메뉴 건너뛰기




Volumn 37, Issue 9, 2007, Pages 737-763

The molecular bases of training adaptation

Author keywords

[No Author keywords available]

Indexed keywords

ADENOSINE KINASE; ADENOSINE TRIPHOSPHATASE; AMINO ACID; CALCIUM; ELONGATION FACTOR 1ALPHA; MAMMALIAN TARGET OF RAPAMYCIN; MESSENGER RNA; PROTEIN KINASE B; PROTEIN P70; SOMATOMEDIN RECEPTOR;

EID: 34548371839     PISSN: 01121642     EISSN: None     Source Type: Journal    
DOI: 10.2165/00007256-200737090-00001     Document Type: Review
Times cited : (495)

References (281)
  • 1
    • 34548298376 scopus 로고    scopus 로고
    • On the horizon: Molecular biology: a new vista for exercise physiology
    • Bouchard C, Malina R, Pérusse L, editors, Champaign IL, Human Kinetics
    • Bouchard C, Malina R, Pérusse L, editors. On the horizon: molecular biology: a new vista for exercise physiology. In: Genetics of fitness and physical performance. Champaign (IL): Human Kinetics, 1997: 970-1050
    • (1997) Genetics of fitness and physical performance , pp. 970-1050
  • 2
    • 2342457633 scopus 로고    scopus 로고
    • Maximal strength and power, muscle mass, endurance and serum hormones in weightlifters and road cyclists
    • Izquierdo M, Ibanez J, Hakkinen K, et al. Maximal strength and power, muscle mass, endurance and serum hormones in weightlifters and road cyclists. J Sports Sci 2004; 22 (5): 465-78
    • (2004) J Sports Sci , vol.22 , Issue.5 , pp. 465-478
    • Izquierdo, M.1    Ibanez, J.2    Hakkinen, K.3
  • 3
    • 24644478044 scopus 로고    scopus 로고
    • Analysis of global mRNA expression in human skeletal muscle during recovery from endurance exercise
    • Mahoney DJ, Parise G, Melov S, et al. Analysis of global mRNA expression in human skeletal muscle during recovery from endurance exercise. FASEB J 2005; 19 (11): 1498-500
    • (2005) FASEB J , vol.19 , Issue.11 , pp. 1498-1500
    • Mahoney, D.J.1    Parise, G.2    Melov, S.3
  • 4
    • 12344286371 scopus 로고    scopus 로고
    • Time course of molecular responses of human skeletal muscle to acute bouts of resistance exercise
    • Bickel CS, Slade J, Mahoney E, et al. Time course of molecular responses of human skeletal muscle to acute bouts of resistance exercise. J Appl Physiol 2005; 98 (2): 482-8
    • (2005) J Appl Physiol , vol.98 , Issue.2 , pp. 482-488
    • Bickel, C.S.1    Slade, J.2    Mahoney, E.3
  • 5
    • 17644417810 scopus 로고    scopus 로고
    • Time course of myogenic and metabolic gene expression in response to acute exercise in human skeletal muscle
    • Yang Y, Creer A, Jemiolo B, et al. Time course of myogenic and metabolic gene expression in response to acute exercise in human skeletal muscle. J Appl Physiol 2005; 98 (5): 1745-52
    • (2005) J Appl Physiol , vol.98 , Issue.5 , pp. 1745-1752
    • Yang, Y.1    Creer, A.2    Jemiolo, B.3
  • 6
    • 0033679675 scopus 로고    scopus 로고
    • Transcriptional regulation of gene expression in human skeletal muscle during recovery from exercise
    • Pilegaard H, Ordway GA, Saltin B, et al. Transcriptional regulation of gene expression in human skeletal muscle during recovery from exercise. Am J Physiol Endocrinol Metab 2000; 279: E806-14
    • (2000) Am J Physiol Endocrinol Metab , vol.279
    • Pilegaard, H.1    Ordway, G.A.2    Saltin, B.3
  • 7
    • 34548337729 scopus 로고    scopus 로고
    • Booth FW, Baldwin KM. Muscle plasticity: energy demand and supply processes. In: Rowell LB, Shepherd JT, editors. Handbook of physiology. Section 12. Exercise: regulation and integration of multiple systems. New York: Oxford University Press, 1996: 1075-123
    • Booth FW, Baldwin KM. Muscle plasticity: energy demand and supply processes. In: Rowell LB, Shepherd JT, editors. Handbook of physiology. Section 12. Exercise: regulation and integration of multiple systems. New York: Oxford University Press, 1996: 1075-123
  • 8
    • 0042736848 scopus 로고    scopus 로고
    • Regulation of mitochondrial biogenesis in muscle by endurance exercise
    • Irrcher I, Adhihetty PJ, Joseph AM, et al. Regulation of mitochondrial biogenesis in muscle by endurance exercise. Sports Med 2003; 33 (11): 783-93
    • (2003) Sports Med , vol.33 , Issue.11 , pp. 783-793
    • Irrcher, I.1    Adhihetty, P.J.2    Joseph, A.M.3
  • 9
    • 8844256241 scopus 로고    scopus 로고
    • Skeletal muscle fiber type: Influence on contractile and metabolic properties
    • Zierath JR, Hawley JA. Skeletal muscle fiber type: influence on contractile and metabolic properties. PLoS Biol 2004; 2 (10): e348
    • (2004) PLoS Biol , vol.2 , Issue.10
    • Zierath, J.R.1    Hawley, J.A.2
  • 10
    • 0017625187 scopus 로고
    • Physiological consequences of the biochemical adaptations to endurance exercise
