-
1
-
-
38549131272
-
DnaJ recruits DnaK to protein aggregates
-
Acebrón S.P., Fernández-Sáiz V., Taneva S.G., Moro F., Muga A. DnaJ recruits DnaK to protein aggregates. J. Biol. Chem. 2008, 283:1381-1390.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 1381-1390
-
-
Acebrón, S.P.1
Fernández-Sáiz, V.2
Taneva, S.G.3
Moro, F.4
Muga, A.5
-
2
-
-
69949145963
-
DnaK-mediated association of ClpB to protein aggregates. A bichaperone network at the aggregate surface
-
Acebrón S.P., Martín I., del Castillo U., Moro F., Muga A. DnaK-mediated association of ClpB to protein aggregates. A bichaperone network at the aggregate surface. FEBS Lett. 2009, 583:2991-2996.
-
(2009)
FEBS Lett.
, vol.583
, pp. 2991-2996
-
-
Acebrón, S.P.1
Martín, I.2
del Castillo, U.3
Moro, F.4
Muga, A.5
-
3
-
-
56249135270
-
Chaperonin chamber accelerates protein folding through passive action of preventing aggregation
-
Apetri A.C., Horwich A.L. Chaperonin chamber accelerates protein folding through passive action of preventing aggregation. Proc. Natl. Acad. Sci. USA 2008, 105:17351-17355.
-
(2008)
Proc. Natl. Acad. Sci. USA
, vol.105
, pp. 17351-17355
-
-
Apetri, A.C.1
Horwich, A.L.2
-
4
-
-
39349083915
-
Adapting proteostasis for disease intervention
-
Balch W.E., Morimoto R.I., Dillin A., Kelly J.W. Adapting proteostasis for disease intervention. Science 2008, 319:916-919.
-
(2008)
Science
, vol.319
, pp. 916-919
-
-
Balch, W.E.1
Morimoto, R.I.2
Dillin, A.3
Kelly, J.W.4
-
5
-
-
84861139210
-
DnaK functions as a central hub in the E. coli chaperone network
-
Published online March 8, 2012
-
Calloni G., Chen T., Schermann S.M., Change H.-C., Genevaux P., Agostini F., Tartaglia G.G., Hayer-Hartl M., Hartl F.U. DnaK functions as a central hub in the E. coli chaperone network. Cell Reports. 2012, Published online March 8, 2012.
-
(2012)
Cell Reports.
-
-
Calloni, G.1
Chen, T.2
Schermann, S.M.3
Change, H.-C.4
Genevaux, P.5
Agostini, F.6
Tartaglia, G.G.7
Hayer-Hartl, M.8
Hartl, F.U.9
-
6
-
-
77954277524
-
Chaperonin-catalyzed rescue of kinetically trapped states in protein folding
-
Chakraborty K., Chatila M., Sinha J., Shi Q., Poschner B.C., Sikor M., Jiang G., Lamb D.C., Hartl F.U., Hayer-Hartl M. Chaperonin-catalyzed rescue of kinetically trapped states in protein folding. Cell 2010, 142:112-122.
-
(2010)
Cell
, vol.142
, pp. 112-122
-
-
Chakraborty, K.1
Chatila, M.2
Sinha, J.3
Shi, Q.4
Poschner, B.C.5
Sikor, M.6
Jiang, G.7
Lamb, D.C.8
Hartl, F.U.9
Hayer-Hartl, M.10
-
7
-
-
33750489742
-
Global aggregation of newly translated proteins in an Escherichia coli strain deficient of the chaperonin GroEL
-
Chapman E., Farr G.W., Usaite R., Furtak K., Fenton W.A., Chaudhuri T.K., Hondorp E.R., Matthews R.G., Wolf S.G., Yates J.R., et al. Global aggregation of newly translated proteins in an Escherichia coli strain deficient of the chaperonin GroEL. Proc. Natl. Acad. Sci. USA 2006, 103:15800-15805.
-
(2006)
Proc. Natl. Acad. Sci. USA
, vol.103
, pp. 15800-15805
-
-
Chapman, E.1
Farr, G.W.2
Usaite, R.3
Furtak, K.4
Fenton, W.A.5
Chaudhuri, T.K.6
Hondorp, E.R.7
Matthews, R.G.8
Wolf, S.G.9
Yates, J.R.10
-
8
-
-
33746377894
-
Protein misfolding, functional amyloid, and human disease
-
Chiti F., Dobson C.M. Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 2006, 75:333-366.
