메뉴 건너뛰기




Volumn 27, Issue 2, 2013, Pages 117-128

Location, location, location: It's all in the timing for replication origins

Author keywords

Chromatin; Fkh1; Fkh2; Replication timing; Rif1; Taz1

Indexed keywords

CYCLIN DEPENDENT KINASE; MINICHROMOSOME MAINTENANCE PROTEIN; ORIGIN RECOGNITION COMPLEX;

EID: 84873044090     PISSN: 08909369     EISSN: 15495477     Source Type: Journal    
DOI: 10.1101/gad.209999.112     Document Type: Review
Times cited : (86)

References (111)
  • 1
    • 34447565003 scopus 로고    scopus 로고
    • Replication in context: Dynamic regulation of DNA replication patterns in metazoans
    • Aladjem MI. (2007). Replication in context: Dynamic regulation of DNA replication patterns in metazoans. Nat Rev Genet 8: 588-600.
    • (2007) Nat Rev Genet , vol.8 , pp. 588-600
    • Aladjem, M.I.1
  • 2
    • 0030886099 scopus 로고    scopus 로고
    • Components and dynamics of DNA replication complexes in S cerevisiae: Redistribution of MCM proteins and Cdc45p during S phase
    • Aparicio OM, Weinstein DM, Bell SP. (1997). Components and dynamics of DNA replication complexes in S. cerevisiae: Redistribution of MCM proteins and Cdc45p during S phase. Cell 91: 59-69.
    • (1997) Cell , vol.91 , pp. 59-69
    • Aparicio, O.M.1    Weinstein, D.M.2    Bell, S.P.3
  • 3
    • 0033529791 scopus 로고    scopus 로고
    • Differential assembly of Cdc45p and DNA polymerases at early and late origins of DNA replication
    • Aparicio OM, Stout AM, Bell SP. (1999). Differential assembly of Cdc45p and DNA polymerases at early and late origins of DNA replication. Proc Natl Acad Sci 96: 9130-9135.
    • (1999) Proc Natl Acad Sci , vol.96 , pp. 9130-9135
    • Aparicio, O.M.1    Stout, A.M.2    Bell, S.P.3
  • 4
    • 2442660397 scopus 로고    scopus 로고
    • The Rpd3-Sin3 histone deacetylase regulates replication timing and enables intra-S origin control in Saccharomyces cerevisiae
    • Aparicio JG, Viggiani CJ, Gibson DG, Aparicio OM. (2004). The Rpd3-Sin3 histone deacetylase regulates replication timing and enables intra-S origin control in Saccharomyces cerevisiae. Mol Cell Biol 24: 4769-4780.
    • (2004) Mol Cell Biol , vol.24 , pp. 4769-4780
    • Aparicio, J.G.1    Viggiani, C.J.2    Gibson, D.G.3    Aparicio, O.M.4
  • 7
    • 0035997368 scopus 로고    scopus 로고
    • DNA replication in eukaryotic cells
    • Bell SP, Dutta A. (2002). DNA replication in eukaryotic cells. Annu Rev Biochem 71: 333-374.
    • (2002) Annu Rev Biochem , vol.71 , pp. 333-374
    • Bell, S.P.1    Dutta, A.2
  • 8
    • 78049415820 scopus 로고    scopus 로고
    • Diversity of eukaryotic DNA replication origins revealed by genomewide analysis of chromatin structure
    • Berbenetz NM, Nislow C, Brown GW. (2010). Diversity of eukaryotic DNA replication origins revealed by genomewide analysis of chromatin structure. PLoS Genet 6: e1001092.
    • (2010) PLoS Genet , vol.6
    • Berbenetz, N.M.1    Nislow, C.2    Brown, G.W.3
  • 9
    • 0034008103 scopus 로고    scopus 로고
    • Heterogeneity of eukaryotic replicons, replicon clusters, and replication foci
    • Berezney R, Dubey DD, Huberman JA. (2000). Heterogeneity of eukaryotic replicons, replicon clusters, and replication foci. Chromosoma 108: 471-484.
    • (2000) Chromosoma , vol.108 , pp. 471-484
    • Berezney, R.1    Dubey, D.D.2    Huberman, J.A.3
  • 10
    • 84863658393 scopus 로고    scopus 로고
    • Separation of DNA replication from the assembly of break-competent meiotic chromosomes
    • Blitzblau HG, Chan CS, Hochwagen A, Bell SP. (2012). Separation of DNA replication from the assembly of break-competent meiotic chromosomes. PLoS Genet 8: e1002643.
    • (2012) PLoS Genet , vol.8
    • Blitzblau, H.G.1    Chan, C.S.2    Hochwagen, A.3    Bell, S.P.4
  • 11
    • 83855163436 scopus 로고    scopus 로고
    • Genomic instability: Close-up on cancer copy number alterations
    • Burgess DJ. (2011). Genomic instability: Close-up on cancer copy number alterations. Nat Rev Genet 13: 5.
    • (2011) Nat Rev Genet , vol.13 , pp. 5
    • Burgess, D.J.1
  • 12
    • 0031038170 scopus 로고    scopus 로고
    • Regulation of telomere length and function by a Myb-domain protein in fission yeast
    • Cooper JP, Nimmo ER, Allshire RC, Cech TR. (1997). Regulation of telomere length and function by a Myb-domain protein in fission yeast. Nature 385: 744-747.
