-
1
-
-
0029837030
-
In vivo analysis reveals that the interdomain region of the yeast proliferating cell nuclear antigen is important for DNA replication and DNA repair
-
Amin, N. S., and C. Holm. 1996. In vivo analysis reveals that the interdomain region of the yeast proliferating cell nuclear antigen is important for DNA replication and DNA repair. Genetics 144:479-493.
-
(1996)
Genetics
, vol.144
, pp. 479-493
-
-
Amin, N.S.1
Holm, C.2
-
2
-
-
0028314007
-
Specific complex formation between yeast RAD6 and RAD18 proteins: A potential mechanism for targeting RAD6 ubiquitin-conjugating activity to DNA damage sites
-
Bailly, V., J. Lamb, P. Sung, S. Prakash, and L. Prakash. 1994. Specific complex formation between yeast RAD6 and RAD18 proteins: a potential mechanism for targeting RAD6 ubiquitin-conjugating activity to DNA damage sites. Genes Dev. 8:811-820.
-
(1994)
Genes Dev.
, vol.8
, pp. 811-820
-
-
Bailly, V.1
Lamb, J.2
Sung, P.3
Prakash, S.4
Prakash, L.5
-
3
-
-
11144261727
-
Increased genome instability and telomere length in the elg1-deficient Saccharomyces cerevisiae mutant are regulated by S-phase checkpoints
-
Banerjee, S., and K. Myung. 2004. Increased genome instability and telomere length in the elg1-deficient Saccharomyces cerevisiae mutant are regulated by S-phase checkpoints. Eukaryot. Cell 3:1557-1566.
-
(2004)
Eukaryot. Cell
, vol.3
, pp. 1557-1566
-
-
Banerjee, S.1
Myung, K.2
-
4
-
-
0035833662
-
DNA postreplication repair and mutagenesis in Saccharomyces cerevisiae
-
Broomfield, S., T. Hryciw, and W. Xiao. 2001. DNA postreplication repair and mutagenesis in Saccharomyces cerevisiae. Mutat. Res. 486:167-184.
-
(2001)
Mutat. Res.
, vol.486
, pp. 167-184
-
-
Broomfield, S.1
Hryciw, T.2
Xiao, W.3
-
5
-
-
0036464540
-
Suppression of genetic defects within the RAD6 pathway by srs2 is specific for error-free post-replication repair but not for damage-induced mutagenesis
-
Broomfield, S., and W. Xiao. 2002. Suppression of genetic defects within the RAD6 pathway by srs2 is specific for error-free post-replication repair but not for damage-induced mutagenesis. Nucleic Acids Res. 30:732-739.
-
(2002)
Nucleic Acids Res.
, vol.30
, pp. 732-739
-
-
Broomfield, S.1
Xiao, W.2
-
6
-
-
0037716757
-
Telomerase and ATM/Tel1p protect telomeres from nonhomologous end joining
-
Chan, S. W., and E. H. Blackburn. 2003. Telomerase and ATM/Tel1p protect telomeres from nonhomologous end joining. Mol. Cell 11:1379-1387.
-
(2003)
Mol. Cell
, vol.11
, pp. 1379-1387
-
-
Chan, S.W.1
Blackburn, E.H.2
-
7
-
-
0032860479
-
Gross chromosomal rearrangements in Saccharomyces cerevisiae replication and recombination defective mutants
-
Chen, C., and R. D. Kolodner. 1999. Gross chromosomal rearrangements in Saccharomyces cerevisiae replication and recombination defective mutants. Nat. Genet. 23:81-85.
-
(1999)
Nat. Genet.
, vol.23
, pp. 81-85
-
-
Chen, C.1
Kolodner, R.D.2
-
8
-
-
0036276388
-
The Mre11 complex: At the crossroads of DNA repair and checkpoint signalling
-
D'Amours, D., and S. P. Jackson. 2002. The Mre11 complex: at the crossroads of DNA repair and checkpoint signalling. Nat. Rev. Mol. Cell Biol. 3:317-327.
-
(2002)
Nat. Rev. Mol. Cell Biol.
, vol.3
, pp. 317-327
-
-
D'Amours, D.1
Jackson, S.P.2
-
9
-
-
0025913944
-
The N-end rule is mediated by the UBC2(RAD6) ubiquitin-conjugating enzyme
-
Dohmen, R. J., K. Madura, B. Bartel, and A. Varshavsky. 1991. The N-end rule is mediated by the UBC2(RAD6) ubiquitin-conjugating enzyme. Proc. Natl. Acad. Sci. USA 88:7351-7355.
