO J 22: 1676-1687.
    • (2003) EMBO J , vol.22 , pp. 1676-1687
    • Groth, A.1    Lukas, J.2    Nigg, E.A.3    Sillje, H.H.4    Wernstedt, C.5    Bartek, J.6    Hansen, K.7
  • 65
    • 0027496935 scopus 로고
    • The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases
    • Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ. 1993. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75: 805-816.
    • (1993) Cell , vol.75 , pp. 805-816
    • Harper, J.W.1    Adami, G.R.2    Wei, N.3    Keyomarsi, K.4    Elledge, S.J.5
  • 68
    • 59049087433 scopus 로고    scopus 로고
    • RAD6 RAD18-RAD5-pathway-dependent tolerance to chronic low-dose ultraviolet light
    • Hishida T, Kubota Y, Carr AM, Iwasaki H. 2009. RAD6 RAD18-RAD5-pathway-dependent tolerance to chronic low-dose ultraviolet light. Nature 457: 612-615.
    • (2009) Nature , vol.457 , pp. 612-615
    • Hishida, T.1    Kubota, Y.2    Carr, A.M.3    Iwasaki, H.4
  • 69
    • 0037068455 scopus 로고    scopus 로고
    • RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO
    • Hoege C, Pfander B, Moldovan G-L, Pyrowolakis G, Jentsch S. 2002. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419: 135-141.
    • (2002) Nature , vol.419 , pp. 135-141
    • Hoege, C.1    Pfander, B.2    Moldovan, G.-L.3    Pyrowolakis, G.4    Jentsch, S.5
  • 70
    • 84876333557 scopus 로고    scopus 로고
    • The preference for error-free or error-prone postreplication repair in Saccharomyces cerevisiae exposed to low-dose methyl methanesulfonate is cell cycle dependent
    • Huang D, Piening BD, Paulovich AG. 2013. The preference for error-free or error-prone postreplication repair in Saccharomyces cerevisiae exposed to low-dose methyl methanesulfonate is cell cycle dependent. Mol Cell Biol 33: 1515-1527.
    • (2013) Mol Cell Biol , vol.33 , pp. 1515-1527
    • Huang, D.1    Piening, B.D.2    Paulovich, A.G.3
  • 72
    • 0023236126 scopus 로고
    • The yeast DNA repair gene RAD6 encodes a ubiquitin-conjugating enzyme
    • Jentsch S, McGrath JP, Varshavsky A. 1987. The yeast DNA repair gene RAD6 encodes a ubiquitin-conjugating enzyme. Nature 329: 131-134.
    • (1987) Nature , vol.329 , pp. 131-134
    • Jentsch, S.1    McGrath, J.P.2    Varshavsky, A.3
  • 73
    • 84863347829 scopus 로고    scopus 로고
    • Replication fork dynamics and the DNA damage response
    • Jones RM, Petermann E. 2012. Replication fork dynamics and the DNA damage response. Biochem J 443: 13-26.
    • (2012) Biochem J , vol.443 , pp. 13-26
    • Jones, R.M.1    Petermann, E.2
  • 74
    • 17444416489 scopus 로고    scopus 로고
    • Replication checkpoint kinase Cds1 regulates Mus81 to preserve genome integrity during replication stress
    • Kai M, Boddy MN, Russell P, Wang TS. 2005. Replication checkpoint kinase Cds1 regulates Mus81 to preserve genome integrity during replication stress. Genes Dev 19: 919-932.
    • (2005) Genes Dev , vol.19 , pp. 919-932
    • Kai, M.1    Boddy, M.N.2    Russell, P.3    Wang, T.S.4
  • 75
    • 77951699996 scopus 로고    scopus 로고
    • The RAD6 DNA damage tolerance pathway operates uncoupled from the replication fork and is functional beyond S phase
    • Karras GI, Jentsch S. 2010. The RAD6 DNA damage tolerance pathway operates uncoupled from the replication fork and is functional beyond S phase. Cell 141: 255-267.
    • (2010) Cell , vol.141 , pp. 255-267
    • Karras, G.I.1    Jentsch, S.2
  • 76
    • 84873425410 scopus 로고    scopus 로고
    • Noncanonical role of the 9-1-1 clamp in the error-free DNA damage tolerance pathway
    • Karras GI, Fumasoni M, Sienski G, Vanoli F, Branzei D, Jentsch S. 2013. Noncanonical role of the 9-1-1 clamp in the error-free DNA damage tolerance pathway. Mol Cell 49: 536-546.
    • (2013) Mol Cell , vol.49 , pp. 536-546
    • Karras, G.I.1    Fumasoni, M.2    Sienski, G.3    Vanoli, F.4    Branzei, D.5    Jentsch, S.6
  • 78
    • 2942687831 scopus 로고    scopus 로고
    • Phosphorylation of SMC1 is a critical downstream event in the ATM-NBS1-BRCA1 pathway
    • Kitagawa R, Bakkenist CJ, McKinnon PJ, Kastan MB. 2004. Phosphorylation of SMC1 is a critical downstream event in the ATM-NBS1-BRCA1 pathway. Genes Dev 18: 1423-1438.