    • (1997) Nature , vol.385 , pp. 744-747
    • Cooper, J.P.1    Nimmo, E.R.2    Allshire, R.C.3    Cech, T.R.4
  • 14
    • 0036791764 scopus 로고    scopus 로고
    • Ku complex controls the replication time of DNA in telomere regions
    • Cosgrove AJ, Nieduszynski CA, Donaldson AD. (2002). Ku complex controls the replication time of DNA in telomere regions. Genes Dev 16: 2485-2490.
    • (2002) Genes Dev , vol.16 , pp. 2485-2490
    • Cosgrove, A.J.1    Nieduszynski, C.A.2    Donaldson, A.D.3
  • 15
    • 17044410835 scopus 로고    scopus 로고
    • Eukaryotic origins of DNA replication: Could you please be more specific?
    • Cvetic C, Walter JC. (2005). Eukaryotic origins of DNA replication: Could you please be more specific? Semin Cell Dev Biol 16: 343-353.
    • (2005) Semin Cell Dev Biol , vol.16 , pp. 343-353
    • Cvetic, C.1    Walter, J.C.2
  • 16
    • 36348988518 scopus 로고    scopus 로고
    • DNA combing reveals intrinsic temporal disorder in the replication of yeast chromosome VI
    • Czajkowsky DM, Liu J, Hamlin JL, Shao Z. (2008). DNA combing reveals intrinsic temporal disorder in the replication of yeast chromosome VI. J Mol Biol 375: 12-19.
    • (2008) J Mol Biol , vol.375 , pp. 12-19
    • Czajkowsky, D.M.1    Liu, J.2    Hamlin, J.L.3    Shao, Z.4
  • 17
    • 12244265093 scopus 로고    scopus 로고
    • DNA replication origins in the Schizosaccharomyces pombe genome
    • Dai J, Chuang RY, Kelly TJ. (2005). DNA replication origins in the Schizosaccharomyces pombe genome. Proc Natl Acad Sci 102: 337-342.
    • (2005) Proc Natl Acad Sci , vol.102 , pp. 337-342
    • Dai, J.1    Chuang, R.Y.2    Kelly, T.J.3
  • 19
    • 0027213553 scopus 로고
    • Eukaryotic DNA replication: Anatomy of an origin
    • DePamphilis ML. (1993). Eukaryotic DNA replication: Anatomy of an origin. Annu Rev Biochem 62: 29-63.
    • (1993) Annu Rev Biochem , vol.62 , pp. 29-63
    • DePamphilis, M.L.1
  • 20
    • 0033369515 scopus 로고    scopus 로고
    • The spatial position and replication timing of chromosomal domains are both established in early G1 phase
    • Dimitrova DS, Gilbert DM. (1999). The spatial position and replication timing of chromosomal domains are both established in early G1 phase. Mol Cell 4: 983-993.
    • (1999) Mol Cell , vol.4 , pp. 983-993
    • Dimitrova, D.S.1    Gilbert, D.M.2
  • 22
    • 0025942496 scopus 로고
    • Evidence suggesting that the ARS elements associated with silencers of the yeast mating-type locus HML do not function as chromosomal DNA replication origins
    • Dubey DD, Davis LR, Greenfeder SA, Ong LY, Zhu JG, Broach JR, Newlon CS, Huberman JA. (1991). Evidence suggesting that the ARS elements associated with silencers of the yeast mating-type locus HML do not function as chromosomal DNA replication origins. Mol Cell Biol 11: 5346-5355.
    • (1991) Mol Cell Biol , vol.11 , pp. 5346-5355
    • Dubey, D.D.1    Davis, L.R.2    Greenfeder, S.A.3    Ong, L.Y.4    Zhu, J.G.5    Broach, J.R.6    Newlon, C.S.7    Huberman, J.A.8
  • 23
    • 77950962157 scopus 로고    scopus 로고
    • Conserved nucleosome positioning defines replication origins
    • Eaton ML, Galani K, Kang S, Bell SP, MacAlpine DM. (2010). Conserved nucleosome positioning defines replication origins. Genes Dev 24: 748-753.
    • (2010) Genes Dev , vol.24 , pp. 748-753
    • Eaton, M.L.1    Galani, K.2    Kang, S.3    Bell, S.P.4    McAlpine, D.M.5
  • 24
    • 57749122172 scopus 로고    scopus 로고
    • Release of yeast telomeres from the nuclear periphery is triggered by replication and maintained by suppression of Ku-mediated anchoring
    • Ebrahimi H, Donaldson AD. (2008). Release of yeast telomeres from the nuclear periphery is triggered by replication and maintained by suppression of Ku-mediated anchoring. Genes Dev 22: 3363-3374.
    • (2008) Genes Dev , vol.22 , pp. 3363-3374
    • Ebrahimi, H.1    Donaldson, A.D.2
  • 26
    • 0037031834 scopus 로고    scopus 로고
    • MCM2-7 complexes bind chromatin in a distributed pattern surrounding the origin recognition complex in Xenopus egg extracts
    • Edwards MC, Tutter AV, Cvetic C, Gilbert CH, Prokhorova TA, Walter JC. (2002). MCM2-7 complexes bind chromatin in a distributed pattern surrounding the origin recognition complex in Xenopus egg extracts. J Biol Chem 277: 33049-33057.