-
(2006)
Annu. Rev. Biochem.
, vol.75
, pp. 333-366
-
-
Chiti, F.1
Dobson, C.M.2
-
9
-
-
11444271010
-
Chaperone-assisted folding of newly synthesized proteins in the cytosol
-
Deuerling E., Bukau B. Chaperone-assisted folding of newly synthesized proteins in the cytosol. Crit. Rev. Biochem. Mol. Biol. 2004, 39:261-277.
-
(2004)
Crit. Rev. Biochem. Mol. Biol.
, vol.39
, pp. 261-277
-
-
Deuerling, E.1
Bukau, B.2
-
10
-
-
0034647887
-
Size-dependent disaggregation of stable protein aggregates by the DnaK chaperone machinery
-
Diamant S., Ben-Zvi A.P., Bukau B., Goloubinoff P. Size-dependent disaggregation of stable protein aggregates by the DnaK chaperone machinery. J. Biol. Chem. 2000, 275:21107-21113.
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 21107-21113
-
-
Diamant, S.1
Ben-Zvi, A.P.2
Bukau, B.3
Goloubinoff, P.4
-
11
-
-
34547455220
-
Collaboration between the ClpB AAA+ remodeling protein and the DnaK chaperone system
-
Doyle S.M., Hoskins J.R., Wickner S. Collaboration between the ClpB AAA+ remodeling protein and the DnaK chaperone system. Proc. Natl. Acad. Sci. USA 2007, 104:11138-11144.
-
(2007)
Proc. Natl. Acad. Sci. USA
, vol.104
, pp. 11138-11144
-
-
Doyle, S.M.1
Hoskins, J.R.2
Wickner, S.3
-
12
-
-
32544432878
-
ClpS is an essential component of the N-end rule pathway in Escherichia coli
-
Erbse A., Schmidt R., Bornemann T., Schneider-Mergener J., Mogk A., Zahn R., Dougan D.A., Bukau B. ClpS is an essential component of the N-end rule pathway in Escherichia coli. Nature 2006, 439:753-756.
-
(2006)
Nature
, vol.439
, pp. 753-756
-
-
Erbse, A.1
Schmidt, R.2
Bornemann, T.3
Schneider-Mergener, J.4
Mogk, A.5
Zahn, R.6
Dougan, D.A.7
Bukau, B.8
-
13
-
-
77951974784
-
A systematic survey of in vivo obligate chaperonin-dependent substrates
-
Fujiwara K., Ishihama Y., Nakahigashi K., Soga T., Taguchi H. A systematic survey of in vivo obligate chaperonin-dependent substrates. EMBO J. 2010, 29:1552-1564.
-
(2010)
EMBO J.
, vol.29
, pp. 1552-1564
-
-
Fujiwara, K.1
Ishihama, Y.2
Nakahigashi, K.3
Soga, T.4
Taguchi, H.5
-
14
-
-
0030044799
-
A cycle of binding and release of the DnaK, DnaJ and GrpE chaperones regulates activity of the Escherichia coli heat shock transcription factor σ32
-
Gamer J., Multhaup G., Tomoyasu T., McCarty J.S., Rüdiger S., Schönfeld H.J., Schirra C., Bujard H., Bukau B. A cycle of binding and release of the DnaK, DnaJ and GrpE chaperones regulates activity of the Escherichia coli heat shock transcription factor σ32. EMBO J. 1996, 15:607-617.
-
(1996)
EMBO J.
, vol.15
, pp. 607-617
-
-
Gamer, J.1
Multhaup, G.2
Tomoyasu, T.3
McCarty, J.S.4
Rüdiger, S.5
Schönfeld, H.J.6
Schirra, C.7
Bujard, H.8
Bukau, B.9
-
15
-
-
35748962910
-
The Hsp70 chaperone machines of Escherichia coli: a paradigm for the repartition of chaperone functions
-
Genevaux P., Georgopoulos C., Kelley W.L. The Hsp70 chaperone machines of Escherichia coli: a paradigm for the repartition of chaperone functions. Mol. Microbiol. 2007, 66:840-857.
-
(2007)
Mol. Microbiol.