-
(1991)
Proc. Natl. Acad. Sci. USA
, vol.88
, pp. 7351-7355
-
-
Dohmen, R.J.1
Madura, K.2
Bartel, B.3
Varshavsky, A.4
-
10
-
-
10044239195
-
How are specialized (low-fidelity) eukaryotic polymerases selected and switched with high-fidelity polymerases during translesion DNA synthesis?
-
Fischhaber, P. L., and E. C. Friedberg. 2005. How are specialized (low-fidelity) eukaryotic polymerases selected and switched with high-fidelity polymerases during translesion DNA synthesis? DNA Repair (Amsterdam) 4:279-283.
-
(2005)
DNA Repair (Amsterdam)
, vol.4
, pp. 279-283
-
-
Fischhaber, P.L.1
Friedberg, E.C.2
-
11
-
-
0034733495
-
DNA damage checkpoints and DNA replication controls in Saccharomyces cerevisiae
-
Foiani, M., A. Pellicioli, M. Lopes, C. Lucca, M. Ferrari, G. Liberi, M. Muzi Falconi, and P. Plevani. 2000. DNA damage checkpoints and DNA replication controls in Saccharomyces cerevisiae. Mutat. Res. 451:187-196.
-
(2000)
Mutat. Res.
, vol.451
, pp. 187-196
-
-
Foiani, M.1
Pellicioli, A.2
Lopes, M.3
Lucca, C.4
Ferrari, M.5
Liberi, G.6
Muzi Falconi, M.7
Plevani, P.8
-
12
-
-
5044228029
-
Genetic predisposition to cancer-insights from population genetics
-
Frank, S. A. 2004. Genetic predisposition to cancer-insights from population genetics. Nat. Rev. Genet. 5:764-772.
-
(2004)
Nat. Rev. Genet.
, vol.5
, pp. 764-772
-
-
Frank, S.A.1
-
13
-
-
0004228157
-
-
American Society for Microbiology, Washington, D.C.
-
Friedberg, E. C., G. C. Walker, and W. Siede. 1995. DNA repair and mutagenesis American Society for Microbiology, Washington, D.C.
-
(1995)
DNA Repair and Mutagenesis
-
-
Friedberg, E.C.1
Walker, G.C.2
Siede, W.3
-
14
-
-
0035850252
-
Deletion of the SRS2 gene suppresses elevated recombination and DNA damage sensitivity in rad5 and rad18 mutants of Saccharomyces cerevisiae
-
Friedl, A. A., B. Liefshitz, R. Steinlauf, and M. Kupiec. 2001. Deletion of the SRS2 gene suppresses elevated recombination and DNA damage sensitivity in rad5 and rad18 mutants of Saccharomyces cerevisiae. Mutat. Res. 486:137-146.
-
(2001)
Mutat. Res.
, vol.486
, pp. 137-146
-
-
Friedl, A.A.1
Liefshitz, B.2
Steinlauf, R.3
Kupiec, M.4
-
15
-
-
4444301185
-
SUMO and ubiquitin in the nucleus: Different functions, similar mechanisms?
-
Gill, G. 2004. SUMO and ubiquitin in the nucleus: different functions, similar mechanisms? Genes Dev. 18:2046-2059.
-
(2004)
Genes Dev.
, vol.18
, pp. 2046-2059
-
-
Gill, G.1
-
16
-
-
2442551051
-
Chromosomal instability
-
Gollin, S. M. 2004. Chromosomal instability. Curr. Opin. Oncol. 16:25-31.
-
(2004)
Curr. Opin. Oncol.
, vol.16
, pp. 25-31
-
-
Gollin, S.M.1
-
17
-
-
2942529467
-
Opposing effects of ubiquitin conjugation and SUMO modification of PCNA on replicational bypass of DNA lesions in Saccharomyces cerevisiae
-
Haracska, L., C. A. Torres-Ramos, R. E. Johnson, S. Prakash, and L. Prakash. 2004. Opposing effects of ubiquitin conjugation and SUMO modification of PCNA on replicational bypass of DNA lesions in Saccharomyces cerevisiae. Mol. Cell. Biol. 24:4267-4274.
-
(2004)
Mol. Cell. Biol.
, vol.24
, pp. 4267-4274
-
-
Haracska, L.1
Torres-Ramos, C.A.2
Johnson, R.E.3
Prakash, S.4
Prakash, L.5
-
18
-
-
0037068455
-
RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO
-
Hoege, C., B. Pfander, G. L. Moldovan, G. Pyrowolakis, and S. Jentsch. 2002. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419:135-141.