    • Holloszy JO, Rennie MJ, Hickson RC, et al. Physiological consequences of the biochemical adaptations to endurance exercise. Ann N Y Acad Sci 1977; 301: 440-50
    • (1977) Ann N Y Acad Sci , vol.301 , pp. 440-450
    • Holloszy, J.O.1    Rennie, M.J.2    Hickson, R.C.3
  • 12
    • 0024312343 scopus 로고
    • Neuromuscular and hormonal adaptations during strength and power training: A review
    • Häkkinen K. Neuromuscular and hormonal adaptations during strength and power training: a review. J Sports Med Phys Fitness 1989; 29 (1): 9-26
    • (1989) J Sports Med Phys Fitness , vol.29 , Issue.1 , pp. 9-26
    • Häkkinen, K.1
  • 13
    • 7044229649 scopus 로고    scopus 로고
    • Nature vs nurture: Can exercise really alter fibre type composition in human skeletal muscle
    • Ingalls CP. Nature vs nurture: can exercise really alter fibre type composition in human skeletal muscle. J Appl Physiol 2004; 97 (5): 1591-2
    • (2004) J Appl Physiol , vol.97 , Issue.5 , pp. 1591-1592
    • Ingalls, C.P.1
  • 14
    • 34548349779 scopus 로고    scopus 로고
    • Williams RS, Neufer PD. Regulation of gene expression in skeletal muscle by contractile activity. In: Rowell LB, Shepherd JT, editors. Handbook of physiology. Section 12. Exercise: regulation and integration of multiple systems. New York: Oxford University Press, 1996: 1124-150
    • Williams RS, Neufer PD. Regulation of gene expression in skeletal muscle by contractile activity. In: Rowell LB, Shepherd JT, editors. Handbook of physiology. Section 12. Exercise: regulation and integration of multiple systems. New York: Oxford University Press, 1996: 1124-150
  • 15
    • 17344376055 scopus 로고    scopus 로고
    • Mechanotransduction: All signals point to cytoskeleton, matrix, and integrins
    • Alenghat FJ, Ingber DE. Mechanotransduction: all signals point to cytoskeleton, matrix, and integrins. Sci STKE 2002; (119): PE6
    • (2002) Sci STKE , vol.119
    • Alenghat, F.J.1    Ingber, D.E.2
  • 16
    • 0037195860 scopus 로고    scopus 로고
    • Distinct signaling pathways are activated in response to mechanical stress applied axially and transversely to skeletal muscle fibers
    • Kumar A, Chaudhry I, Reid MB, et al. Distinct signaling pathways are activated in response to mechanical stress applied axially and transversely to skeletal muscle fibers. J Biol Chem 2002; 277 (48): 46493-503
    • (2002) J Biol Chem , vol.277 , Issue.48 , pp. 46493-46503
    • Kumar, A.1    Chaudhry, I.2    Reid, M.B.3
  • 17
    • 10644253597 scopus 로고    scopus 로고
    • Intracellular signaling specificity in response to uniaxial vs multiaxial stretch: Implications for mechanotransduction
    • Hornberger TA, Armstrong DD, Koh TJ, et al. Intracellular signaling specificity in response to uniaxial vs multiaxial stretch: implications for mechanotransduction. Am J Physiol Cell Physiol 2005; 288 (1): C185-94
    • (2005) Am J Physiol Cell Physiol , vol.288 , Issue.1
    • Hornberger, T.A.1    Armstrong, D.D.2    Koh, T.J.3
  • 18
    • 0036713905 scopus 로고    scopus 로고
    • Regulation of skeletal muscle fat oxidation during exercise in humans
    • Spriet LL. Regulation of skeletal muscle fat oxidation during exercise in humans. Med Sci Sports Exerc 2002; 34 (9): 1477-84
    • (2002) Med Sci Sports Exerc , vol.34 , Issue.9 , pp. 1477-1484
    • Spriet, L.L.1
  • 19
    • 1242340382 scopus 로고    scopus 로고
    • Effects of prolonged exercise and recovery on sarcoplasmic reticulum Ca2+ cycling properties in rat muscle homogenates
    • Schertzer JD, Green HJ, Fowles JR, et al. Effects of prolonged exercise and recovery on sarcoplasmic reticulum Ca2+ cycling properties in rat muscle homogenates. Acta Physiol Scand 2004; 180: 195-208
    • (2004) Acta Physiol Scand , vol.180 , pp. 195-208
    • Schertzer, J.D.1    Green, H.J.2    Fowles, J.R.3
  • 20
    • 0036431377 scopus 로고    scopus 로고
    • Altered sarcoplasmic reticulum function in rat diaphragm after high-intensity exercise
    • Matsunaga S, Inashima S, Tsuchimochi H, et al. Altered sarcoplasmic reticulum function in rat diaphragm after high-intensity exercise. Acta Physiol Scand 2002; 176: 227-32
    • (2002) Acta Physiol Scand , vol.176 , pp. 227-232
    • Matsunaga, S.1    Inashima, S.2    Tsuchimochi, H.3
  • 21
    • 24044458238 scopus 로고    scopus 로고
    • Muscle sarcoplasmic reticulum Ca2+ cycling adaptations during 16h of heavy intermittent cycle exercise
    • Holloway GP, Green HJ, Duhamel TA, et al. Muscle sarcoplasmic reticulum Ca2+ cycling adaptations during 16h of heavy intermittent cycle exercise. J Appl Physiol 2005; 99 (3): 836-43
    • (2005) J Appl Physiol , vol.99 , Issue.3 , pp. 836-843
    • Holloway, G.P.1    Green, H.J.2    Duhamel, T.A.3