    • (2002) J Biol Chem , vol.277 , pp. 33049-33057
    • Edwards, M.C.1    Tutter, A.V.2    Cvetic, C.3    Gilbert, C.H.4    Prokhorova, T.A.5    Walter, J.C.6
  • 27
    • 0025719475 scopus 로고
    • Activation of replication origins within yeast chromosomes
    • Fangman WL, Brewer BJ. (1991). Activation of replication origins within yeast chromosomes. Annu Rev Cell Biol 7: 375-402.
    • (1991) Annu Rev Cell Biol , vol.7 , pp. 375-402
    • Fangman, W.L.1    Brewer, B.J.2
  • 28
    • 0026571672 scopus 로고
    • A position effect on the time of replication origin activation in yeast
    • Ferguson BM, Fangman WL. (1992). A position effect on the time of replication origin activation in yeast. Cell 68: 333-339.
    • (1992) Cell , vol.68 , pp. 333-339
    • Ferguson, B.M.1    Fangman, W.L.2
  • 29
    • 0028851598 scopus 로고
    • Analysis of replication intermediates by two-dimensional agarose gel electrophoresis
    • Friedman KL, Brewer BJ. (1995). Analysis of replication intermediates by two-dimensional agarose gel electrophoresis. Methods Enzymol 262: 613-627.
    • (1995) Methods Enzymol , vol.262 , pp. 613-627
    • Friedman, K.L.1    Brewer, B.J.2
  • 31
    • 0031265756 scopus 로고    scopus 로고
    • Replication profile of Saccharomyces cerevisiae chromosome VI
    • Friedman KL, Brewer BJ, Fangman WL. (1997). Replication profile of Saccharomyces cerevisiae chromosome VI. Genes Cells 2: 667-678.
    • (1997) Genes Cells , vol.2 , pp. 667-678
    • Friedman, K.L.1    Brewer, B.J.2    Fangman, W.L.3
  • 33
    • 51449101224 scopus 로고    scopus 로고
    • A dynamic stochastic model for DNA replication initiation in early embryos
    • Goldar A, Labit H, Marheineke K, Hyrien O. (2008). A dynamic stochastic model for DNA replication initiation in early embryos. PLoS ONE 3: e2919.
    • (2008) PLoS ONE , vol.3
    • Goldar, A.1    Labit, H.2    Marheineke, K.3    Hyrien, O.4
  • 34
    • 62549158168 scopus 로고    scopus 로고
    • Replication timing and epigenetic reprogramming of gene expression: A two-way relationship?
    • Gondor A, Ohlsson R. (2009). Replication timing and epigenetic reprogramming of gene expression: A two-way relationship? Nat Rev Genet 10: 269-276.
    • (2009) Nat Rev Genet , vol.10 , pp. 269-276
    • Gondor, A.1    Ohlsson, R.2
  • 35
    • 0016437362 scopus 로고
    • Regulation of DNA replication on subchromosomal units of mammalian cells
    • Hand R. (1975). Regulation of DNA replication on subchromosomal units of mammalian cells. J Cell Biol 64: 89-97.
    • (1975) J Cell Biol , vol.64 , pp. 89-97
    • Hand, R.1
  • 38
    • 61849184077 scopus 로고    scopus 로고
    • The heterochromatin protein Swi6/HP1 activates replication origins at the pericentromeric region and silent mating-type locus
    • HayashiMT, Takahashi TS, Nakagawa T, Nakayama J, Masukata H. (2009). The heterochromatin protein Swi6/HP1 activates replication origins at the pericentromeric region and silent mating-type locus. Nat Cell Biol 11: 357-362.
    • (2009) Nat Cell Biol , vol.11 , pp. 357-362
    • Hayashi, M.T.1    Takahashi, T.S.2    Nakagawa, T.3    Nakayama, J.4    Masukata, H.5
  • 39
    • 33750438774 scopus 로고    scopus 로고
    • Genome-wide characterization of fission yeast DNA replication origins
    • Heichinger C, Penkett CJ, Bahler J, Nurse P. (2006). Genome-wide characterization of fission yeast DNA replication origins. EMBO J 25: 5171-5179.
    • (2006) EMBO J , vol.25 , pp. 5171-5179
    • Heichinger, C.1    Penkett, C.J.2    Bahler, J.3    Nurse, P.4
  • 40
    • 79959957543 scopus 로고    scopus 로고
    • Eukaryotic origin-dependent DNA replication in vitro reveals sequential action of DDK and S-CDK kinases
    • Heller RC, Kang S, Lam WM, Chen S, Chan CS, Bell SP. (2011). Eukaryotic origin-dependent DNA replication in vitro reveals sequential action of DDK and S-CDK kinases. Cell 146: 80-91.
    • (2011) Cell , vol.146 , pp. 80-91
    • Heller, R.C.1    Kang, S.2    Lam, W.M.3    Chen, S.4    Chan, C.S.5    Bell, S.P.6
  • 41
    • 80054948832 scopus 로고    scopus 로고
    • Genetic variation and DNA replication timing, or why is there late replicating DNA?