    • (2004) Genes Dev , vol.18 , pp. 1423-1438
    • Kitagawa, R.1    Bakkenist, C.J.2    McKinnon, P.J.3    Kastan, M.B.4
  • 79
    • 33745239698 scopus 로고    scopus 로고
    • Live-cell imaging reveals replication of individual replicons in eukaryotic replication factories
    • Kitamura E, Blow JJ, Tanaka TU. 2006. Live-cell imaging reveals replication of individual replicons in eukaryotic replication factories. Cell 125: 1297-1308.
    • (2006) Cell , vol.125 , pp. 1297-1308
    • Kitamura, E.1    Blow, J.J.2    Tanaka, T.U.3
  • 80
    • 84876424232 scopus 로고    scopus 로고
    • The mechanism of nucleotide excision repair-mediated UV-induced mutagenesis in nonproliferating cells
    • Kozmin SG, Jinks-Robertson S. 2013. The mechanism of nucleotide excision repair-mediated UV-induced mutagenesis in nonproliferating cells. Genetics 193: 803-817.
    • (2013) Genetics , vol.193 , pp. 803-817
    • Kozmin, S.G.1    Jinks-Robertson, S.2
  • 81
    • 0033634679 scopus 로고    scopus 로고
    • Claspin, a novel protein required for the activation of Chk1 during a DNA replication checkpoint response in Xenopus egg extracts
    • Kumagai A, Dunphy WG. 2000. Claspin, a novel protein required for the activation of Chk1 during a DNA replication checkpoint response in Xenopus egg extracts. Mol Cell 6: 839-849.
    • (2000) Mol Cell , vol.6 , pp. 839-849
    • Kumagai, A.1    Dunphy, W.G.2
  • 83
    • 34249710254 scopus 로고    scopus 로고
    • A key role for the GINS complex at DNA replication forks
    • Labib K, Gambus A. 2007. A key role for the GINS complex at DNA replication forks. Trends Cell Biol 17: 271-278.
    • (2007) Trends Cell Biol , vol.17 , pp. 271-278
    • Labib, K.1    Gambus, A.2
  • 84
    • 0034595448 scopus 로고    scopus 로고
    • Uninterrupted MCM27 function required for DNA replication fork progression
    • Labib K, Tercero JA, Diffley JF. 2000. Uninterrupted MCM27 function required for DNA replication fork progression. Science 288: 1643-1647.
    • (2000) Science , vol.288 , pp. 1643-1647
    • Labib, K.1    Tercero, J.A.2    Diffley, J.F.3
  • 85
    • 78650316134 scopus 로고    scopus 로고
    • p53 Research: The past thirty years and the next thirty years
    • Lane D, Levine A. 2010. p53 Research: The past thirty years and the next thirty years. Cold Spring Harb Perspect Biol 2: a000893.
    • (2010) Cold Spring Harb Perspect Biol , vol.2
    • Lane, D.1    Levine, A.2
  • 87
    • 0015527017 scopus 로고
    • Postreplication repair of DNA in ultraviolet-irradiated mammalian cells
    • Lehmann AR. 1972. Postreplication repair of DNA in ultraviolet-irradiated mammalian cells. J Mol Biol 66: 319-337.
    • (1972) J Mol Biol , vol.66 , pp. 319-337
    • Lehmann, A.R.1
  • 88
    • 33750935287 scopus 로고    scopus 로고
    • Gaps and forks in DNA replication: Rediscovering old models
    • Lehmann AR, Fuchs RP. 2006. Gaps and forks in DNA replication: Rediscovering old models. DNA Repair (Amst) 5: 1495-1498.
    • (2006) DNA Repair (Amst) , vol.5 , pp. 1495-1498
    • Lehmann, A.R.1    Fuchs, R.P.2
  • 89
    • 77149171759 scopus 로고    scopus 로고
    • Human Timeless and Tipin stabilize replication forks and facilitate sister-chromatid cohesion
    • Leman AR, Noguchi C, Lee CY, Noguchi E. 2010. Human Timeless and Tipin stabilize replication forks and facilitate sister-chromatid cohesion. J Cell Sci 123: 660-670.
    • (2010) J Cell Sci , vol.123 , pp. 660-670
    • Leman, A.R.1    Noguchi, C.2    Lee, C.Y.3    Noguchi, E.4
  • 91
    • 79954505570 scopus 로고    scopus 로고
    • SHPRH and HLTF act in a damage-specific manner to coordinate different forms of postreplication repair and prevent mutagenesis
    • Lin JR, Zeman MK, Chen JY, Yee MC, Cimprich KA. 2011. SHPRH and HLTF act in a damage-specific manner to coordinate different forms of postreplication repair and prevent mutagenesis. Mol Cell 42: 237-249.
    • (2011) Mol Cell , vol.42 , pp. 237-249
    • Lin, J.R.1    Zeman, M.K.2    Chen, J.Y.3    Yee, M.C.4    Cimprich, K.A.5
  • 92
    • 0347991859 scopus 로고    scopus 로고
    • Stabilization of stalled DNA replication forks by the BRCA2 breast cancer susceptibility protein
    • Lomonosov M, Anand S, Sangrithi M, Davies R, Venkitaraman AR. 2003. Stabilization of stalled DNA replication forks by the BRCA2 breast cancer susceptibility protein. Genes Dev 17: 3017-3022.