-
(2002)
Nature
, vol.419
, pp. 135-141
-
-
Hoege, C.1
Pfander, B.2
Moldovan, G.L.3
Pyrowolakis, G.4
Jentsch, S.5
-
19
-
-
0033525582
-
Noncanonical MMS2-encoded ubiquitin-conjugating enzyme functions in assembly of novel polyubiquitin chains for DNA repair
-
Hofmann, R. M., and C. M. Pickart. 1999. Noncanonical MMS2-encoded ubiquitin-conjugating enzyme functions in assembly of novel polyubiquitin chains for DNA repair. Cell 96:645-653.
-
(1999)
Cell
, vol.96
, pp. 645-653
-
-
Hofmann, R.M.1
Pickart, C.M.2
-
20
-
-
0038506001
-
Chromosome integrity in Saccharomyces cerevisiae: The interplay of DNA replication initiation factors, elongation factors, and origins
-
Huang, D., and D. Koshland. 2003. Chromosome integrity in Saccharomyces cerevisiae: the interplay of DNA replication initiation factors, elongation factors, and origins. Genes Dev. 17:1741-1754.
-
(2003)
Genes Dev.
, vol.17
, pp. 1741-1754
-
-
Huang, D.1
Koshland, D.2
-
21
-
-
14644425402
-
A biological network in Saccharomyces cerevisiae prevents the deleterious effects of endogenous oxidative DNA damage
-
Huang, M. E., and R. D. Kolodner. 2005. A biological network in Saccharomyces cerevisiae prevents the deleterious effects of endogenous oxidative DNA damage. Mol. Cell. 17:709-720.
-
(2005)
Mol. Cell.
, vol.17
, pp. 709-720
-
-
Huang, M.E.1
Kolodner, R.D.2
-
22
-
-
18844449401
-
The Rad1-Rad10 complex promtes the production of gross chromosomal rearrangements from spontaneous DNA damage in Saccharomyces cerevisiae
-
Hwang, J. Y., S. Smith, and K. Myung, 2005. The Rad1-Rad10 complex promtes the production of gross chromosomal rearrangements from spontaneous DNA damage in Saccharomyces cerevisiae. Genetics 169:1927-1937.
-
(2005)
Genetics
, vol.169
, pp. 1927-1937
-
-
Hwang, J.Y.1
Smith, S.2
Myung, K.3
-
23
-
-
0033538470
-
RAD30 mutations in the variant form of xeroderma pigmentosum
-
Johnson, R. E., C. M. Kondratick, S. Prakash, and L. Prakash. 1999. hRAD30 mutations in the variant form of xeroderma pigmentosum. Science 285:263-265.
-
(1999)
Science
, vol.285
, pp. 263-265
-
-
Johnson, R.E.1
Kondratick, C.M.2
Prakash, S.3
Prakash, L.4
-
24
-
-
0141504148
-
Elg1 forms an alternative PCNA-interacting RFC complex required to maintain genome stability
-
Kanellis, P., R. Agyei, and D. Durocher. 2003. Elg1 forms an alternative PCNA-interacting RFC complex required to maintain genome stability. Curr. Biol. 13:1583-1595.
-
(2003)
Curr. Biol.
, vol.13
, pp. 1583-1595
-
-
Kanellis, P.1
Agyei, R.2
Durocher, D.3
-
25
-
-
0035093737
-
DNA double-strand breaks: Signaling, repair and the cancer connection
-
Khanna, K. K., and S. P. Jackson. 2001. DNA double-strand breaks: signaling, repair and the cancer connection. Nat. Genet. 27:247-254.
-
(2001)
Nat. Genet.
, vol.27
, pp. 247-254
-
-
Khanna, K.K.1
Jackson, S.P.2
-
26
-
-
0037178722
-
Maintenance of genome stability in Saccharomyces cerevisiae
-
Kolodner, R. D., C. D. Putnam, and K. Myung. 2002. Maintenance of genome stability in Saccharomyces cerevisiae. Science 297:552-557.
-
(2002)
Science
, vol.297
, pp. 552-557
-
-
Kolodner, R.D.1
Putnam, C.D.2
Myung, K.3
-
27
-
-
0037673941
-
DNA helicase Srs2 disrupts the Rad51 presynaptic filament
-
Krejci, L., S. Van Komen, Y. Li, J. Villemain, M. S. Reddy, H. Klein, T. Ellenberger, and P. Sung. 2003. DNA helicase Srs2 disrupts the Rad51 presynaptic filament. Nature 423:305-309.