    • Herrick J. (2011). Genetic variation and DNA replication timing, or why is there late replicating DNA? Evolution 65: 3031-3047.
    • (2011) Evolution , vol.65 , pp. 3031-3047
    • Herrick, J.1
  • 42
    • 0035931758 scopus 로고    scopus 로고
    • The positioning and dynamics of origins of replication in the budding yeast nucleus
    • Heun P, Laroche T, Raghuraman MK, Gasser SM. (2001). The positioning and dynamics of origins of replication in the budding yeast nucleus. J Cell Biol 152: 385-400.
    • (2001) J Cell Biol , vol.152 , pp. 385-400
    • Heun, P.1    Laroche, T.2    Raghuraman, M.K.3    Gasser, S.M.4
  • 43
    • 33645739139 scopus 로고    scopus 로고
    • The Ctf18 RFClike complex positions yeast telomeres but does not specify their replication time
    • Hiraga S, Robertson ED, Donaldson AD. (2006). The Ctf18 RFClike complex positions yeast telomeres but does not specify their replication time. EMBO J 25: 1505-1514.
    • (2006) EMBO J , vol.25 , pp. 1505-1514
    • Hiraga, S.1    Robertson, E.D.2    Donaldson, A.D.3
  • 45
    • 0031279805 scopus 로고    scopus 로고
    • Mapping replication origins, pause sites, and termini by neutral/alkaline two-dimensional gel electrophoresis
    • Huberman JA. (1997). Mapping replication origins, pause sites, and termini by neutral/alkaline two-dimensional gel electrophoresis. Methods 13: 247-257.
    • (1997) Methods , vol.13 , pp. 247-257
    • Huberman, J.A.1
  • 46
    • 0032489839 scopus 로고    scopus 로고
    • Yeast nuclei display prominent centromere clustering that is reduced in nondividing cells and in meiotic prophase
    • Jin Q, Trelles-Sticken E, Scherthan H, Loidl J. (1998). Yeast nuclei display prominent centromere clustering that is reduced in nondividing cells and in meiotic prophase. J Cell Biol 141: 21-29.
    • (1998) J Cell Biol , vol.141 , pp. 21-29
    • Jin, Q.1    Trelles-Sticken, E.2    Scherthan, H.3    Loidl, J.4
  • 47
    • 0029742239 scopus 로고    scopus 로고
    • Composite patterns in neutral/neutral two-dimensional gels demonstrate inefficient replication origin usage
    • Kalejta RF, Hamlin JL. (1996). Composite patterns in neutral/neutral two-dimensional gels demonstrate inefficient replication origin usage. Mol Cell Biol 16: 4915-4922.
    • (1996) Mol Cell Biol , vol.16 , pp. 4915-4922
    • Kalejta, R.F.1    Hamlin, J.L.2
  • 48
    • 0035901555 scopus 로고    scopus 로고
    • Sld3, which interacts with Cdc45 (Sld4), functions for chromosomal DNA replication in Saccharomyces cerevisiae
    • Kamimura Y, Tak YS, Sugino A, Araki H. (2001). Sld3, which interacts with Cdc45 (Sld4), functions for chromosomal DNA replication in Saccharomyces cerevisiae. EMBO J 20: 2097-2107.
    • (2001) EMBO J , vol.20 , pp. 2097-2107
    • Kamimura, Y.1    Tak, Y.S.2    Sugino, A.3    Araki, H.4
  • 49
    • 0035899938 scopus 로고    scopus 로고
    • spRap1 and spRif1, recruited to telomeres by Taz1, are essential for telomere function in fission yeast
    • Kanoh J, Ishikawa F. (2001). spRap1 and spRif1, recruited to telomeres by Taz1, are essential for telomere function in fission yeast. Curr Biol 11: 1624-1630.
    • (2001) Curr Biol , vol.11 , pp. 1624-1630
    • Kanoh, J.1    Ishikawa, F.2
  • 50
    • 65449160972 scopus 로고    scopus 로고
    • Genomewide replication profiles indicate an expansive role for Rpd3L in regulating replication initiation timing or efficiency, and reveal genomic loci of Rpd3 function in Saccharomyces cerevisiae
    • Knott SR, Viggiani CJ, Tavaré S, Aparicio OM. (2009). Genomewide replication profiles indicate an expansive role for Rpd3L in regulating replication initiation timing or efficiency, and reveal genomic loci of Rpd3 function in Saccharomyces cerevisiae. Genes Dev 23: 1077-1090.
    • (2009) Genes Dev , vol.23 , pp. 1077-1090
    • Knott, S.R.1    Viggiani, C.J.2    Tavaré, S.3    Aparicio, O.M.4
  • 52
    • 77957337127 scopus 로고    scopus 로고
    • Epigenetically-inherited centromere and neocentromere DNA replicates earliest in S-phase
    • Koren A, Tsai HJ, Tirosh I, Burrack LS, Barkai N, Berman J. (2010). Epigenetically-inherited centromere and neocentromere DNA replicates earliest in S-phase. PLoS Genet 6: e1001068.