  • 22
    • 0032948278 scopus 로고    scopus 로고
    • S6k correlates with increased skeletal muscle mass following resistance exercise
    • S6k correlates with increased skeletal muscle mass following resistance exercise. Am J Physiol Cell Physiol 1999; 276 (45): C120-7
    • (1999) Am J Physiol Cell Physiol , vol.276 , Issue.45
    • Baar, K.1    Esser, K.2
  • 23
    • 23044495913 scopus 로고    scopus 로고
    • Role of Ca2+/calmodulin-dependent kinases in skeletal muscle plasticity
    • Chin ER. Role of Ca2+/calmodulin-dependent kinases in skeletal muscle plasticity. J Appl Physiol 2005; 99 (2): 414-23
    • (2005) J Appl Physiol , vol.99 , Issue.2 , pp. 414-423
    • Chin, E.R.1
  • 24
    • 33645969578 scopus 로고    scopus 로고
    • Redox modulation of contractile function in respiratory and limb skeletal muscle
    • Smith MA, Reid MB. Redox modulation of contractile function in respiratory and limb skeletal muscle. Resp Physiol Neurobiol New Direct Exerc Physiol 2006; 151 (2-3): 229-41
    • (2006) Resp Physiol Neurobiol New Direct Exerc Physiol , vol.151 , Issue.2-3 , pp. 229-241
    • Smith, M.A.1    Reid, M.B.2
  • 25
    • 4644312034 scopus 로고    scopus 로고
    • Oxidant activity in skeletal muscle fibers is influenced by temperature, CO2 level, and muscle-derived nitric oxide
    • Arbogast S, Reid MB. Oxidant activity in skeletal muscle fibers is influenced by temperature, CO2 level, and muscle-derived nitric oxide. Am J Physiol Regul Integr Comp Physiol 2004; 287 (4): R698-705
    • (2004) Am J Physiol Regul Integr Comp Physiol , vol.287 , Issue.4
    • Arbogast, S.1    Reid, M.B.2
  • 26
    • 0033986948 scopus 로고    scopus 로고
    • Redox-regulated recruitment of the transcriptional coactivators CREB-binding protein and SRC-1 to hypoxia-inducible factor α
    • Carrero P, Okamoto K, Coumailleau P, et al. Redox-regulated recruitment of the transcriptional coactivators CREB-binding protein and SRC-1 to hypoxia-inducible factor α. Mol Cell Biol 2000; 20 (1): 402-15
    • (2000) Mol Cell Biol , vol.20 , Issue.1 , pp. 402-415
    • Carrero, P.1    Okamoto, K.2    Coumailleau, P.3
  • 27
    • 4644268526 scopus 로고    scopus 로고
    • Coactivator MBF1 preserves the redox-dependent AP-1 activity during oxidative stress in Drosophila
    • Jindra M, Gaziova I, Uhlirova M, et al. Coactivator MBF1 preserves the redox-dependent AP-1 activity during oxidative stress in Drosophila. EMBO J 2004; 23 (17): 3538-47
    • (2004) EMBO J , vol.23 , Issue.17 , pp. 3538-3547
    • Jindra, M.1    Gaziova, I.2    Uhlirova, M.3
  • 28
    • 0345861759 scopus 로고    scopus 로고
    • Integration of metabolic and mitogenic signal transduction in skeletal muscle
    • Hawley JA, Zierath J. Integration of metabolic and mitogenic signal transduction in skeletal muscle. Exerc Sport Sci Rev 2004; 32 (1): 4-8
    • (2004) Exerc Sport Sci Rev , vol.32 , Issue.1 , pp. 4-8
    • Hawley, J.A.1    Zierath, J.2
  • 29
    • 0035986085 scopus 로고    scopus 로고
    • Exercise effects on muscle insulin signaling and action (invited review): Intracellular signaling in contracting skeletal muscle
    • Sakamoto K, Goodyear LJ. Exercise effects on muscle insulin signaling and action (invited review): intracellular signaling in contracting skeletal muscle. J Appl Physiol 2002; 93 (1): 369-83
    • (2002) J Appl Physiol , vol.93 , Issue.1 , pp. 369-383
    • Sakamoto, K.1    Goodyear, L.J.2
  • 30
    • 0035476197 scopus 로고    scopus 로고
    • Muscle oxygen uptake and energy turnover during dynamic exercise at different contraction frequencies in humans
    • Ferguson RA, Ball D, Krustrup P, et al. Muscle oxygen uptake and energy turnover during dynamic exercise at different contraction frequencies in humans. J Physiol (Lond) 2001; 536 (1): 261-71
    • (2001) J Physiol (Lond) , vol.536 , Issue.1 , pp. 261-271
    • Ferguson, R.A.1    Ball, D.2    Krustrup, P.3
  • 31
    • 0023179029 scopus 로고
    • Progressive metabolite changes in individual human muscle fibers with increasing work rates
    • Ivy JL, Chi MM, Hintz CS, et al. Progressive metabolite changes in individual human muscle fibers with increasing work rates. Am J Physiol Cell Physiol 1987; 252 (6): C630-9
    • (1987) Am J Physiol Cell Physiol , vol.252 , Issue.6
    • Ivy, J.L.1    Chi, M.M.2    Hintz, C.S.3
  • 32
    • 0037850002 scopus 로고    scopus 로고
    • ATP and heat production in human skeletal muscle during dynamic exercise: Higher efficiency of anaerobic than aerobic ATP resynthesis
    • Krustrup P, Ferguson RA, Kjar M, et al. ATP and heat production in human skeletal muscle during dynamic exercise: higher efficiency of anaerobic than aerobic ATP resynthesis. J Physiol (Lond) 2003; 549 (1): 255-69