-
(2003)
Nature
, vol.423
, pp. 305-309
-
-
Krejci, L.1
Van Komen, S.2
Li, Y.3
Villemain, J.4
Reddy, M.S.5
Klein, H.6
Ellenberger, T.7
Sung, P.8
-
28
-
-
20444424939
-
Gross chromosomal rearrangements and elevated recombination at an inducible site-specific replication fork barrier
-
Lambert, S., A. Watson, D. M. Sheedy, B. Martin, and A. M. Carr. 2005. Gross chromosomal rearrangements and elevated recombination at an inducible site-specific replication fork barrier. Cell 121:689-702.
-
(2005)
Cell
, vol.121
, pp. 689-702
-
-
Lambert, S.1
Watson, A.2
Sheedy, D.M.3
Martin, B.4
Carr, A.M.5
-
29
-
-
0028408190
-
The RAD6 DNA repair pathway in Saccharomyces cerevisiae: What does it do, and how does it do it?
-
Lawrence, C. 1994. The RAD6 DNA repair pathway in Saccharomyces cerevisiae: what does it do, and how does it do it? Bioessays 16:253-258.
-
(1994)
Bioessays
, vol.16
, pp. 253-258
-
-
Lawrence, C.1
-
30
-
-
0001313535
-
The distribution of the numbers of mutants in bacterial populations
-
Lea, D. E., and C. A. Coulson. 1948. The distribution of the numbers of mutants in bacterial populations. J. Genet. 49:264-285.
-
(1948)
J. Genet.
, vol.49
, pp. 264-285
-
-
Lea, D.E.1
Coulson, C.A.2
-
31
-
-
10944237288
-
Aneuploidy and genetic instability in cancer
-
Lengauer, C. 2005. Aneuploidy and genetic instability in cancer. Semin. Cancer Biol. 15:1.
-
(2005)
Semin. Cancer Biol.
, vol.15
, pp. 1
-
-
Lengauer, C.1
-
32
-
-
0036278984
-
The yeast CDK inhibitor Sic1 prevents genomic instability by promoting replication origin licensing in late G(1)
-
Lengronne, A., and E. Schwob. 2002. The yeast CDK inhibitor Sic1 prevents genomic instability by promoting replication origin licensing in late G(1). Mol. Cell 9:1067-1078.
-
(2002)
Mol. Cell
, vol.9
, pp. 1067-1078
-
-
Lengronne, A.1
Schwob, E.2
-
33
-
-
0034665462
-
Srs2 DNA helicase is involved in checkpoint response and its regulation requires a functional Mec1-dependent pathway and Cdk1 activity
-
Liberi, G., I. Chiolo, A. Pellicioli, M. Lopes, P. Plevani, M. Muzi-Falconi, and M. Foiani. 2000. Srs2 DNA helicase is involved in checkpoint response and its regulation requires a functional Mec1-dependent pathway and Cdk1 activity. EMBO J. 19:5027-5038.
-
(2000)
EMBO J.
, vol.19
, pp. 5027-5038
-
-
Liberi, G.1
Chiolo, I.2
Pellicioli, A.3
Lopes, M.4
Plevani, P.5
Muzi-Falconi, M.6
Foiani, M.7
-
35
-
-
0036235136
-
A role for histone H2B during repair of UV-induced DNA damage in Saccharomyces cerevisiae
-
Martini, E. M., S. Keeney, and M. A. Osley. 2002. A role for histone H2B during repair of UV-induced DNA damage in Saccharomyces cerevisiae. Genetics 160:1375-1387.
-
(2002)
Genetics
, vol.160
, pp. 1375-1387
-
-
Martini, E.M.1
Keeney, S.2
Osley, M.A.3
-
36
-
-
0033578040
-
The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase eta
-
Masutani, C., R. Kusumoto, A. Yamada, N. Dohmae, M. Yokoi, M. Yuasa, M. Araki, S. Iwai, K. Takio, and F. Hanaoka. 1999. The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase eta. Nature 399:700-704.
-
(1999)
Nature
, vol.399
, pp. 700-704
-
-
Masutani, C.1
Kusumoto, R.2
Yamada, A.3
Dohmae, N.4
Yokoi, M.5
Yuasa, M.6
Araki, M.7
Iwai, S.8
Takio, K.9
Hanaoka, F.10
-
37
-
-
10944236159
-
Can chromosomal instability initiate tumorigenesis?
-
Michor, F., Y. Iwasa, B. Vogelstein, C. Lengauer, and M. A. Nowak. 2005. Can chromosomal instability initiate tumorigenesis? Semin. Cancer Biol. 15:43-49.
-
(2005)
Semin. Cancer Biol.