    • (2010) PLoS Genet , vol.6
    • Koren, A.1    Tsai, H.J.2    Tirosh, I.3    Burrack, L.S.4    Barkai, N.5    Berman, J.6
  • 53
    • 77953954908 scopus 로고    scopus 로고
    • How do Cdc7 and cyclin-dependent kinases trigger the initiation of chromosome replication in eukaryotic cells?
    • Labib K. (2010). How do Cdc7 and cyclin-dependent kinases trigger the initiation of chromosome replication in eukaryotic cells? Genes Dev 24: 1208-1219.
    • (2010) Genes Dev , vol.24 , pp. 1208-1219
    • Labib, K.1
  • 58
    • 0035104474 scopus 로고    scopus 로고
    • Nucleosomes positioned by ORC facilitate the initiation of DNA replication
    • Lipford JR, Bell SP. (2001). Nucleosomes positioned by ORC facilitate the initiation of DNA replication. Mol Cell 7: 21-30.
    • (2001) Mol Cell , vol.7 , pp. 21-30
    • Lipford, J.R.1    Bell, S.P.2
  • 60
    • 0034711945 scopus 로고    scopus 로고
    • Mechanisms ensuring rapid and complete DNA replication despite random initiation in Xenopus early embryos
    • Lucas I, Chevrier-Miller M, Sogo JM, Hyrien O. (2000). Mechanisms ensuring rapid and complete DNA replication despite random initiation in Xenopus early embryos. J Mol Biol 296: 769-786.
    • (2000) J Mol Biol , vol.296 , pp. 769-786
    • Lucas, I.1    Chevrier-Miller, M.2    Sogo, J.M.3    Hyrien, O.4
  • 62
    • 84855289466 scopus 로고    scopus 로고
    • Do replication forks control late origin firing in Saccharomyces cerevisiae?
    • Ma E, Hyrien O, Goldar A. (2012). Do replication forks control late origin firing in Saccharomyces cerevisiae? Nucleic Acids Res 40: 2010-2019.
    • (2012) Nucleic Acids Res , vol.40 , pp. 2010-2019
    • Ma, E.1    Hyrien, O.2    Goldar, A.3
  • 64
    • 82455164158 scopus 로고    scopus 로고
    • Limiting replication initiation factors execute the temporal programme of origin firing in budding yeast
    • Mantiero D, Mackenzie A, Donaldson A, Zegerman P. (2011). Limiting replication initiation factors execute the temporal programme of origin firing in budding yeast. EMBO J 30: 4805-4814.
    • (2011) EMBO J , vol.30 , pp. 4805-4814
    • Mantiero, D.1    Mackenzie, A.2    Donaldson, A.3    Zegerman, P.4
  • 65
    • 0026508417 scopus 로고
    • A yeast chromosomal origin of replication defined by multiple functional elements
    • Marahrens Y, Stillman B. (1992). A yeast chromosomal origin of replication defined by multiple functional elements. Science 255: 817-823.
    • (1992) Science , vol.255 , pp. 817-823
    • Marahrens, Y.1    Stillman, B.2
  • 67
    • 70349897734 scopus 로고    scopus 로고
    • Temporal regulation of DNA replication in mammalian cells
    • Mendez J. (2009). Temporal regulation of DNA replication in mammalian cells. Crit Rev Biochem Mol Biol 44: 343-351.
    • (2009) Crit Rev Biochem Mol Biol , vol.44 , pp. 343-351
    • Mendez, J.1
  • 68
    • 33847077659 scopus 로고    scopus 로고
    • Beyond the sequence: Cellular organization of genome function
    • Misteli T. (2007). Beyond the sequence: Cellular organization of genome function. Cell 128: 787-800.
    • (2007) Cell , vol.128 , pp. 787-800
    • Misteli, T.1
  • 69
    • 33947499627 scopus 로고    scopus 로고
    • Perturbation of the activity of replication origin by meiosis-specific transcription
    • Mori S, Shirahige K. (2007). Perturbation of the activity of replication origin by meiosis-specific transcription. J Biol Chem 282: 4447-4452.
    • (2007) J Biol Chem , vol.282 , pp. 4447-4452
    • Mori, S.1    Shirahige, K.2
  • 70
    • 0035815360 scopus 로고    scopus 로고
    • Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly
    • Nakayama J, Rice JC, Strahl BD, Allis CD, Grewal SI. (2001). Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 292: 110-113.
    • (2001) Science , vol.292 , pp. 110-113
    • Nakayama, J.1    Rice, J.C.2    Strahl, B.D.3    Allis, C.D.4    Grewal, S.I.5
  • 71
    • 77649236556 scopus 로고    scopus 로고
    • Spatial regulation and organization of DNA replication within the nucleus
    • Natsume T, Tanaka TU. (2010). Spatial regulation and organization of DNA replication within the nucleus. Chromosome Res 18: 7-17.
    • (2010) Chromosome Res , vol.18 , pp. 7-17
    • Natsume, T.1    Tanaka, T.U.2
  • 72
    • 0027443434 scopus 로고
    • The structure and function of yeast ARS elements
    • Newlon CS, Theis JF. (1993). The structure and function of yeast ARS elements. Curr Opin Genet Dev 3: 752-758.