    • (2003) J Physiol (Lond) , vol.549 , Issue.1 , pp. 255-269
    • Krustrup, P.1    Ferguson, R.A.2    Kjar, M.3
  • 33
    • 33644943620 scopus 로고    scopus 로고
    • AMPK: A key sensor of fuel and energy status in skeletal muscle
    • Hardie DG, Sakamoto K. AMPK: a key sensor of fuel and energy status in skeletal muscle. Physiology 2006; 21 (1): 48-60
    • (2006) Physiology , vol.21 , Issue.1 , pp. 48-60
    • Hardie, D.G.1    Sakamoto, K.2
  • 34
    • 1442332885 scopus 로고    scopus 로고
    • 5′-Adenosine monophosphate-activated protein kinase, metabolism and exercise
    • Aschenbach WG, Sakamoto K, Goodyear LJ. 5′-Adenosine monophosphate-activated protein kinase, metabolism and exercise. Sports Med 2004; 34 (2): 91-103
    • (2004) Sports Med , vol.34 , Issue.2 , pp. 91-103
    • Aschenbach, W.G.1    Sakamoto, K.2    Goodyear, L.J.3
  • 35
    • 33745221937 scopus 로고    scopus 로고
    • Role of AMPK in skeletal muscle metabolic regulation and adaptation in relation to exercise
    • Jorgensen SB, Richter EA, Wojtaszewski JFP. Role of AMPK in skeletal muscle metabolic regulation and adaptation in relation to exercise. J Physiol (Lond) 2006; 574 (1): 17-31
    • (2006) J Physiol (Lond) , vol.574 , Issue.1 , pp. 17-31
    • Jorgensen, S.B.1    Richter, E.A.2    Wojtaszewski, J.F.P.3
  • 36
    • 0031849916 scopus 로고    scopus 로고
    • Evidence for 5′-AMP- activated protein kinase mediation of the effect of muscle contraction on glucose transport
    • Hayashi T, Hirshman M, Kurth E, et al. Evidence for 5′-AMP- activated protein kinase mediation of the effect of muscle contraction on glucose transport. Diabetes 1998; 47 (8): 1369-73
    • (1998) Diabetes , vol.47 , Issue.8 , pp. 1369-1373
    • Hayashi, T.1    Hirshman, M.2    Kurth, E.3
  • 37
    • 0034999425 scopus 로고    scopus 로고
    • AMP-activated protein kinase activity and glucose uptake in rat skeletal muscle
    • Musi N, Hayashi T, Fujii N, et al. AMP-activated protein kinase activity and glucose uptake in rat skeletal muscle. Am J Physiol Endocrinol Metab 2001; 280 (5): E677-84
    • (2001) Am J Physiol Endocrinol Metab , vol.280 , Issue.5
    • Musi, N.1    Hayashi, T.2    Fujii, N.3
  • 38
    • 32544456122 scopus 로고    scopus 로고
    • Isoform-specific activation of 5′adenosine monophosphate-activated protein kinase by 5-aminoimidazole-4- carboxamide-1-α-d-ribonucleoside at a physiological level activates glucose transport and increases glucose transporter 4 in mouse skeletal muscle
    • Nakano M, Hamada T, Hayashi T, et al. Isoform-specific activation of 5′adenosine monophosphate-activated protein kinase by 5-aminoimidazole-4- carboxamide-1-α-d-ribonucleoside at a physiological level activates glucose transport and increases glucose transporter 4 in mouse skeletal muscle. Metabolism 2006; 55 (3): 300-8
    • (2006) Metabolism , vol.55 , Issue.3 , pp. 300-308
    • Nakano, M.1    Hamada, T.2    Hayashi, T.3
  • 39
    • 0034880181 scopus 로고    scopus 로고
    • Regulation of fatty acid oxidation and glucose metabolism in rat soleus muscle: Effects of AICAR
    • Kaushik VK, Young ME, Dean DJ, et al. Regulation of fatty acid oxidation and glucose metabolism in rat soleus muscle: effects of AICAR. Am J Physiol Endocrinol Metab 2001; 281 (2): E335-40
    • (2001) Am J Physiol Endocrinol Metab , vol.281 , Issue.2
    • Kaushik, V.K.1    Young, M.E.2    Dean, D.J.3
  • 40
    • 29244436681 scopus 로고    scopus 로고
    • AMPK activation increases fatty acid oxidation in skeletal muscle by activating PPARa and PGC-1
    • Lee JL, Kim M, Park H-S, et al. AMPK activation increases fatty acid oxidation in skeletal muscle by activating PPARa and PGC-1. Biochem Biophys Res Commun 2006; 340: 291-5
    • (2006) Biochem Biophys Res Commun , vol.340 , pp. 291-295
    • Lee, J.L.1    Kim, M.2    Park, H.-S.3
  • 41
    • 18444389754 scopus 로고    scopus 로고
    • Effects of high-intensity intermittent swimming on PGC-1a protein expression in rat skeletal muscle
    • Terada S, Kawanaka K, Goto M, et al. Effects of high-intensity intermittent swimming on PGC-1a protein expression in rat skeletal muscle. Acta Physiol Scand 2005; 184 (1): 59-65
    • (2005) Acta Physiol Scand , vol.184 , Issue.1 , pp. 59-65
    • Terada, S.1    Kawanaka, K.2    Goto, M.3
  • 42
    • 21744463063 scopus 로고    scopus 로고
    • Effects of α-AMPK knockout on exercise-induced gene activation in mouse skeletal muscle
    • Jorgensen SB, Wojtaszewski JFP, Viollet B, et al. Effects of α-AMPK knockout on exercise-induced gene activation in mouse skeletal muscle. FASEB J 2005; 19 (9): 1146-8
    • (2005) FASEB J , vol.19 , Issue.9 , pp. 1146-1148
    • Jorgensen, S.B.1    Wojtaszewski, J.F.P.2    Viollet, B.3