, vol.15
, pp. 43-49
-
-
Michor, F.1
Iwasa, Y.2
Vogelstein, B.3
Lengauer, C.4
Nowak, M.A.5
-
38
-
-
0035963338
-
Multiple pathways cooperate in the suppression of genome instability in Saccharomyces cerevisiae
-
Myung, K., C. Chen, and R. D. Kolodner. 2001. Multiple pathways cooperate in the suppression of genome instability in Saccharomyces cerevisiae. Nature 411:1073-1076.
-
(2001)
Nature
, vol.411
, pp. 1073-1076
-
-
Myung, K.1
Chen, C.2
Kolodner, R.D.3
-
39
-
-
0035158640
-
SGS1, the Saccharomyces cerevisiae homologue of BLM and WRN, suppresses genome instability and homeologous recombination
-
Myung, K., A. Datta, C. Chen, and R. D. Kolodner. 2001. SGS1, the Saccharomyces cerevisiae homologue of BLM and WRN, suppresses genome instability and homeologous recombination. Nat. Genet. 27:113-116.
-
(2001)
Nat. Genet.
, vol.27
, pp. 113-116
-
-
Myung, K.1
Datta, A.2
Chen, C.3
Kolodner, R.D.4
-
40
-
-
0035830498
-
Suppression of spontaneous chromosomal rearrangements by S phase checkpoint functions in Saccharomyces cerevisiae
-
Myung, K., A. Datta, and R. D. Kolodner. 2001. Suppression of spontaneous chromosomal rearrangements by S phase checkpoint functions in Saccharomyces cerevisiae. Cell 104:397-408.
-
(2001)
Cell
, vol.104
, pp. 397-408
-
-
Myung, K.1
Datta, A.2
Kolodner, R.D.3
-
41
-
-
0037007074
-
Suppression of genome instability by redundant S-phase checkpoint pathways in Saccharomyces cerevisiae
-
Myung, K., and R. D. Kolodner. 2002. Suppression of genome instability by redundant S-phase checkpoint pathways in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 99:4500-4507.
-
(2002)
Proc. Natl. Acad. Sci. USA
, vol.99
, pp. 4500-4507
-
-
Myung, K.1
Kolodner, R.D.2
-
42
-
-
0038312215
-
Saccharomyces cerevisiae chromatin-assembly factors that act during DNA replication function in the maintenance of genome stability
-
Myung, K., V. Pennaneach, E. S. Kats, and R. D. Kolodner. 2003. Saccharomyces cerevisiae chromatin-assembly factors that act during DNA replication function in the maintenance of genome stability. Proc. Natl. Acad. Sci. USA 100:6640-6645.
-
(2003)
Proc. Natl. Acad. Sci. USA
, vol.100
, pp. 6640-6645
-
-
Myung, K.1
Pennaneach, V.2
Kats, E.S.3
Kolodner, R.D.4
-
43
-
-
8644251877
-
Mitotic checkpoint function in the formation of gross chromosomal rearrangements in Saccharomyces cerevisiae
-
Myung, K., S. Smith, and R. D. Kolodner. 2004. Mitotic checkpoint function in the formation of gross chromosomal rearrangements in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 101:15980-15985.
-
(2004)
Proc. Natl. Acad. Sci. USA
, vol.101
, pp. 15980-15985
-
-
Myung, K.1
Smith, S.2
Kolodner, R.D.3
-
44
-
-
4444292985
-
Highly penetrant hereditary cancer syndromes
-
Nagy, R., K. Sweet, and C. Eng. 2004. Highly penetrant hereditary cancer syndromes. Oncogene 23:6445-6470.
-
(2004)
Oncogene
, vol.23
, pp. 6445-6470
-
-
Nagy, R.1
Sweet, K.2
Eng, C.3
-
45
-
-
1542298300
-
H2B ubiquitylation: The end is in sight
-
Osley, M. A. 2004. H2B ubiquitylation: the end is in sight. Biochim. Biophys. Acta 1677:74-78.
-
(2004)
Biochim. Biophys. Acta
, vol.1677
, pp. 74-78
-
-
Osley, M.A.1
-
46
-
-
21244449061
-
Crosstalk between SUMO and ubiquitin on PCNA is mediated by recruitment of the helicase Srs2p
-
Papouli, E., S. Chen, A. A. Davies, D. Huttner, L. Krejci, P. Sung, and H. D. Ulrich. 2005. Crosstalk between SUMO and ubiquitin on PCNA is mediated by recruitment of the helicase Srs2p. Mol. Cell 19:123-133.