    • (1993) Curr Opin Genet Dev , vol.3 , pp. 752-758
    • Newlon, C.S.1    Theis, J.F.2
  • 74
    • 80052283925 scopus 로고    scopus 로고
    • Palmitoylation controls the dynamics of buddingyeast heterochromatin via the telomere-binding protein Rif1
    • Park S, Patterson EE, Cobb J, Audhya A, Gartenberg MR, Fox CA. (2011). Palmitoylation controls the dynamics of buddingyeast heterochromatin via the telomere-binding protein Rif1. Proc Natl Acad Sci 108: 14572-14577.
    • (2011) Proc Natl Acad Sci , vol.108 , pp. 14572-14577
    • Park, S.1    Patterson, E.E.2    Cobb, J.3    Audhya, A.4    Gartenberg, M.R.5    Fox, C.A.6
  • 77
    • 84863643914 scopus 로고    scopus 로고
    • Functional centromeres determine the activation time of pericentric origins of DNA replication in Saccharomyces cerevisiae
    • Pohl TJ, Brewer BJ, Raghuraman MK. (2012). Functional centromeres determine the activation time of pericentric origins of DNA replication in Saccharomyces cerevisiae. PLoS Genet 8: e1002677.
    • (2012) PLoS Genet , vol.8
    • Pohl, T.J.1    Brewer, B.J.2    Raghuraman, M.K.3
  • 78
    • 0035197623 scopus 로고    scopus 로고
    • Completion of the replication map of Saccharomyces cerevisiae chromosome III
    • Poloumienko A, Dershowitz A, De J, Newlon CS. (2001). Completion of the replication map of Saccharomyces cerevisiae chromosome III. Mol Biol Cell 12: 3317-3327.
    • (2001) Mol Biol Cell , vol.12 , pp. 3317-3327
    • Poloumienko, A.1    Dershowitz, A.2    De, J.3    Newlon, C.S.4
  • 79
    • 0031005357 scopus 로고    scopus 로고
    • Cell cycledependent establishment of a late replication program
    • Raghuraman MK, Brewer BJ, Fangman WL. (1997). Cell cycledependent establishment of a late replication program. Science 276: 806-809.
    • (1997) Science , vol.276 , pp. 806-809
    • Raghuraman, M.K.1    Brewer, B.J.2    Fangman, W.L.3
  • 81
    • 33751520767 scopus 로고    scopus 로고
    • DNA replication timing: Random thoughts about origin firing
    • Rhind N. (2006). DNA replication timing: Random thoughts about origin firing. Nat Cell Biol 8: 1313-1316.
    • (2006) Nat Cell Biol , vol.8 , pp. 1313-1316
    • Rhind, N.1
  • 82
    • 77649233258 scopus 로고    scopus 로고
    • Reconciling stochastic origin firing with defined replication timing
    • Rhind N, Yang SC, Bechhoefer J. (2010). Reconciling stochastic origin firing with defined replication timing. Chromosome Res 18: 35-43.
    • (2010) Chromosome Res , vol.18 , pp. 35-43
    • Rhind, N.1    Yang, S.C.2    Bechhoefer, J.3
  • 83
    • 77952994784 scopus 로고    scopus 로고
    • Evolutionarily conserved replication timing profiles predict long-range chromatin interactions and distinguish closely related cell types
    • Ryba T, Hiratani I, Lu J, Itoh M, Kulik M, Zhang J, Schulz TC, Robins AJ, Dalton S, Gilbert DM. (2010). Evolutionarily conserved replication timing profiles predict long-range chromatin interactions and distinguish closely related cell types. Genome Res 20: 761-770.
    • (2010) Genome Res , vol.20 , pp. 761-770
    • Ryba, T.1    Hiratani, I.2    Lu, J.3    Itoh, M.4    Kulik, M.5    Zhang, J.6    Schulz, T.C.7    Robins, A.J.8    Dalton, S.9    Gilbert, D.M.10
  • 84
    • 0032497529 scopus 로고    scopus 로고
    • A Mec1-and Rad53-dependent checkpoint controls late-firing origins of DNA replication
    • Santocanale C, Diffley JF. (1998). A Mec1-and Rad53-dependent checkpoint controls late-firing origins of DNA replication. Nature 395: 615-618.
    • (1998) Nature , vol.395 , pp. 615-618
    • Santocanale, C.1    Diffley, J.F.2
  • 85
    • 0033568196 scopus 로고    scopus 로고
    • Activation of dormant origins of DNA replication in budding yeast
    • Santocanale C, Sharma K, Diffley JF. (1999). Activation of dormant origins of DNA replication in budding yeast. Genes Dev 13: 2360-2364.
    • (1999) Genes Dev , vol.13 , pp. 2360-2364
    • Santocanale, C.1    Sharma, K.2    Diffley, J.F.3
  • 87
    • 69249229528 scopus 로고    scopus 로고
    • Telomere length regulation: Coupling DNA end processing to feedback regulation of telomerase
    • Shore D, Bianchi A. (2009). Telomere length regulation: Coupling DNA end processing to feedback regulation of telomerase. EMBO J 28: 2309-2322.
    • (2009) EMBO J , vol.28 , pp. 2309-2322
    • Shore, D.1    Bianchi, A.2
  • 88
    • 0024009977 scopus 로고
    • Transcription interferes with elements important for chromosome maintenance in Saccharomyces cerevisiae
    • Snyder M, Sapolsky RJ, Davis RW. (1988). Transcription interferes with elements important for chromosome maintenance in Saccharomyces cerevisiae. Mol Cell Biol 8: 2184-2194.