  • 43
    • 0037025356 scopus 로고    scopus 로고
    • AMP-activated protein kinase suppresses protein synthesis in rat skeletal muscle through down-regulated mammalian target of rapamycin (mTOR) signaling
    • Bolster DR, Crozier SJ, Kimball SR, et al. AMP-activated protein kinase suppresses protein synthesis in rat skeletal muscle through down-regulated mammalian target of rapamycin (mTOR) signaling. J Biol Chem 2002; 277 (27): 23977-80
    • (2002) J Biol Chem , vol.277 , Issue.27 , pp. 23977-23980
    • Bolster, D.R.1    Crozier, S.J.2    Kimball, S.R.3
  • 44
    • 33645059210 scopus 로고    scopus 로고
    • Low-intensity contraction activates the α1-isoform of 5′-AMP-activated protein kinase in rat skeletal muscle
    • Toyoda T, Tanaka S, Ebihara K, et al. Low-intensity contraction activates the α1-isoform of 5′-AMP-activated protein kinase in rat skeletal muscle. Am J Physiol Endocrinol Metab 2006; 290 (3): E583-90
    • (2006) Am J Physiol Endocrinol Metab , vol.290 , Issue.3
    • Toyoda, T.1    Tanaka, S.2    Ebihara, K.3
  • 45
    • 17844400342 scopus 로고    scopus 로고
    • 5′AMP activated protein kinase expression in human skeletal muscle: Effects of strength training and type 2 diabetes
    • Wojtaszewski JFP, Birk JB, Frosig C, et al. 5′AMP activated protein kinase expression in human skeletal muscle: effects of strength training and type 2 diabetes. J Physiol (Lond) 2005; 564 (2): 563-73
    • (2005) J Physiol (Lond) , vol.564 , Issue.2 , pp. 563-573
    • Wojtaszewski, J.F.P.1    Birk, J.B.2    Frosig, C.3
  • 46
    • 18144386162 scopus 로고    scopus 로고
    • Selective activation of AMPK-PGC-1α; or PKB-TSC2-mTOR signaling can explain specific adaptive responses to endurance or resistance training-like electrical muscle stimulation
    • Atherton PJ, Babraj JA, Smith K, et al. Selective activation of AMPK-PGC-1α; or PKB-TSC2-mTOR signaling can explain specific adaptive responses to endurance or resistance training-like electrical muscle stimulation. FASEB J 2005; 19 (7): 786-8
    • (2005) FASEB J , vol.19 , Issue.7 , pp. 786-788
    • Atherton, P.J.1    Babraj, J.A.2    Smith, K.3
  • 47
    • 0036298152 scopus 로고    scopus 로고
    • Effects of endurance training on activity and expression of AMP-activated protein kinase isoforms in rat muscles
    • Durante PE, Mustard KJ, Park S-H, et al. Effects of endurance training on activity and expression of AMP-activated protein kinase isoforms in rat muscles. Am J Physiol Endocrinol Metab 2002; 283 (1): E178-86
    • (2002) Am J Physiol Endocrinol Metab , vol.283 , Issue.1
    • Durante, P.E.1    Mustard, K.J.2    Park, S.-H.3
  • 48
    • 1442276288 scopus 로고    scopus 로고
    • 5′-AMP-activated protein kinase activity and protein expression are regulated by endurance training in human skeletal muscle
    • Frøsig C, Jørgensen SB, Hardie DG, et al. 5′-AMP-activated protein kinase activity and protein expression are regulated by endurance training in human skeletal muscle. Am J Physiol Endocrinol Metab 2004; 286: E411-7
    • (2004) Am J Physiol Endocrinol Metab , vol.286
    • Frøsig, C.1    Jørgensen, S.B.2    Hardie, D.G.3
  • 49
    • 25144457454 scopus 로고    scopus 로고
    • AMP-activated protein kinase activity and phosphorylation of AMP-activated protein kinase in contracting muscle of sedentary and endurance-trained rats
    • Hurst D, Taylor EB, Cline TD, et al. AMP-activated protein kinase activity and phosphorylation of AMP-activated protein kinase in contracting muscle of sedentary and endurance-trained rats. Am J Physiol Endocrinol Metab 2005; 289 (4): E710-15
    • (2005) Am J Physiol Endocrinol Metab , vol.289 , Issue.4
    • Hurst, D.1    Taylor, E.B.2    Cline, T.D.3
  • 50
    • 27644468222 scopus 로고    scopus 로고
    • Short-term exercise training in humans reduces AMPK signalling during prolonged exercise independent of muscle glycogen
    • McConell GK, Lee-Young RS, Chen Z-P, et al. Short-term exercise training in humans reduces AMPK signalling during prolonged exercise independent of muscle glycogen. J Physiol (Lond) 2005; 568 (2): 665-76
    • (2005) J Physiol (Lond) , vol.568 , Issue.2 , pp. 665-676
    • McConell, G.K.1    Lee-Young, R.S.2    Chen, Z.-P.3
  • 51
    • 0037311651 scopus 로고    scopus 로고
    • 5′-AMP-activated protein kinase activity and subunit expression in exercise-trained human skeletal muscle
    • Nielsen JN, Mustard KJW, Graham DA, et al. 5′-AMP-activated protein kinase activity and subunit expression in exercise-trained human skeletal muscle. J Appl Physiol 2003; 94 (2): 631-41
    • (2003) J Appl Physiol , vol.94 , Issue.2 , pp. 631-641
    • Nielsen, J.N.1    Mustard, K.J.W.2    Graham, D.A.3
  • 52