-
(2005)
Mol. Cell
, vol.19
, pp. 123-133
-
-
Papouli, E.1
Chen, S.2
Davies, A.A.3
Huttner, D.4
Krejci, L.5
Sung, P.6
Ulrich, H.D.7
-
47
-
-
2642516988
-
Recombination and the Tel1 and Mec1 checkpoints differentially effect genome rearrangements driven by telomere dysfunction in yeast
-
Pennaneach, V., and R. D. Kolodner. 2004. Recombination and the Tel1 and Mec1 checkpoints differentially effect genome rearrangements driven by telomere dysfunction in yeast. Nat. Genet. 36:612-617.
-
(2004)
Nat. Genet.
, vol.36
, pp. 612-617
-
-
Pennaneach, V.1
Kolodner, R.D.2
-
48
-
-
0034020464
-
The Mre11 complex and ATM: Collaborating to navigate S phase
-
Petrini, J. H. 2000. The Mre11 complex and ATM: collaborating to navigate S phase. Curr. Opin. Cell Biol. 12:293-296.
-
(2000)
Curr. Opin. Cell Biol.
, vol.12
, pp. 293-296
-
-
Petrini, J.H.1
-
49
-
-
22944474665
-
SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase
-
Pfander, B., G. L. Moldovan, M. Sacher, C. Hoege, and S. Jentsch. 2005. SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase. Nature 436:428-433.
-
(2005)
Nature
, vol.436
, pp. 428-433
-
-
Pfander, B.1
Moldovan, G.L.2
Sacher, M.3
Hoege, C.4
Jentsch, S.5
-
50
-
-
1942439667
-
Switching from high-fidelity replicases to low-fidelity lesion-bypass polymerases
-
Plosky, B. S., and R. Woodgate. 2004. Switching from high-fidelity replicases to low-fidelity lesion-bypass polymerases. Curr. Opin. Genet. Dev. 14:113-119.
-
(2004)
Curr. Opin. Genet. Dev.
, vol.14
, pp. 113-119
-
-
Plosky, B.S.1
Woodgate, R.2
-
51
-
-
0034733496
-
Nucleotide excision repair in yeast
-
Prakash, S., and L. Prakash. 2000. Nucleotide excision repair in yeast. Mutat. Res. 451:13-24.
-
(2000)
Mutat. Res.
, vol.451
, pp. 13-24
-
-
Prakash, S.1
Prakash, L.2
-
52
-
-
4444293120
-
Chromosome healing through terminal deletions generated by de novo telomere additions in Saccharomyces cerevisiae
-
Putnam, C. D., V. Pennaneach, and R. D. Kolodner. 2004. Chromosome healing through terminal deletions generated by de novo telomere additions in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 101:13262-13267.
-
(2004)
Proc. Natl. Acad. Sci. USA
, vol.101
, pp. 13262-13267
-
-
Putnam, C.D.1
Pennaneach, V.2
Kolodner, R.D.3
-
54
-
-
3943107573
-
Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints
-
Sancar, A., L. A. Lindsey-Boltz, K. Unsal-Kacmaz, and S. Linn. 2004. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu. Rev. Biochem. 73:39-85.
-
(2004)
Annu. Rev. Biochem.
, vol.73
, pp. 39-85
-
-
Sancar, A.1
Lindsey-Boltz, L.A.2
Unsal-Kacmaz, K.3
Linn, S.4
-
55
-
-
0035830497
-
Spontaneous DNA damage, genome instability, and cancer-when DNA replication escapes control
-
Schar, P. 2001. Spontaneous DNA damage, genome instability, and cancer-when DNA replication escapes control. Cell 104:329-332.
-
(2001)
Cell
, vol.104
, pp. 329-332
-
-
Schar, P.1
-
56
-
-
0025232659
-
The SRS2 suppressor of rado mutations of Saccharomyces cerevisiae acts by channeling DNA lesions into the RAD52 DNA repair pathway
-
Schiestl, R. H., S. Prakash, and L. Prakash. 1990. The SRS2 suppressor of rado mutations of Saccharomyces cerevisiae acts by channeling DNA lesions into the RAD52 DNA repair pathway. Genetics 124:817-831.
-
(1990)
Genetics
, vol.124
, pp. 817-831
-
-
Schiestl, R.H.1
Prakash, S.2
Prakash, L.3
-
57
-
-
0038434056
-
A superfamily of protein tags: Ubiquitin, SUMO and related modifiers
-
Schwartz, D. C., and M. Hochstrasser. 2003. A superfamily of protein tags: ubiquitin, SUMO and related modifiers. Trends Biochem. Sci. 28:321-328.
-
(2003)
Trends Biochem. Sci.