    • (2003) Genes Dev , vol.17 , pp. 3017-3022
    • Lomonosov, M.1    Anand, S.2    Sangrithi, M.3    Davies, R.4    Venkitaraman, A.R.5
  • 93
    • 29544437558 scopus 로고    scopus 로고
    • Multiple mechanisms control chromosome integrity after replication fork uncoupling and restart at irreparable UV lesions
    • Lopes M, Foiani M, Sogo JM. 2006. Multiple mechanisms control chromosome integrity after replication fork uncoupling and restart at irreparable UV lesions. Mol Cell 21: 15-27.
    • (2006) Mol Cell , vol.21 , pp. 15-27
    • Lopes, M.1    Foiani, M.2    Sogo, J.M.3
  • 94
    • 77149123028 scopus 로고    scopus 로고
    • FANCM regulates DNA chain elongation and is stabilized by S-phase checkpoint signalling
    • Luke-Glaser S, Luke B, Grossi S, Constantinou A. 2010. FANCM regulates DNA chain elongation and is stabilized by S-phase checkpoint signalling. EMBO J 29: 795-805.
    • (2010) EMBO J , vol.29 , pp. 795-805
    • Luke-Glaser, S.1    Luke, B.2    Grossi, S.3    Constantinou, A.4
  • 95
    • 84870757506 scopus 로고    scopus 로고
    • DNA damage sensing by the ATM and ATR kinases
    • doi: 10.1101/cshperspect.a012716
    • Maréchal A, Zou L. 2013. DNA damage sensing by the ATM and ATR kinases. Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a012716.
    • (2013) Cold Spring Harb Perspect Biol
    • Maréchal, A.1    Zou, L.2
  • 96
    • 43749120045 scopus 로고    scopus 로고
    • DNA repair deficiency as a therapeutic target in cancer
    • Martin SA, Lord CJ, Ashworth A. 2008. DNA repair deficiency as a therapeutic target in cancer. Curr Opin Genet Dev 18: 80-86.
    • (2008) Curr Opin Genet Dev , vol.18 , pp. 80-86
    • Martin, S.A.1    Lord, C.J.2    Ashworth, A.3
  • 97
    • 0036154983 scopus 로고    scopus 로고
    • Cdc7 kinase complex: A key regulator in the initiation of DNA replication
    • Masai H, Arai K. 2002. Cdc7 kinase complex: A key regulator in the initiation of DNA replication. J Cell Physiol 190: 287-296.
    • (2002) J Cell Physiol , vol.190 , pp. 287-296
    • Masai, H.1    Arai, K.2
  • 98
    • 84867616967 scopus 로고    scopus 로고
    • Dormant origins, the licensing checkpoint, and the response to replicative stresses
    • McIntosh D, Blow JJ. 2012. Dormant origins, the licensing checkpoint, and the response to replicative stresses. Cold Spring Harb Perspect Biol 4: a012955.
    • (2012) Cold Spring Harb Perspect Biol , vol.4
    • McIntosh, D.1    Blow, J.J.2
  • 99
    • 77957168933 scopus 로고    scopus 로고
    • Eukaryotic DNA replication origins: Many choices for appropriate answers
    • Mechali M. 2010. Eukaryotic DNA replication origins: Many choices for appropriate answers. Nat Rev Mol Cell Biol 11: 728-738.
    • (2010) Nat Rev Mol Cell Biol , vol.11 , pp. 728-738
    • Mechali, M.1
  • 100
    • 0036531901 scopus 로고    scopus 로고
    • A unified view of the DNA damage checkpoint
    • Melo JA, Toczyski DP. 2002. A unified view of the DNA damage checkpoint. Curr Opin Cell Biol 14: 237-245.
    • (2002) Curr Opin Cell Biol , vol.14 , pp. 237-245
    • Melo, J.A.1    Toczyski, D.P.2
  • 101
    • 77953085206 scopus 로고    scopus 로고
    • Multiple Rad5 activities mediate sister chromatid recombination to bypass DNA damage at stalled replication forks
    • Minca EC, Kowalski D. 2010. Multiple Rad5 activities mediate sister chromatid recombination to bypass DNA damage at stalled replication forks. Mol Cell 38: 649-661.
    • (2010) Mol Cell , vol.38 , pp. 649-661
    • Minca, E.C.1    Kowalski, D.2
  • 102
    • 79954600104 scopus 로고    scopus 로고
    • Replication fork stalling by bulky DNA damage: Localization at active origins and checkpoint modulation
    • Minca EC, Kowalski D. 2011. Replication fork stalling by bulky DNA damage: Localization at active origins and checkpoint modulation. Nucleic Acids Res 39: 2610-2623.
    • (2011) Nucleic Acids Res , vol.39 , pp. 2610-2623
    • Minca, E.C.1    Kowalski, D.2
  • 103
    • 32044451333 scopus 로고    scopus 로고
    • Regulation of gross chromosomal rearrangements by ubiquitin and SUMO ligases in Saccharomyces cerevisiae
    • Motegi A, Kuntz K, Majeed A, Smith S, Myung K. 2006. Regulation of gross chromosomal rearrangements by ubiquitin and SUMO ligases in Saccharomyces cerevisiae. Mol Cell Biol 26: 1424-1433.