, vol.66
, pp. 840-857
-
-
Genevaux, P.1
Georgopoulos, C.2
Kelley, W.L.3
-
16
-
-
67649774570
-
Computing protein stabilities from their chain lengths
-
Ghosh K., Dill K.A. Computing protein stabilities from their chain lengths. Proc. Natl. Acad. Sci. USA 2009, 106:10649-10654.
-
(2009)
Proc. Natl. Acad. Sci. USA
, vol.106
, pp. 10649-10654
-
-
Ghosh, K.1
Dill, K.A.2
-
17
-
-
78650217130
-
Cellular proteomes have broad distributions of protein stability
-
Ghosh K., Dill K. Cellular proteomes have broad distributions of protein stability. Biophys. J. 2010, 99:3996-4002.
-
(2010)
Biophys. J.
, vol.99
, pp. 3996-4002
-
-
Ghosh, K.1
Dill, K.2
-
18
-
-
0032546762
-
Catapult mechanism renders the chaperone action of Hsp70 unidirectional
-
Gisler S.M., Pierpaoli E.V., Christen P. Catapult mechanism renders the chaperone action of Hsp70 unidirectional. J. Mol. Biol. 1998, 279:833-840.
-
(1998)
J. Mol. Biol.
, vol.279
, pp. 833-840
-
-
Gisler, S.M.1
Pierpaoli, E.V.2
Christen, P.3
-
19
-
-
0344824655
-
Proteolysis in bacterial regulatory circuits
-
Gottesman S. Proteolysis in bacterial regulatory circuits. Annu. Rev. Cell Dev. Biol. 2003, 19:565-587.
-
(2003)
Annu. Rev. Cell Dev. Biol.
, vol.19
, pp. 565-587
-
-
Gottesman, S.1
-
20
-
-
79960652801
-
Molecular chaperones in protein folding and proteostasis
-
Hartl F.U., Bracher A., Hayer-Hartl M. Molecular chaperones in protein folding and proteostasis. Nature 2011, 475:324-332.
-
(2011)
Nature
, vol.475
, pp. 324-332
-
-
Hartl, F.U.1
Bracher, A.2
Hayer-Hartl, M.3
-
21
-
-
0032485847
-
Folding of firefly (Photinus pyralis) luciferase: aggregation and reactivation of unfolding intermediates
-
Herbst R., Gast K., Seckler R. Folding of firefly (Photinus pyralis) luciferase: aggregation and reactivation of unfolding intermediates. Biochemistry 1998, 37:6586-6597.
-
(1998)
Biochemistry
, vol.37
, pp. 6586-6597
-
-
Herbst, R.1
Gast, K.2
Seckler, R.3
-
22
-
-
2942755215
-
Stress induced by recombinant protein production in Escherichia coli
-
Hoffmann F., Rinas U. Stress induced by recombinant protein production in Escherichia coli. Adv. Biochem. Eng. Biotechnol. 2004, 89:73-92.
-
(2004)
Adv. Biochem. Eng. Biotechnol.
, vol.89
, pp. 73-92
-
-
Hoffmann, F.1
Rinas, U.2
-
23
-
-
33646907087
-
GroEL-GroES-mediated protein folding
-
Horwich A.L., Farr G.W., Fenton W.A. GroEL-GroES-mediated protein folding. Chem. Rev. 2006, 106:1917-1930.
-
(2006)
Chem. Rev.
, vol.106
, pp. 1917-1930
-
-
Horwich, A.L.1
Farr, G.W.2
Fenton, W.A.3
-
24
-
-
33745700348
-
Modeling Hsp70-mediated protein folding
-
Hu B., Mayer M.P., Tomita M. Modeling Hsp70-mediated protein folding. Biophys. J. 2006, 91:496-507.
-
(2006)
Biophys. J.
, vol.91
, pp. 496-507
-
-
Hu, B.1
Mayer, M.P.2
Tomita, M.3
-
25
-
-
43149111608
-
Do chaperonins boost protein yields by accelerating folding or preventing aggregation?
-
Jewett A.I., Shea J.E. Do chaperonins boost protein yields by accelerating folding or preventing aggregation?. Biophys. J. 2008, 94:2987-2993.
-
(2008)
Biophys. J.