, vol.28
, pp. 321-328
-
-
Schwartz, D.C.1
Hochstrasser, M.2
-
58
-
-
0344413637
-
Role of the error-free damage bypass postreplication repair pathway in the maintenance of genomic stability
-
Smirnova, M., and H. L. Klein. 2003. Role of the error-free damage bypass postreplication repair pathway in the maintenance of genomic stability. Mutat. Res. 532:117-135.
-
(2003)
Mutat. Res.
, vol.532
, pp. 117-135
-
-
Smirnova, M.1
Klein, H.L.2
-
59
-
-
16244368497
-
Suppression of gross chromosomal rearrangements by the multiple functions of the Mre11-Rad50-Xrs2 complex in Saccharomyces cerevisiae
-
Smith, S., A. Gupta, R. D. Kolodner, and K. Myung. 2005. Suppression of gross chromosomal rearrangements by the multiple functions of the Mre11-Rad50-Xrs2 complex in Saccharomyces cerevisiae. DNA Repair (Amsterdam) 4:606-617.
-
(2005)
DNA Repair (Amsterdam)
, vol.4
, pp. 606-617
-
-
Smith, S.1
Gupta, A.2
Kolodner, R.D.3
Myung, K.4
-
60
-
-
2942695713
-
Mutator genes for suppression of gross chromosomal rearrangements identified by a genome-wide screening in Saccharomyces cerevisiae
-
Smith, S., J. Y. Hwang, S. Banerjee, A. Majeed, A. Gupta, and K. Myung. 2004. Mutator genes for suppression of gross chromosomal rearrangements identified by a genome-wide screening in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 101:9039-9044.
-
(2004)
Proc. Natl. Acad. Sci. USA
, vol.101
, pp. 9039-9044
-
-
Smith, S.1
Hwang, J.Y.2
Banerjee, S.3
Majeed, A.4
Gupta, A.5
Myung, K.6
-
61
-
-
2942534856
-
A new Saccharomyces cerevisiae strain with a mutant Smt3-deconjugating Ulp1 protein is affected in DNA replication and requires Srs2 and homologous recombination for its viability
-
Soustelle, C., L. Vernis, K. Freon, A. Reynaud-Angelin, R. Chanet, F. Fahre, and M. Heude. 2004. A new Saccharomyces cerevisiae strain with a mutant Smt3-deconjugating Ulp1 protein is affected in DNA replication and requires Srs2 and homologous recombination for its viability. Mol. Cell. Biol. 24:5130-5143.
-
(2004)
Mol. Cell. Biol.
, vol.24
, pp. 5130-5143
-
-
Soustelle, C.1
Vernis, L.2
Freon, K.3
Reynaud-Angelin, A.4
Chanet, R.5
Fahre, F.6
Heude, M.7
-
62
-
-
0141831006
-
Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation
-
Stelter, P., and H. D. Ulrich. 2003. Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation. Nature 425:188-191.
-
(2003)
Nature
, vol.425
, pp. 188-191
-
-
Stelter, P.1
Ulrich, H.D.2
-
63
-
-
0025319223
-
Mutation of cysteine-88 in the Saccharomyces cerevisiae RAD6 protein abolishes its ubiquitin-conjugating activity and its various biological functions
-
Sung, P., S. Prakash, and L. Prakash. 1990. Mutation of cysteine-88 in the Saccharomyces cerevisiae RAD6 protein abolishes its ubiquitin-conjugating activity and its various biological functions. Proc. Natl. Acad. Sci. USA 87:2695-2699.
-
(1990)
Proc. Natl. Acad. Sci. USA
, vol.87
, pp. 2695-2699
-
-
Sung, P.1
Prakash, S.2
Prakash, L.3
-
64
-
-
0036900120
-
Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair
-
Symington, L. S. 2002. Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair. Microbiol. Mol. Biol. Rev. 66:630-670.
-
(2002)
Microbiol. Mol. Biol. Rev.
, vol.66
, pp. 630-670
-
-
Symington, L.S.1
-
65
-
-
0037107343
-
Deregulated G1-cyclin expression induces genomic instability by preventing efficient pre-RC formation
-
Tanaka, S., and J. F. Diffley. 2002. Deregulated G1-cyclin expression induces genomic instability by preventing efficient pre-RC formation. Genes Dev. 16:2639-2649.
-
(2002)
Genes Dev.
, vol.16
, pp. 2639-2649
-
-
Tanaka, S.1
Diffley, J.F.2
-
66
-
-
0037218854
-
Enhanced genomic instability and defective postreplication repair in RAD18 knockout mouse embryonic stem cells
-
Tateishi, S., H. Niwa, J. Miyazaki, S. Fujimoto, H. Inoue, and M. Yamaizumi. 2003. Enhanced genomic instability and defective postreplication repair in RAD18 knockout mouse embryonic stem cells. Mol. Cell. Biol. 23:474-481.