    • (1988) Mol Cell Biol , vol.8 , pp. 2184-2194
    • Snyder, M.1    Sapolsky, R.J.2    Davis, R.W.3
  • 89
    • 0036929125 scopus 로고    scopus 로고
    • DNA polymerase clamp shows little turnover at established replication sites but sequential de novo assembly at adjacent origin clusters
    • Sporbert A, Gahl A, Ankerhold R, Leonhardt H, Cardoso MC. (2002). DNA polymerase clamp shows little turnover at established replication sites but sequential de novo assembly at adjacent origin clusters. Mol Cell 10: 1355-1365.
    • (2002) Mol Cell , vol.10 , pp. 1355-1365
    • Sporbert, A.1    Gahl, A.2    Ankerhold, R.3    Leonhardt, H.4    Cardoso, M.C.5
  • 90
    • 0033556028 scopus 로고    scopus 로고
    • Telomeric chromatin modulates replication timing near chromosome ends
    • Stevenson JB, Gottschling DE. (1999). Telomeric chromatin modulates replication timing near chromosome ends. Genes Dev 13: 146-151.
    • (1999) Genes Dev , vol.13 , pp. 146-151
    • Stevenson, J.B.1    Gottschling, D.E.2
  • 91
    • 0018671664 scopus 로고
    • Isolation and characterisation of a yeast chromosomal replicator
    • Stinchcomb DT, Struhl K, Davis RW. (1979). Isolation and characterisation of a yeast chromosomal replicator. Nature 282: 39-43.
    • (1979) Nature , vol.282 , pp. 39-43
    • Stinchcomb, D.T.1    Struhl, K.2    Davis, R.W.3
  • 93
    • 0037102455 scopus 로고    scopus 로고
    • Saccharomyces forkhead protein Fkh1 regulates donor preference during mating-type switching through the recombination enhancer
    • Sun K, Coic E, Zhou Z, Durrens P, Haber JE. (2002). Saccharomyces forkhead protein Fkh1 regulates donor preference during mating-type switching through the recombination enhancer. Genes Dev 16: 2085-2096.
    • (2002) Genes Dev , vol.16 , pp. 2085-2096
    • Sun, K.1    Coic, E.2    Zhou, Z.3    Durrens, P.4    Haber, J.E.5
  • 94
    • 84155171119 scopus 로고    scopus 로고
    • Origin association of Sld3, Sld7, and Cdc45 proteins is a key step for determination of origin-firing timing
    • Tanaka S, Nakato R, Katou Y, Shirahige K, Araki H. (2011). Origin association of Sld3, Sld7, and Cdc45 proteins is a key step for determination of origin-firing timing. Curr Biol 21: 2055-2063.
    • (2011) Curr Biol , vol.21 , pp. 2055-2063
    • Tanaka, S.1    Nakato, R.2    Katou, Y.3    Shirahige, K.4    Araki, H.5
  • 96
    • 0034595211 scopus 로고    scopus 로고
    • DNA synthesis at individual replication forks requires the essential initiation factor Cdc45p
    • Tercero JA, Labib K, Diffley JF. (2000). DNA synthesis at individual replication forks requires the essential initiation factor Cdc45p. EMBO J 19: 2082-2093.
    • (2000) EMBO J , vol.19 , pp. 2082-2093
    • Tercero, J.A.1    Labib, K.2    Diffley, J.F.3
  • 97
    • 0031860955 scopus 로고    scopus 로고
    • Identifying sites of replication initiation in yeast chromosomes: Looking for origins in all the right places
    • van Brabant AJ, Hunt SY, Fangman WL, Brewer BJ. (1998). Identifying sites of replication initiation in yeast chromosomes: Looking for origins in all the right places. Electrophoresis 19: 1239-1246.
    • (1998) Electrophoresis , vol.19 , pp. 1239-1246
    • van Brabant, A.J.1    Hunt, S.Y.2    Fangman, W.L.3    Brewer, B.J.4
  • 98
    • 0036863542 scopus 로고    scopus 로고
    • Histone acetylation regulates the time of replication origin firing
    • Vogelauer M, Rubbi L, Lucas I, Brewer BJ, Grunstein M. (2002). Histone acetylation regulates the time of replication origin firing. Mol Cell 10: 1223-1233.
    • (2002) Mol Cell , vol.10 , pp. 1223-1233
    • Vogelauer, M.1    Rubbi, L.2    Lucas, I.3    Brewer, B.J.4    Grunstein, M.5
  • 99
    • 0032784059 scopus 로고    scopus 로고
    • Activation of silent replication origins at autonomously replicating sequence elements near the HML locus in budding yeast
    • Vujcic M, Miller CA, Kowalski D. (1999). Activation of silent replication origins at autonomously replicating sequence elements near the HML locus in budding yeast. Mol Cell Biol 19: 6098-6109.
    • (1999) Mol Cell Biol , vol.19 , pp. 6098-6109
    • Vujcic, M.1    Miller, C.A.2    Kowalski, D.3
  • 101
    • 61349201535 scopus 로고    scopus 로고
    • Establishing the program of origin firing during S phase in fission yeast
    • Wu PY, Nurse P. (2009). Establishing the program of origin firing during S phase in fission yeast. Cell 136: 852-864.