, vol.94
, pp. 2987-2993
-
-
Jewett, A.I.1
Shea, J.E.2
-
26
-
-
22744447508
-
Proteome-wide analysis of chaperonin-dependent protein folding in Escherichia coli
-
Kerner M.J., Naylor D.J., Ishihama Y., Maier T., Chang H.C., Stines A.P., Georgopoulos C., Frishman D., Hayer-Hartl M., Mann M., Hartl F.U. Proteome-wide analysis of chaperonin-dependent protein folding in Escherichia coli. Cell 2005, 122:209-220.
-
(2005)
Cell
, vol.122
, pp. 209-220
-
-
Kerner, M.J.1
Naylor, D.J.2
Ishihama, Y.3
Maier, T.4
Chang, H.C.5
Stines, A.P.6
Georgopoulos, C.7
Frishman, D.8
Hayer-Hartl, M.9
Mann, M.10
Hartl, F.U.11
-
27
-
-
40949124274
-
GroEL stimulates protein folding through forced unfolding
-
Lin Z., Madan D., Rye H.S. GroEL stimulates protein folding through forced unfolding. Nat. Struct. Mol. Biol. 2008, 15:303-311.
-
(2008)
Nat. Struct. Mol. Biol.
, vol.15
, pp. 303-311
-
-
Lin, Z.1
Madan, D.2
Rye, H.S.3
-
28
-
-
17044387386
-
Hsp70 chaperones: cellular functions and molecular mechanism
-
Mayer M.P., Bukau B. Hsp70 chaperones: cellular functions and molecular mechanism. Cell. Mol. Life Sci. 2005, 62:670-684.
-
(2005)
Cell. Mol. Life Sci.
, vol.62
, pp. 670-684
-
-
Mayer, M.P.1
Bukau, B.2
-
29
-
-
0033936317
-
Multistep mechanism of substrate binding determines chaperone activity of Hsp70
-
Mayer M.P., Schröder H., Rüdiger S., Paal K., Laufen T., Bukau B. Multistep mechanism of substrate binding determines chaperone activity of Hsp70. Nat. Struct. Biol. 2000, 7:586-593.
-
(2000)
Nat. Struct. Biol.
, vol.7
, pp. 586-593
-
-
Mayer, M.P.1
Schröder, H.2
Rüdiger, S.3
Paal, K.4
Laufen, T.5
Bukau, B.6
-
30
-
-
0142125283
-
Small heat shock proteins, ClpB and the DnaK system form a functional triade in reversing protein aggregation
-
Mogk A., Deuerling E., Vorderwülbecke S., Vierling E., Bukau B. Small heat shock proteins, ClpB and the DnaK system form a functional triade in reversing protein aggregation. Mol. Microbiol. 2003, 50:585-595.
-
(2003)
Mol. Microbiol.
, vol.50
, pp. 585-595
-
-
Mogk, A.1
Deuerling, E.2
Vorderwülbecke, S.3
Vierling, E.4
Bukau, B.5
-
31
-
-
63149130741
-
Bimodal protein solubility distribution revealed by an aggregation analysis of the entire ensemble of Escherichia coli proteins
-
Niwa T., Ying B.W., Saito K., Jin W., Takada S., Ueda T., Taguchi H. Bimodal protein solubility distribution revealed by an aggregation analysis of the entire ensemble of Escherichia coli proteins. Proc. Natl. Acad. Sci. USA 2009, 106:4201-4206.
-
(2009)
Proc. Natl. Acad. Sci. USA
, vol.106
, pp. 4201-4206
-
-
Niwa, T.1
Ying, B.W.2
Saito, K.3
Jin, W.4
Takada, S.5
Ueda, T.6
Taguchi, H.7
-
33
-
-
46449120907
-
Predicting protein folding rates from geometric contact and amino acid sequence
-
Ouyang Z., Liang J. Predicting protein folding rates from geometric contact and amino acid sequence. Protein Sci. 2008, 17:1256-1263.
-
(2008)
Protein Sci.
, vol.17
, pp. 1256-1263
-
-
Ouyang, Z.1
Liang, J.2
-
34
-
-
0032502839
-
Contact order, transition state placement and the refolding rates of single domain proteins
-
Plaxco K.W., Simons K.T., Baker D. Contact order, transition state placement and the refolding rates of single domain proteins. J. Mol. Biol. 1998, 277:985-994.