    • (2006) Mol Cell Biol , vol.26 , pp. 1424-1433
    • Motegi, A.1    Kuntz, K.2    Majeed, A.3    Smith, S.4    Myung, K.5
  • 106
    • 77953326127 scopus 로고    scopus 로고
    • The Saccharomyces cerevisiae RAD9, RAD17 and RAD24 genes are required for suppression of mutagenic post-replicative repair during chronic DNA damage
    • Murakami-Sekimata A, Huang D, Piening BD, Bangur C, Paulovich AG. 2010. The Saccharomyces cerevisiae RAD9, RAD17 and RAD24 genes are required for suppression of mutagenic post-replicative repair during chronic DNA damage. DNA Repair (Amst) 9: 824-834.
    • (2010) DNA Repair (Amst) , vol.9 , pp. 824-834
    • Murakami-Sekimata, A.1    Huang, D.2    Piening, B.D.3    Bangur, C.4    Paulovich, A.G.5
  • 107
    • 77949354732 scopus 로고    scopus 로고
    • CDK-dependent complex formation between replication proteins Dpb11, Sld2, Pol 1, and GINS in budding yeast
    • Muramatsu S, Hirai K, Tak YS, Kamimura Y, Araki H. 2010. CDK-dependent complex formation between replication proteins Dpb11, Sld2, Pol 1, and GINS in budding yeast. Genes Dev 24: 602-612.
    • (2010) Genes Dev , vol.24 , pp. 602-612
    • Muramatsu, S.1    Hirai, K.2    Tak, Y.S.3    Kamimura, Y.4    Araki, H.5
  • 109
    • 0028979332 scopus 로고
    • DNA polymerase 1 links the DNA replication machinery to the S phase checkpoint
    • Navas TA, Zhou Z, Elledge SJ. 1995. DNA polymerase 1 links the DNA replication machinery to the S phase checkpoint. Cell 80: 29-39.
    • (1995) Cell , vol.80 , pp. 29-39
    • Navas, T.A.1    Zhou, Z.2    Elledge, S.J.3
  • 113
    • 33344476097 scopus 로고    scopus 로고
    • DNA damage checkpoints in mammals
    • Niida H, Nakanishi M. 2006. DNA damage checkpoints in mammals. Mutagenesis 21: 3-9.
    • (2006) Mutagenesis , vol.21 , pp. 3-9
    • Niida, H.1    Nakanishi, M.2
  • 114
    • 56049116698 scopus 로고    scopus 로고
    • Requirement of Rad5 for DNA polymerase zdependent translesion synthesis in Saccharomyces cerevisiae
    • Pages V, Bresson A, Acharya N, Prakash S, Fuchs RP, Prakash L. 2008. Requirement of Rad5 for DNA polymerase zdependent translesion synthesis in Saccharomyces cerevisiae. Genetics 180: 73-82.
    • (2008) Genetics , vol.180 , pp. 73-82
    • Pages, V.1    Bresson, A.2    Acharya, N.3    Prakash, S.4    Fuchs, R.P.5    Prakash, L.6
  • 116
    • 76849109722 scopus 로고    scopus 로고
    • Hydroxyurea-stalled replication forks become progressively inactivated and require two different RAD51 mediated pathways for restart and repair
    • Petermann E, Orta ML, Issaeva N, Schultz N, Helleday T. 2010. Hydroxyurea-stalled replication forks become progressively inactivated and require two different RAD51 mediated pathways for restart and repair. Mol Cell 37: 492-502.
    • (2010) Mol Cell , vol.37 , pp. 492-502
    • Petermann, E.1    Orta, M.L.2    Issaeva, N.3    Schultz, N.4    Helleday, T.5
  • 117
    • 22944474665 scopus 로고    scopus 로고
    • SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase
    • Pfander B, Moldovan G-L, Sacher M, Hoege C, Jentsch S. 2005. SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase. Nature 436: 428-433.
    • (2005) Nature , vol.436 , pp. 428-433
    • Pfander, B.1    Moldovan, G.-L.2    Sacher, M.3    Hoege, C.4    Jentsch, S.5
  • 118
    • 84861964325 scopus 로고    scopus 로고
    • The RAD9-RAD1-HUS1 (9.1.1) complex interacts with WRN and is crucial to regulate its response to replication fork stalling
    • Pichierri P, Nicolai S, Cignolo L, Bignami M, Franchitto A. 2012. The RAD9-RAD1-HUS1 (9.1.1) complex interacts with WRN and is crucial to regulate its response to replication fork stalling. Oncogene 31: 2809-2823.
    • (2012) Oncogene , vol.31 , pp. 2809-2823
    • Pichierri, P.1    Nicolai, S.2    Cignolo, L.3    Bignami, M.4    Franchitto, A.5
  • 120
    • 77953006795 scopus 로고    scopus 로고
    • The initiation step of eukaryotic DNA replication
    • Pospiech H, Grosse F, Pisani FM. 2010. The initiation step of eukaryotic DNA replication. Subcell Biochem 50: 79-104.