    • (2009) Cell , vol.136 , pp. 852-864
    • Wu, P.Y.1    Nurse, P.2
  • 102
    • 77956886919 scopus 로고    scopus 로고
    • Rif1 provides a new DNA-binding interface for the Bloom syndrome complex to maintain normal replication
    • Xu D, Muniandy P, Leo E, Yin J, Thangavel S, Shen X, Ii M, Agama K, Guo R, Fox D III, et al. (2010). Rif1 provides a new DNA-binding interface for the Bloom syndrome complex to maintain normal replication. EMBO J 29: 3140-3155.
    • (2010) EMBO J , vol.29 , pp. 3140-3155
    • Xu, D.1    Muniandy, P.2    Leo, E.3    Yin, J.4    Thangavel, S.5    Shen, X.6    Ii, M.7    Agama, K.8    Guo, R.9    Fox III, D.10
  • 103
    • 0036668464 scopus 로고    scopus 로고
    • Mapping of early firing origins on a replication profile of budding yeast
    • Yabuki N, Terashima H, Kitada K. (2002). Mapping of early firing origins on a replication profile of budding yeast. Genes Cells 7: 781-789.
    • (2002) Genes Cells , vol.7 , pp. 781-789
    • Yabuki, N.1    Terashima, H.2    Kitada, K.3
  • 104
    • 77957369058 scopus 로고    scopus 로고
    • Comparative analysis of DNA replication timing reveals conserved large-scale chromosomal architecture
    • Yaffe E, Farkash-Amar S, Polten A, Yakhini Z, Tanay A, Simon I. (2010). Comparative analysis of DNA replication timing reveals conserved large-scale chromosomal architecture. PLoS Genet 6: e1001011.
    • (2010) PLoS Genet , vol.6
    • Yaffe, E.1    Farkash-Amar, S.2    Polten, A.3    Yakhini, Z.4    Tanay, A.5    Simon, I.6
  • 105
    • 0031261584 scopus 로고    scopus 로고
    • The efficiency and timing of initiation of replication of multiple replicons of Saccharomyces cerevisiae chromosome VI
    • Yamashita M, Hori Y, Shinomiya T, Obuse C, Tsurimoto T, Yoshikawa H, Shirahige K. (1997). The efficiency and timing of initiation of replication of multiple replicons of Saccharomyces cerevisiae chromosome VI. Genes Cells 2: 655-665.
    • (1997) Genes Cells , vol.2 , pp. 655-665
    • Yamashita, M.1    Hori, Y.2    Shinomiya, T.3    Obuse, C.4    Tsurimoto, T.5    Yoshikawa, H.6    Shirahige, K.7
  • 106
    • 84866427034 scopus 로고    scopus 로고
    • Rif1 regulates the replication timing domains on the human genome
    • Yamazaki S, Ishii A, Kanoh Y, Oda M, Nishito Y, Masai H. (2012). Rif1 regulates the replication timing domains on the human genome. EMBO J 31: 3667-3677.
    • (2012) EMBO J , vol.31 , pp. 3667-3677
    • Yamazaki, S.1    Ishii, A.2    Kanoh, Y.3    Oda, M.4    Nishito, Y.5    Masai, H.6
  • 107
    • 77956253770 scopus 로고    scopus 로고
    • Modeling genome-wide replication kinetics reveals a mechanism for regulation of replication timing
    • Yang SC, Rhind N, Bechhoefer J. (2010). Modeling genome-wide replication kinetics reveals a mechanism for regulation of replication timing. Mol Syst Biol 6: 404.
    • (2010) Mol Syst Biol , vol.6 , pp. 404
    • Yang, S.C.1    Rhind, N.2    Bechhoefer, J.3
  • 108
    • 4744357937 scopus 로고    scopus 로고
    • Enforcement of late replication origin firing by clusters of short G-rich DNA sequences
    • Yompakdee C, Huberman JA. (2004). Enforcement of late replication origin firing by clusters of short G-rich DNA sequences. J Biol Chem 279: 42337-42344.
    • (2004) J Biol Chem , vol.279 , pp. 42337-42344
    • Yompakdee, C.1    Huberman, J.A.2
  • 109
    • 0037019025 scopus 로고    scopus 로고
    • Control of replication timing by a transcriptional silencer
    • Zappulla DC, Sternglanz R, Leatherwood J. (2002). Control of replication timing by a transcriptional silencer. Curr Biol 12: 869-875.
    • (2002) Curr Biol , vol.12 , pp. 869-875
    • Zappulla, D.C.1    Sternglanz, R.2    Leatherwood, J.3
  • 110
    • 77957149919 scopus 로고    scopus 로고
    • Checkpoint-dependent inhibition of DNA replication initiation by Sld3 and Dbf4 phosphorylation
    • Zegerman P, Diffley JF. (2010). Checkpoint-dependent inhibition of DNA replication initiation by Sld3 and Dbf4 phosphorylation. Nature 467: 474-478.
    • (2010) Nature , vol.467 , pp. 474-478
    • Zegerman, P.1    Diffley, J.F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.