    • 33644654397 scopus 로고    scopus 로고
    • Endurance training increases skeletal muscle LKB1 and PGC-1α protein abundance: Effects of time and intensity
    • Taylor EB, Lamb JD, Hurst RW, et al. Endurance training increases skeletal muscle LKB1 and PGC-1α protein abundance: effects of time and intensity. Am J Physiol Endocrinol Metab 2005; 289 (6): E960-8
    • (2005) Am J Physiol Endocrinol Metab , vol.289 , Issue.6
    • Taylor, E.B.1    Lamb, J.D.2    Hurst, R.W.3
  • 53
    • 12244267094 scopus 로고    scopus 로고
    • Metabolic and mitogenic signal transduction in human skeletal muscle after intense cycling exercise
    • Yu M, Stepto NK, Chibalin AV, et al. Metabolic and mitogenic signal transduction in human skeletal muscle after intense cycling exercise. J Physiol 2003; 546 (2): 327-35
    • (2003) J Physiol , vol.546 , Issue.2 , pp. 327-335
    • Yu, M.1    Stepto, N.K.2    Chibalin, A.V.3
  • 54
    • 0030863587 scopus 로고    scopus 로고
    • Effect of exercise intensity on skeletal muscle malonyl-CoA and acetyl-CoA carboxylase
    • Rasmussen BB, Winder WW. Effect of exercise intensity on skeletal muscle malonyl-CoA and acetyl-CoA carboxylase. J Appl Physiol 1997; 83 (4): 1104-9
    • (1997) J Appl Physiol , vol.83 , Issue.4 , pp. 1104-1109
    • Rasmussen, B.B.1    Winder, W.W.2
  • 55
    • 0041319433 scopus 로고    scopus 로고
    • Effect of exercise intensity on skeletal muscle AMPK signaling in humans
    • Chen Z-P, Stephens TJ, Murthy S, et al. Effect of exercise intensity on skeletal muscle AMPK signaling in humans. Diabetes 2003; 52 (9): 2205-12
    • (2003) Diabetes , vol.52 , Issue.9 , pp. 2205-2212
    • Chen, Z.-P.1    Stephens, T.J.2    Murthy, S.3
  • 56
    • 33646104933 scopus 로고    scopus 로고
    • Effect of exercise intensity and hypoxia on skeletal muscle AMPK signaling and substrate metabolism in humans
    • Wadley GD, Lee-Young RS, Canny BJ, et al. Effect of exercise intensity and hypoxia on skeletal muscle AMPK signaling and substrate metabolism in humans. Am J Physiol Endocrinol Metab 2006; 290 (4): E694-702
    • (2006) Am J Physiol Endocrinol Metab , vol.290 , Issue.4
    • Wadley, G.D.1    Lee-Young, R.S.2    Canny, B.J.3
  • 57
    • 1942518763 scopus 로고    scopus 로고
    • Intensified exercise training does not alter AMPK signaling in human skeletal muscle
    • Clark SA, Chen Z-P, Murphy KT, et al. Intensified exercise training does not alter AMPK signaling in human skeletal muscle. Am J Physiol Endocrinol Metab 2004; 286 (5): E737-43
    • (2004) Am J Physiol Endocrinol Metab , vol.286 , Issue.5
    • Clark, S.A.1    Chen, Z.-P.2    Murphy, K.T.3
  • 58
    • 0033667964 scopus 로고    scopus 로고
    • AMPK signaling in contracting human skeletal muscle: Acetyl-CoA carboxylase and NO synthase phosphorylation
    • Chen Z-P, McConell GK, Michell BJ, et al. AMPK signaling in contracting human skeletal muscle: acetyl-CoA carboxylase and NO synthase phosphorylation. Am J Physiol Endocrinol Metab 2000; 279 (5): E1202-6
    • (2000) Am J Physiol Endocrinol Metab , vol.279 , Issue.5
    • Chen, Z.-P.1    McConell, G.K.2    Michell, B.J.3
  • 59
    • 33749351995 scopus 로고    scopus 로고
    • Resistance exercise increases AMPK activity and reduces 4E-BP1 phosphorylation and protein synthesis in human skeletal muscle
    • Dreyer HC, Fujita S, Cadenas JG, et al. Resistance exercise increases AMPK activity and reduces 4E-BP1 phosphorylation and protein synthesis in human skeletal muscle. J Physiol (Lond) 2006; 576 (Pt 2): 613-24
    • (2006) J Physiol (Lond) , vol.576 , Issue.PART 2 , pp. 613-624
    • Dreyer, H.C.1    Fujita, S.2    Cadenas, J.G.3
  • 60
    • 33744939435 scopus 로고    scopus 로고
    • Increase in S6K1 phosphorylation in human skeletal muscle following resistance exercise occurs mainly in type II muscle fibers
    • Koopman R, Zorenc AHG, Gransier RJJ, et al. Increase in S6K1 phosphorylation in human skeletal muscle following resistance exercise occurs mainly in type II muscle fibers. Am J Physiol Endocrinol Metab 2006; 290 (6): E1245-52
    • (2006) Am J Physiol Endocrinol Metab , vol.290 , Issue.6
    • Koopman, R.1    Zorenc, A.H.G.2    Gransier, R.J.J.3
  • 61
    • 30744439347 scopus 로고    scopus 로고
    • Early signaling responses to divergent exercise stimuli in skeletal muscle from well-trained humans
    • Coffey VG, Zhong Z, Shield A, et al. Early signaling responses to divergent exercise stimuli in skeletal muscle from well-trained humans. FASEB J 2005; 20 (1): 190-2
    • (2005) FASEB J , vol.20 , Issue.1 , pp. 190-192
    • Coffey, V.G.1    Zhong, Z.2    Shield, A.3
  • 62
    • 0345327762 scopus 로고    scopus 로고
    • Exercise increases Ca2+-calmodulin-dependent protein kinase II activity in human skeletal muscle