-
(2003)
Mol. Cell. Biol.
, vol.23
, pp. 474-481
-
-
Tateishi, S.1
Niwa, H.2
Miyazaki, J.3
Fujimoto, S.4
Inoue, H.5
Yamaizumi, M.6
-
67
-
-
10944219726
-
Multiple numerical chromosome aberrations in cancer: What are their causes and what are their consequences?
-
Teixeira, M. R., and S. Heim. 2005. Multiple numerical chromosome aberrations in cancer: what are their causes and what are their consequences? Semin. Cancer Biol. 15:3-12.
-
(2005)
Semin. Cancer Biol.
, vol.15
, pp. 3-12
-
-
Teixeira, M.R.1
Heim, S.2
-
68
-
-
0035445946
-
The srs2 suppressor of UV sensitivity acts specifically on the RAD5- and MM52-dependent branch of the RAD6 pathway
-
Ulrich, H. D. 2001. The srs2 suppressor of UV sensitivity acts specifically on the RAD5- and MM52-dependent branch of the RAD6 pathway. Nucleic Acids Res. 29:3487-3494.
-
(2001)
Nucleic Acids Res.
, vol.29
, pp. 3487-3494
-
-
Ulrich, H.D.1
-
69
-
-
0036671706
-
Recovery from checkpoint-mediated arrest after repair of a double-strand break requires Srs2 helicase
-
Vaze, M. B., A. Pellicioli, S. E. Lee, G. Ira, G. Liberi, A. Arbel-Eden, M. Foiani, and J. E. Haber. 2002. Recovery from checkpoint-mediated arrest after repair of a double-strand break requires Srs2 helicase. Mol. Cell 10:373-385.
-
(2002)
Mol. Cell
, vol.10
, pp. 373-385
-
-
Vaze, M.B.1
Pellicioli, A.2
Lee, S.E.3
Ira, G.4
Liberi, G.5
Arbel-Eden, A.6
Foiani, M.7
Haber, J.E.8
-
70
-
-
0037673943
-
The Srs2 helicase prevents recombination by disrupting RadSl nucleoprotein filaments
-
Veaute, X., J. Jeusset, C. Soustelle, S. C. Kowalczykowski, E. Le Cam, and F. Fabre. 2003. The Srs2 helicase prevents recombination by disrupting RadSl nucleoprotein filaments. Nature 423:309-312.
-
(2003)
Nature
, vol.423
, pp. 309-312
-
-
Veaute, X.1
Jeusset, J.2
Soustelle, C.3
Kowalczykowski, S.C.4
Le Cam, E.5
Fabre, F.6
-
71
-
-
8544273758
-
Global analysis of protein sumoylation in Saccharomyces cerevisiae
-
Wohlschlegel, J. A., E. S. Johnson, S. I. Reed, and J. R. Yates, III. 2004. Global analysis of protein sumoylation in Saccharomyces cerevisiae. J. Biol. Chem. 279:45662-45668.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 45662-45668
-
-
Wohlschlegel, J.A.1
Johnson, E.S.2
Reed, S.I.3
Yates III, J.R.4
-
72
-
-
0037248944
-
Bre1, an E3 ubiquitin ligase required for recruitment and substrate selection of Rad6 at a promoter
-
Wood, A., N. J. Krogan, J. Dover, J. Schneider, J. Heidt, M. A. Boateng, K. Dean, A. Golshani, Y. Zhang, J. F. Greenblatt, M. Johnston, and A. Shilatifard. 2003. Bre1, an E3 ubiquitin ligase required for recruitment and substrate selection of Rad6 at a promoter. Mol. Cell 11:267-274.
-
(2003)
Mol. Cell
, vol.11
, pp. 267-274
-
-
Wood, A.1
Krogan, N.J.2
Dover, J.3
Schneider, J.4
Heidt, J.5
Boateng, M.A.6
Dean, K.7
Golshani, A.8
Zhang, Y.9
Greenblatt, J.F.10
Johnston, M.11
Shilatifard, A.12
-
73
-
-
16344370926
-
A SUMO ligase is part of a nuclear multiprotein complex that affects DNA repair and chromosomal organization
-
Zhao, X., and G. Blobel. 2005. A SUMO ligase is part of a nuclear multiprotein complex that affects DNA repair and chromosomal organization. Proc. Natl. Acad. Sci. USA 102:4777-4782.
-
(2005)
Proc. Natl. Acad. Sci. USA
, vol.102
, pp. 4777-4782
-
-
Zhao, X.1
Blobel, G.2
|