    • (2010) Subcell Biochem , vol.50 , pp. 79-104
    • Pospiech, H.1    Grosse, F.2    Pisani, F.M.3
  • 121
    • 21244506437 scopus 로고    scopus 로고
    • Eukaryotic translesion synthesis DNA polymerases: Specificity of structure and function
    • Prakash S, Johnson RE, Prakash L. 2005. Eukaryotic translesion synthesis DNA polymerases: Specificity of structure and function. Annu Rev Biochem 74: 317-353.
    • (2005) Annu Rev Biochem , vol.74 , pp. 317-353
    • Prakash, S.1    Johnson, R.E.2    Prakash, L.3
  • 123
    • 79953759105 scopus 로고    scopus 로고
    • Sensing of replication stress and Mec1 activation act through two independent pathways involving the 9-1-1 complex and DNA polymerase 1
    • Puddu F, Piergiovanni G, Plevani P, Muzi-Falconi M. 2011. Sensing of replication stress and Mec1 activation act through two independent pathways involving the 9-1-1 complex and DNA polymerase 1. PLoS Genet 7: e1002022.
    • (2011) PLoS Genet , vol.7
    • Puddu, F.1    Piergiovanni, G.2    Plevani, P.3    Muzi-Falconi, M.4
  • 124
    • 77949568225 scopus 로고    scopus 로고
    • DNA polymerase proofreading: Multiple roles maintain genome stability
    • Reha-Krantz LJ. 2010. DNA polymerase proofreading: Multiple roles maintain genome stability. Biochim Biophys Acta 1804: 1049-1063.
    • (2010) Biochim Biophys Acta , pp. 1049-1063
    • Reha-Krantz, L.J.1
  • 126
    • 1842509904 scopus 로고    scopus 로고
    • DNA topology, not DNA sequence, is a critical determinant for Drosophila ORC-DNA binding
    • Remus D, Beall EL, Botchan MR. 2004. DNA topology, not DNA sequence, is a critical determinant for Drosophila ORC-DNA binding. EMBO J 23: 897-907.
    • (2004) EMBO J , vol.23 , pp. 897-907
    • Remus, D.1    Beall, E.L.2    Botchan, M.R.3
  • 127
    • 4544339736 scopus 로고    scopus 로고
    • Replication protein A and the Mre11.Rad50.Nbs1 complex co-localize and interact at sites of stalled replication forks
    • Robison JG, Elliott J, Dixon K, Oakley GG. 2004. Replication protein A and the Mre11.Rad50.Nbs1 complex co-localize and interact at sites of stalled replication forks. J Biol Chem 279: 34802-34810.
    • (2004) J Biol Chem , vol.279 , pp. 34802-34810
    • Robison, J.G.1    Elliott, J.2    Dixon, K.3    Oakley, G.G.4
  • 128
    • 0014432520 scopus 로고
    • Discontinuities in the DNA synthesized in an excision-defective strain of Escherichia coli following ultraviolet irradiation
    • Rupp WD, Howard-Flanders P. 1968. Discontinuities in the DNA synthesized in an excision-defective strain of Escherichia coli following ultraviolet irradiation. J Mol Biol 31: 291-304.
    • (1968) J Mol Biol , vol.31 , pp. 291-304
    • Rupp, W.D.1    Howard-Flanders, P.2
  • 129
    • 0015223483 scopus 로고
    • Exchanges between DNA strands in ultraviolet irradiated Escherichia coli
    • Rupp WD, Wilde CE, Reno DL, Howard-Flanders P. 1971. Exchanges between DNA strands in ultraviolet irradiated Escherichia coli. J Mol Biol 61: 25-44.
    • (1971) J Mol Biol , vol.61 , pp. 25-44
    • Rupp, W.D.1    Wilde, C.E.2    Reno, D.L.3    Howard-Flanders, P.4
  • 130
    • 84874681638 scopus 로고    scopus 로고
    • Translesion DNA synthesis and mutagenesis in eukaryotes
    • Sale JE. 2013. Translesion DNA synthesis and mutagenesis in eukaryotes. Cold Spring Harb Perspect Biol 5: a012708.
    • (2013) Cold Spring Harb Perspect Biol , vol.5
    • Sale, J.E.1
  • 131
    • 3943107573 scopus 로고    scopus 로고
    • Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints
    • Sancar A, Lindsey-Boltz LA, Unsal-Kacmaz K, Linn S. 2004. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem 73: 39-85.
    • (2004) Annu Rev Biochem , vol.73 , pp. 39-85
    • Sancar, A.1    Lindsey-Boltz, L.A.2    Unsal-Kacmaz, K.3    Linn, S.4
  • 133
    • 0032497529 scopus 로고    scopus 로고
    • A Mec1and Rad53-dependent checkpoint controls late-firing origins of DNA replication
    • Santocanale C, Diffley JFX. 1998. A Mec1and Rad53-dependent checkpoint controls late-firing origins of DNA replication. Nature 395: 615-618.
    • (1998) Nature , vol.395 , pp. 615-618
    • Santocanale, C.1    Diffley, J.F.X.2
  • 134
    • 34547902426 scopus 로고    scopus 로고
    • The intra-S-phase checkpoint affects both DNA replication initiation and elongation: Single-cell and -DNA fiber analyses
    • Seiler JA, Conti C, Syed A, Aladjem MI, Pommier Y. 2007. The intra-S-phase checkpoint affects both DNA replication initiation and elongation: Single-cell and -DNA fiber analyses. Mol Cell Biol 27: 5806-5818.