    • Rose AJ, Hargreaves M. Exercise increases Ca2+-calmodulin-dependent protein kinase II activity in human skeletal muscle. J Physiol (Lond) 2003; 553 (1): 303-9
    • (2003) J Physiol (Lond) , vol.553 , Issue.1 , pp. 303-309
    • Rose, A.J.1    Hargreaves, M.2
  • 63
    • 0037066459 scopus 로고    scopus 로고
    • Regulation of mitochondrial biogenesis in skeletal muscle by CaMK
    • Wu H, Kanatous SB, Thurmond FA, et al. Regulation of mitochondrial biogenesis in skeletal muscle by CaMK. Science 2002; 296 (5566): 349-52
    • (2002) Science , vol.296 , Issue.5566 , pp. 349-352
    • Wu, H.1    Kanatous, S.B.2    Thurmond, F.A.3
  • 64
    • 17344390859 scopus 로고    scopus 로고
    • Skeletal muscle Ca2+-independent kinase activity increases during either hypertrophy or running
    • Fluck M, Waxham MN, Hamilton MT, et al. Skeletal muscle Ca2+-independent kinase activity increases during either hypertrophy or running. J Appl Physiol 2000; 88 (1): 352-8
    • (2000) J Appl Physiol , vol.88 , Issue.1 , pp. 352-358
    • Fluck, M.1    Waxham, M.N.2    Hamilton, M.T.3
  • 65
    • 33746256783 scopus 로고    scopus 로고
    • Ca2+-calmodulin dependent protein kinase expression and signalling in skeletal muscle during exercise
    • Rose AJ, Kiens B, Richter EA. Ca2+-calmodulin dependent protein kinase expression and signalling in skeletal muscle during exercise. J Physiol (Lond) 2006; 574 (Pt 3): 889-903
    • (2006) J Physiol (Lond) , vol.574 , Issue.PART 3 , pp. 889-903
    • Rose, A.J.1    Kiens, B.2    Richter, E.A.3
  • 66
    • 27444447194 scopus 로고    scopus 로고
    • Signaling pathways in activity-dependent fiber type plasticity in adult skeletal muscle
    • Liu Y, Shen T, Randall WR, et al. Signaling pathways in activity-dependent fiber type plasticity in adult skeletal muscle. J Muscle Res Cell Motil 2005; 26 (1): 13-21
    • (2005) J Muscle Res Cell Motil , vol.26 , Issue.1 , pp. 13-21
    • Liu, Y.1    Shen, T.2    Randall, W.R.3
  • 67
    • 2942754279 scopus 로고    scopus 로고
    • Calcineurin and skeletal muscle growth
    • Michel RN, Dunn SE, Chin ER. Calcineurin and skeletal muscle growth. Proc Nutr Soc 2004; 63 (2): 341-9
    • (2004) Proc Nutr Soc , vol.63 , Issue.2 , pp. 341-349
    • Michel, R.N.1    Dunn, S.E.2    Chin, E.R.3
  • 68
    • 0038236734 scopus 로고    scopus 로고
    • Calcineurin is a potent regulator for skeletal muscle regeneration by association with NFATc1 and GATA-2
    • Sakuma K, Nishikawa J, Nakao R, et al. Calcineurin is a potent regulator for skeletal muscle regeneration by association with NFATc1 and GATA-2. Acta Neuropathol 2003; 105 (3): 271-80
    • (2003) Acta Neuropathol , vol.105 , Issue.3 , pp. 271-280
    • Sakuma, K.1    Nishikawa, J.2    Nakao, R.3
  • 69
    • 0033526991 scopus 로고    scopus 로고
    • IGF-1 induces skeletal myocyte hypertrophy through calcineurin in association with GATA-2 and NF-ATc1
    • Musaro A, McCullagh KJA, Naya FJ, et al. IGF-1 induces skeletal myocyte hypertrophy through calcineurin in association with GATA-2 and NF-ATc1. Nature 1999; 400 (6744): 581-5
    • (1999) Nature , vol.400 , Issue.6744 , pp. 581-585
    • Musaro, A.1    McCullagh, K.J.A.2    Naya, F.J.3
  • 70
    • 0033618462 scopus 로고    scopus 로고
    • Calcineurin is required for skeletal muscle hypertrophy
    • Dunn SE, Burns JL, Michel RN. Calcineurin is required for skeletal muscle hypertrophy. J Biol Chem 1999; 274 (31): 21908-12
    • (1999) J Biol Chem , vol.274 , Issue.31 , pp. 21908-21912
    • Dunn, S.E.1    Burns, J.L.2    Michel, R.N.3
  • 71
    • 23044456186 scopus 로고    scopus 로고
    • Vasopressin-dependent myogenic cell differentiation is mediated by both Ca2+/calmodulin-dependent kinase and calcineurin pathways
    • Scicchitano BM, Spath L, Musaro A, et al. Vasopressin-dependent myogenic cell differentiation is mediated by both Ca2+/calmodulin-dependent kinase and calcineurin pathways. Mol Biol Cell 2005; 16 (8): 3632-41
    • (2005) Mol Biol Cell , vol.16 , Issue.8 , pp. 3632-3641
    • Scicchitano, B.M.1    Spath, L.2    Musaro, A.3
  • 72
    • 0034735544 scopus 로고    scopus 로고
    • Matching of calcineurin activity to upstream effectors is critical for skeletal muscle fiber growth
    • Dunn SE, Chin ER, Michel RN. Matching of calcineurin activity to upstream effectors is critical for skeletal muscle fiber growth. J Cell Biol 2000; 151 (3): 663-72
    • (2000) J Cell Biol , vol.151 , Issue.3 , pp. 663-672
    • Dunn, S.E.1    Chin, E.R.2    Michel, R.N.3
  • 73
    • 0034681315 scopus 로고    scopus 로고
    • Stimulation of slow skeletal muscle fiber gene expression by calcineurin in vivo