-
(1998)
J. Mol. Biol.
, vol.277
, pp. 985-994
-
-
Plaxco, K.W.1
Simons, K.T.2
Baker, D.3
-
35
-
-
67650410543
-
Biological and chemical approaches to diseases of proteostasis deficiency
-
Powers E.T., Morimoto R.I., Dillin A., Kelly J.W., Balch W.E. Biological and chemical approaches to diseases of proteostasis deficiency. Annu. Rev. Biochem. 2009, 78:959-991.
-
(2009)
Annu. Rev. Biochem.
, vol.78
, pp. 959-991
-
-
Powers, E.T.1
Morimoto, R.I.2
Dillin, A.3
Kelly, J.W.4
Balch, W.E.5
-
36
-
-
0031557387
-
Binding, encapsulation and ejection: substrate dynamics during a chaperonin-assisted folding reaction
-
Ranson N.A., Burston S.G., Clarke A.R. Binding, encapsulation and ejection: substrate dynamics during a chaperonin-assisted folding reaction. J. Mol. Biol. 1997, 266:656-664.
-
(1997)
J. Mol. Biol.
, vol.266
, pp. 656-664
-
-
Ranson, N.A.1
Burston, S.G.2
Clarke, A.R.3
-
37
-
-
0033617129
-
GroEL-GroES cycling: ATP and nonnative polypeptide direct alternation of folding-active rings
-
Rye H.S., Roseman A.M., Chen S., Furtak K., Fenton W.A., Saibil H.R., Horwich A.L. GroEL-GroES cycling: ATP and nonnative polypeptide direct alternation of folding-active rings. Cell 1999, 97:325-338.
-
(1999)
Cell
, vol.97
, pp. 325-338
-
-
Rye, H.S.1
Roseman, A.M.2
Chen, S.3
Furtak, K.4
Fenton, W.A.5
Saibil, H.R.6
Horwich, A.L.7
-
38
-
-
77649272553
-
Slowing bacterial translation speed enhances eukaryotic protein folding efficiency
-
Siller E., DeZwaan D.C., Anderson J.F., Freeman B.C., Barral J.M. Slowing bacterial translation speed enhances eukaryotic protein folding efficiency. J. Mol. Biol. 2010, 396:1310-1318.
-
(2010)
J. Mol. Biol.
, vol.396
, pp. 1310-1318
-
-
Siller, E.1
DeZwaan, D.C.2
Anderson, J.F.3
Freeman, B.C.4
Barral, J.M.5
-
39
-
-
45149128433
-
The cost of expression of Escherichia coli lac operon proteins is in the process, not in the products
-
Stoebel D.M., Dean A.M., Dykhuizen D.E. The cost of expression of Escherichia coli lac operon proteins is in the process, not in the products. Genetics 2008, 178:1653-1660.
-
(2008)
Genetics
, vol.178
, pp. 1653-1660
-
-
Stoebel, D.M.1
Dean, A.M.2
Dykhuizen, D.E.3
-
40
-
-
0028151509
-
The ATP hydrolysis-dependent reaction cycle of the Escherichia coli Hsp70 system DnaK, DnaJ, and GrpE
-
Szabo A., Langer T., Schröder H., Flanagan J., Bukau B., Hartl F.U. The ATP hydrolysis-dependent reaction cycle of the Escherichia coli Hsp70 system DnaK, DnaJ, and GrpE. Proc. Natl. Acad. Sci. USA 1994, 91:10345-10349.
-
(1994)
Proc. Natl. Acad. Sci. USA
, vol.91
, pp. 10345-10349
-
-
Szabo, A.1
Langer, T.2
Schröder, H.3
Flanagan, J.4
Bukau, B.5
Hartl, F.U.6
-
41
-
-
40849084893
-
Kinetic model for the coupling between allosteric transitions in GroEL and substrate protein folding and aggregation
-
Tehver R., Thirumalai D. Kinetic model for the coupling between allosteric transitions in GroEL and substrate protein folding and aggregation. J. Mol. Biol. 2008, 377:1279-1295.