    • (2007) Mol Cell Biol , vol.27 , pp. 5806-5818
    • Seiler, J.A.1    Conti, C.2    Syed, A.3    Aladjem, M.I.4    Pommier, Y.5
  • 135
    • 42049116919 scopus 로고    scopus 로고
    • The RecQ helicase WRN is required for normal replication fork progression after DNA damage or replication fork arrest
    • Sidorova JM, Li N, Folch A, Monnat RJ Jr. 2008. The RecQ helicase WRN is required for normal replication fork progression after DNA damage or replication fork arrest. Cell Cycle 7: 796-807.
    • (2008) Cell Cycle , vol.7 , pp. 796-807
    • Sidorova, J.M.1    Li, N.2    Folch, A.3    Monnat Jr., R.J.4
  • 136
    • 0035838432 scopus 로고    scopus 로고
    • Identification of human Asf1 chromatin assembly factors as substrates of Tousled-like kinases
    • Sillje HH, Nigg EA. 2001. Identification of human Asf1 chromatin assembly factors as substrates of Tousled-like kinases. Curr Biol 11: 1068-1073.
    • (2001) Curr Biol , vol.11 , pp. 1068-1073
    • Sillje, H.H.1    Nigg, E.A.2
  • 137
    • 84894353718 scopus 로고    scopus 로고
    • DNA damage response: Three levels of DNA repair regulation
    • Sirbu BM, Cortez D. 2013. DNA damage response: Three levels of DNA repair regulation. Cold Spring Harb Perspect Biol 5: a012724.
    • (2013) Cold Spring Harb Perspect Biol , vol.5
    • Sirbu, B.M.1    Cortez, D.2
  • 141
    • 0026651323 scopus 로고
    • Translesion DNA synthesis in the dihydrofolate reductase domain of UV-irradiated CHO cells
    • Spivak G, Hanawalt PC. 1992. Translesion DNA synthesis in the dihydrofolate reductase domain of UV-irradiated CHO cells. Biochemistry 31: 6794-6800.
    • (1992) Biochemistry , vol.31 , pp. 6794-6800
    • Spivak, G.1    Hanawalt, P.C.2
  • 142
    • 0141831006 scopus 로고    scopus 로고
    • Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation
    • Stelter P, Ulrich HD. 2003. Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation. Nature 425: 188-191.
    • (2003) Nature , vol.425 , pp. 188-191
    • Stelter, P.1    Ulrich, H.D.2
  • 143
    • 42949142111 scopus 로고    scopus 로고
    • DNA polymerases at the replication fork in eukaryotes
    • Stillman B. 2008. DNA polymerases at the replication fork in eukaryotes. Mol Cell 30: 259-260.
    • (2008) Mol Cell , vol.30 , pp. 259-260
    • Stillman, B.1
  • 144
    • 0028093437 scopus 로고
    • An explanation for lagging strand replication: Polymerase hopping among DNA sliding clamps
    • Stukenberg PT, Turner J, O'Donnell M. 1994. An explanation for lagging strand replication: Polymerase hopping among DNA sliding clamps. Cell 78: 877-887.
    • (1994) Cell , vol.78 , pp. 877-887
    • Stukenberg, P.T.1    Turner, J.2    O'Donnell, M.3
  • 145
    • 78650652765 scopus 로고    scopus 로고
    • Multiple functions of the S-phase checkpoint mediator
    • Tanaka K. 2010. Multiple functions of the S-phase checkpoint mediator. Biosci Biotechnol Biochem 74: 2367-2373.
    • (2010) Biosci Biotechnol Biochem , vol.74 , pp. 2367-2373
    • Tanaka, K.1
  • 146
    • 34347380094 scopus 로고    scopus 로고
    • The role of CDK in the initiation step of DNA replication in eukaryotes
    • Tanaka S, Tak YS, Araki H. 2007. The role of CDK in the initiation step of DNA replication in eukaryotes. Cell Div 2: 16.
    • (2007) Cell Div , vol.2 , pp. 16
    • Tanaka, S.1    Tak, Y.S.2    Araki, H.3
  • 147
    • 0035797444 scopus 로고    scopus 로고
    • Regulation of DNA replication fork progression through damaged DNA by the Mec1/ Rad53 checkpoint
    • Tercero JA, Diffley JFX. 2001. Regulation of DNA replication fork progression through damaged DNA by the Mec1/ Rad53 checkpoint. Nature 412: 553-557.
    • (2001) Nature , vol.412 , pp. 553-557
    • Tercero, J.A.1    Diffley, J.F.X.2
  • 148
    • 1642309305 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae Rrm3p DNA helicase promotes genome integrity by preventing replication fork stalling: Viability of rrm3 cells requires the intra-S-phase checkpoint and fork restart activities
    • Torres JZ, Schnakenberg SL, Zakian VA. 2004. Saccharomyces cerevisiae Rrm3p DNA helicase promotes genome integrity by preventing replication fork stalling: Viability of rrm3 cells requires the intra-S-phase checkpoint and fork restart activities. Mol Cell Biol 24: 3198-3212.
    • (2004) Mol Cell Biol , vol.24 , pp. 3198-3212
    • Torres, J.Z.1    Schnakenberg, S.L.2    Zakian, V.A.3
  • 149
    • 34249935010 scopus 로고    scopus 로고
    • Maintenance of fork integrity at damaged DNA and natural pause sites
    • Tourriere H, Pasero P. 2007. Maintenance of fork integrity at damaged DNA and natural pause sites. DNA Repair (Amst) 6: 900-913.
    • (2007) DNA Repair (Amst) , vol.6 , pp. 900-913
    • Tourriere, H.1    Pasero, P.2
  • 150
    • 33646122683 scopus 로고    scopus 로고
    • ATM and ATR promote Mre11 dependent restart of collapsed replication forks and prevent accumulation of DNA breaks
    • Trenz K, Smith E, Smith S, Costanzo V. 2006. ATM and ATR promote Mre11 dependent restart of collapsed replication forks and prevent accumulation of DNA breaks. EMBO J 25: 1764-1774.
    • (2006) EMBO J , vol.25 , pp. 1764-1774
    • Trenz, K.1    Smith, E.2    Smith, S.3    Costanzo, V.4
  • 151
    • 0032881250 scopus 로고    scopus 로고
    • MCM proteins in DNA replication
    • Tye BK. 1999. MCM proteins in DNA replication. Annu Rev Biochem 68: 649-686.
    • (1999) Annu Rev Biochem , vol.68 , pp. 649-686
    • Tye, B.K.1
  • 152
    • 0034600851 scopus 로고    scopus 로고
    • Two RING finger proteins mediate cooperation between ubiquitin-conjugating enzymes in DNA repair
    • Ulrich HD, Jentsch S. 2000. Two RING finger proteins mediate cooperation between ubiquitin-conjugating enzymes in DNA repair. EMBO J 19: 3388-3397.
    • (2000) EMBO J , vol.19 , pp. 3388-3397
    • Ulrich, H.D.1    Jentsch, S.2
  • 155
    • 77049127484 scopus 로고    scopus 로고
    • Role of yeast Rad5 and its human orthologs, HLTF and SHPRH in DNA damage tolerance
    • Unk I, Hajdu I, Blastyak A, Haracska L. 2010. Role of yeast Rad5 and its human orthologs, HLTF and SHPRH in DNA damage tolerance. DNA Repair (Amst) 9: 257-267.
    • (2010) DNA Repair (Amst) , vol.9 , pp. 257-267
    • Unk, I.1    Hajdu, I.2    Blastyak, A.3    Haracska, L.4
  • 156
    • 34147201111 scopus 로고    scopus 로고
    • The human Tim/Tipin complex coordinates an intra-S checkpoint response to UV that slows replication fork displacement
    • Unsal-Kacmaz K, Chastain PD, Qu PP, Minoo P, CordeiroStone M, Sancar A, Kaufmann WK. 2007. The human Tim/Tipin complex coordinates an intra-S checkpoint response to UV that slows replication fork displacement. Mol Cell Biol 27: 3131-3142.
    • (2007) Mol Cell Biol , vol.27 , pp. 3131-3142
    • Unsal-Kacmaz, K.1    Chastain, P.D.2    Qu, P.P.3    Minoo, P.4    Cordeirostone, M.5    Sancar, A.6    Kaufmann, W.K.7
  • 157
    • 78649702212 scopus 로고    scopus 로고
    • Replication and recombination factors contributing to recombination-dependent bypass of DNA lesions by template switch
    • Vanoli F, Fumasoni M, Szakal B, Maloisel L, Branzei D. 2010. Replication and recombination factors contributing to recombination-dependent bypass of DNA lesions by template switch. PLoS Genet 6: e1001205.
    • (2010) PLoS Genet , vol.6
    • Vanoli, F.1    Fumasoni, M.2    Szakal, B.3    Maloisel, L.4    Branzei, D.5
  • 158
    • 0042125189 scopus 로고    scopus 로고
    • Sequence-independent DNA binding and replication initiation by the human origin recognition complex
    • Vashee S, Cvetic C, Lu W, Simancek P, Kelly TJ, Walter JC. 2003. Sequence-independent DNA binding and replication initiation by the human origin recognition complex. Genes Dev 17: 1894-1908.
    • (2003) Genes Dev , vol.17 , pp. 1894-1908
    • Vashee, S.1    Cvetic, C.2    Lu, W.3    Simancek, P.4    Kelly, T.J.5    Walter, J.C.6
  • 159
    • 33745141184 scopus 로고    scopus 로고
    • The critical mutagenic translesion DNA polymerase Rev1 is highly expressed during G2/M phase rather than S phase
    • Waters LS, Walker GC. 2006. The critical mutagenic translesion DNA polymerase Rev1 is highly expressed during G2/M phase rather than S phase. Proc Natl Acad Sci 103: 8971-8976.