-
(2008)
J. Mol. Biol.
, vol.377
, pp. 1279-1295
-
-
Tehver, R.1
Thirumalai, D.2
-
42
-
-
73949133922
-
GroEL/GroES cycling: ATP binds to an open ring before substrate protein favoring protein binding and production of the native state
-
Tyagi N.K., Fenton W.A., Horwich A.L. GroEL/GroES cycling: ATP binds to an open ring before substrate protein favoring protein binding and production of the native state. Proc. Natl. Acad. Sci. USA 2009, 106:20264-20269.
-
(2009)
Proc. Natl. Acad. Sci. USA
, vol.106
, pp. 20264-20269
-
-
Tyagi, N.K.1
Fenton, W.A.2
Horwich, A.L.3
-
43
-
-
73249128637
-
Site-specific modification of Alzheimer's peptides by cholesterol oxidation products enhances aggregation energetics and neurotoxicity
-
Usui K., Hulleman J.D., Paulsson J.F., Siegel S.J., Powers E.T., Kelly J.W. Site-specific modification of Alzheimer's peptides by cholesterol oxidation products enhances aggregation energetics and neurotoxicity. Proc. Natl. Acad. Sci. USA 2009, 106:18563-18568.
-
(2009)
Proc. Natl. Acad. Sci. USA
, vol.106
, pp. 18563-18568
-
-
Usui, K.1
Hulleman, J.D.2
Paulsson, J.F.3
Siegel, S.J.4
Powers, E.T.5
Kelly, J.W.6
-
44
-
-
79960683356
-
The N-end rule pathway and regulation by proteolysis
-
Varshavsky A. The N-end rule pathway and regulation by proteolysis. Protein Sci. 2011, 20:1298-1345.
-
(2011)
Protein Sci.
, vol.20
, pp. 1298-1345
-
-
Varshavsky, A.1
-
45
-
-
0442307793
-
Low temperature or GroEL/ES overproduction permits growth of Escherichia coli cells lacking trigger factor and DnaK
-
Vorderwülbecke S., Kramer G., Merz F., Kurz T.A., Rauch T., Zachmann-Brand B., Bukau B., Deuerling E. Low temperature or GroEL/ES overproduction permits growth of Escherichia coli cells lacking trigger factor and DnaK. FEBS Lett. 2004, 559:181-187.
-
(2004)
FEBS Lett.
, vol.559
, pp. 181-187
-
-
Vorderwülbecke, S.1
Kramer, G.2
Merz, F.3
Kurz, T.A.4
Rauch, T.5
Zachmann-Brand, B.6
Bukau, B.7
Deuerling, E.8
-
46
-
-
8844251486
-
Thermotolerance requires refolding of aggregated proteins by substrate translocation through the central pore of ClpB
-
Weibezahn J., Tessarz P., Schlieker C., Zahn R., Maglica Z., Lee S., Zentgraf H., Weber-Ban E.U., Dougan D.A., Tsai F.T., et al. Thermotolerance requires refolding of aggregated proteins by substrate translocation through the central pore of ClpB. Cell 2004, 119:653-665.
-
(2004)
Cell
, vol.119
, pp. 653-665
-
-
Weibezahn, J.1
Tessarz, P.2
Schlieker, C.3
Zahn, R.4
Maglica, Z.5
Lee, S.6
Zentgraf, H.7
Weber-Ban, E.U.8
Dougan, D.A.9
Tsai, F.T.10
-
47
-
-
36049032748
-
An adaptable standard for protein export from the endoplasmic reticulum
-
Wiseman R.L., Powers E.T., Buxbaum J.N., Kelly J.W., Balch W.E. An adaptable standard for protein export from the endoplasmic reticulum. Cell 2007, 131:809-821.
-
(2007)
Cell
, vol.131
, pp. 809-821
-
-
Wiseman, R.L.1
Powers, E.T.2
Buxbaum, J.N.3
Kelly, J.W.4
Balch, W.E.5
-
48
-
-
24044489239
-
The global transcriptional response of Escherichia coli to induced σ32 protein involves σ32 regulon activation followed by inactivation and degradation of σ32 in vivo
-
Zhao K., Liu M., Burgess R.R. The global transcriptional response of Escherichia coli to induced σ32 protein involves σ32 regulon activation followed by inactivation and degradation of σ32 in vivo. J. Biol. Chem. 2005, 280:17758-17768.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 17758-17768
-
-
Zhao, K.1
Liu, M.2
Burgess, R.R.3
|