    • (2006) Proc Natl Acad Sci , vol.103 , pp. 8971-8976
    • Waters, L.S.1    Walker, G.C.2
  • 160
    • 79960698210 scopus 로고    scopus 로고
    • Replication of ribonucleotide-containing DNA templates by yeast replicative polymerases
    • Watt DL, Johansson E, Burgers PM, Kunkel TA. 2011. Replication of ribonucleotide-containing DNA templates by yeast replicative polymerases. DNA Repair (Amst) 10: 897-902.
    • (2011) DNA Repair (Amst) , vol.10 , pp. 897-902
    • Watt, D.L.1    Johansson, E.2    Burgers, P.M.3    Kunkel, T.A.4
  • 161
    • 0033215306 scopus 로고    scopus 로고
    • Cdc7p-Dbf4p kinase binds to chromatin during S-phase and is regulated by both the APC and the RAD53 checkpoint pathway
    • Weinreich M, Stillman B. 1999. Cdc7p-Dbf4p kinase binds to chromatin during S-phase and is regulated by both the APC and the RAD53 checkpoint pathway. EMBO J 18: 5334-5346.
    • (1999) EMBO J , vol.18 , pp. 5334-5346
    • Weinreich, M.1    Stillman, B.2
  • 162
    • 0037484271 scopus 로고    scopus 로고
    • Chk1 mediates S and G2 arrests through Cdc25A degradation in response to DNA-damaging agents
    • Xiao Z, Chen Z, Gunasekera AH, Sowin TJ, Rosenberg SH, Fesik S, Zhang H. 2003. Chk1 mediates S and G2 arrests through Cdc25A degradation in response to DNA-damaging agents. J Biol Chem 278: 21767-21773.
    • (2003) J Biol Chem , vol.278 , pp. 21767-21773
    • Xiao, Z.1    Chen, Z.2    Gunasekera, A.H.3    Sowin, T.J.4    Rosenberg, S.H.5    Fesik, S.6    Zhang, H.7
  • 163
    • 43249094413 scopus 로고    scopus 로고
    • Chk1 and Claspin potentiate PCNA ubiquitination
    • Yang XH, Shiotani B, Classon M, Zou L. 2008. Chk1 and Claspin potentiate PCNA ubiquitination. Genes Dev 22: 1147-1152.
    • (2008) Genes Dev , vol.22 , pp. 1147-1152
    • Yang, X.H.1    Shiotani, B.2    Classon, M.3    Zou, L.4
  • 164
    • 77953710831 scopus 로고    scopus 로고
    • SnapShot: The replisome
    • Yao NY, O'Donnell M. 2010. SnapShot: The replisome. Cell 141: 1088, 1088.e1.
    • (2010) Cell , vol.141 , Issue.1088 , pp. 1088
    • Yao, N.Y.1    O'Donnell, M.2
  • 165
    • 68249102864 scopus 로고    scopus 로고
    • DNA replication as a target of the DNA damage checkpoint
    • Zegerman P, Diffley JF. 2009. DNA replication as a target of the DNA damage checkpoint. DNA Repair (Amst) 8: 1077-1088.
    • (2009) DNA Repair (Amst) , vol.8 , pp. 1077-1088
    • Zegerman, P.1    Diffley, J.F.2
  • 166
    • 27644590452 scopus 로고    scopus 로고
    • The error-free component of the RAD6/RAD18 DNA damage tolerance pathway of budding yeast employs sister-strand recombination
    • Zhang H, Lawrence CW. 2005. The error-free component of the RAD6/RAD18 DNA damage tolerance pathway of budding yeast employs sister-strand recombination. Proc Natl Acad Sci 102: 15954-15959.
    • (2005) Proc Natl Acad Sci , vol.102 , pp. 15954-15959
    • Zhang, H.1    Lawrence, C.W.2
  • 167
    • 80052754015 scopus 로고    scopus 로고
    • Roles of sequential ubiquitination of PCNA in DNA-damage tolerance
    • Zhang W, Qin Z, Zhang X, Xiao W. 2011. Roles of sequential ubiquitination of PCNA in DNA-damage tolerance. FEBS Lett 585: 2786-2794.
    • (2011) FEBS Lett , vol.585 , pp. 2786-2794
    • Zhang, W.1    Qin, Z.2    Zhang, X.3    Xiao, W.4
  • 168
    • 0032562610 scopus 로고    scopus 로고
    • Formation of a preinitiation complex by S-phase cyclin CDK-dependent loading of Cdc45p onto chromatin
    • Zou L, Stillman B. 1998. Formation of a preinitiation complex by S-phase cyclin CDK-dependent loading of Cdc45p onto chromatin. Science 280: 593-596.
    • (1998) Science , vol.280 , pp. 593-596
    • Zou, L.1    Stillman, B.2
  • 169
    • 0034004129 scopus 로고    scopus 로고
    • Assembly of a complex containing Cdc45p, replication protein A, and Mcm2p at replication origins controlled by S-phase cyclin-dependent kinases and Cdc7p-Dbf4p kinase
    • Zou L, Stillman B. 2000. Assembly of a complex containing Cdc45p, replication protein A, and Mcm2p at replication origins controlled by S-phase cyclin-dependent kinases and Cdc7p-Dbf4p kinase. Mol Cell Biol 20: 3086-3096.
    • (2000) Mol Cell Biol , vol.20 , pp. 3086-3096
    • Zou, L.1    Stillman, B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.