    • Naya FJ, Mercer B, Shelton J, et al. Stimulation of slow skeletal muscle fiber gene expression by calcineurin in vivo. J Biol Chem 2000; 275 (7): 4545-8
    • (2000) J Biol Chem , vol.275 , Issue.7 , pp. 4545-4548
    • Naya, F.J.1    Mercer, B.2    Shelton, J.3
  • 74
    • 2942746423 scopus 로고    scopus 로고
    • Genetic loss of calcineurin blocks mechanical overload-induced skeletal muscle fiber type switching but not hypertrophy
    • Parsons SA, Millay DP, Wilkins BJ, et al. Genetic loss of calcineurin blocks mechanical overload-induced skeletal muscle fiber type switching but not hypertrophy. J Biol Chem 2004; 279 (25): 26192-200
    • (2004) J Biol Chem , vol.279 , Issue.25 , pp. 26192-26200
    • Parsons, S.A.1    Millay, D.P.2    Wilkins, B.J.3
  • 75
    • 10144228501 scopus 로고    scopus 로고
    • Calcineurin activation influences muscle phenotype in a muscle-specific fashion
    • Talmadge R, Otis J, Rittler M, et al. Calcineurin activation influences muscle phenotype in a muscle-specific fashion. BMC Cell Biol 2004; 5: 28
    • (2004) BMC Cell Biol , vol.5 , pp. 28
    • Talmadge, R.1    Otis, J.2    Rittler, M.3
  • 76
    • 0034595213 scopus 로고    scopus 로고
    • MEF2 responds to multiple calcium-regulated signals in the control of skeletal muscle fiber type
    • Wu H, Naya F, McKinsey T, et al. MEF2 responds to multiple calcium-regulated signals in the control of skeletal muscle fiber type. EMBO J 2000; 19 (9): 1963-73
    • (2000) EMBO J , vol.19 , Issue.9 , pp. 1963-1973
    • Wu, H.1    Naya, F.2    McKinsey, T.3
  • 77
    • 0032529188 scopus 로고    scopus 로고
    • A calcineurin-dependent transcriptional pathway controls skeletal muscle fiber type
    • Chin ER, Olson EN, Richardson JA, et al. A calcineurin-dependent transcriptional pathway controls skeletal muscle fiber type. Gene Dev 1998; 12 (16): 2499-509
    • (1998) Gene Dev , vol.12 , Issue.16 , pp. 2499-2509
    • Chin, E.R.1    Olson, E.N.2    Richardson, J.A.3
  • 78
    • 23944456384 scopus 로고    scopus 로고
    • Skeletal muscle hypertrophy and atrophy signaling pathways
    • Glass DJ. Skeletal muscle hypertrophy and atrophy signaling pathways. Int J Biochem Cell Biol 2005; 37 (10): 1974-84
    • (2005) Int J Biochem Cell Biol , vol.37 , Issue.10 , pp. 1974-1984
    • Glass, D.J.1
  • 79
    • 33244464562 scopus 로고    scopus 로고
    • Critical nodes in signalling pathways: Insights into insulin action
    • Taniguchi C, Emanuelli B, Kahn C. Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol 2006; 7 (2): 85-96
    • (2006) Nat Rev Mol Cell Biol , vol.7 , Issue.2 , pp. 85-96
    • Taniguchi, C.1    Emanuelli, B.2    Kahn, C.3
  • 80
    • 0025877898 scopus 로고
    • Insulin and IGF-I induce pronounced hypertrophy of skeletal myofibers in tissue culture
    • Vandenburgh HH, Karlisch P, Shansky J, et al. Insulin and IGF-I induce pronounced hypertrophy of skeletal myofibers in tissue culture. Am J Physiol Cell Physiol 1991; 260 (3): C475-84
    • (1991) Am J Physiol Cell Physiol , vol.260 , Issue.3
    • Vandenburgh, H.H.1    Karlisch, P.2    Shansky, J.3
  • 81
    • 13244298415 scopus 로고    scopus 로고
    • Insulin-like growth factor-1 (IGF-1) inversely regulates atrophy-induced genes via the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway
    • Latres E, Amini AR, Amini AA, et al. Insulin-like growth factor-1 (IGF-1) inversely regulates atrophy-induced genes via the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway. J Biol Chem 2005; 280 (4): 2737-44
    • (2005) J Biol Chem , vol.280 , Issue.4 , pp. 2737-2744
    • Latres, E.1    Amini, A.R.2    Amini, A.A.3
  • 82
    • 2042425906 scopus 로고    scopus 로고
    • The IGF/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors
    • Stitt TN, Drujan D, Clarke BA, et al. The IGF/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol Cell 2004; 14: 395-403
    • (2004) Mol Cell , vol.14 , pp. 395-403
    • Stitt, T.N.1    Drujan, D.2    Clarke, B.A.3
  • 83
    • 0033774882 scopus 로고    scopus 로고
    • IGF-I restores satellite cell proliferative potential in immobilized old skeletal muscle
    • Chakravarthy MV, Davis BS, Booth FW. IGF-I restores satellite cell proliferative potential in immobilized old skeletal muscle. J Appl Physiol 2000; 89: 1365-79
    • (2000) J Appl Physiol , vol.89 , pp. 1365-1379
    • Chakravarthy, M.V.1    Davis, B.S.2    Booth, F.W.3
  • 84
    • 0035735902 scopus 로고    scopus 로고
    • Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways
    • Rommel C, Bodine SC, Clarke BA, et al. Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways. Nat Cell Biol 2001; 3: 1009-13
    • (2001) Nat Cell Biol , vol.3 , pp. 1009-1013
    • Rommel, C.1    Bodine, S.C.2    Clarke, B.A.3
  • 85
    • 0041424822 scopus 로고    scopus 로고
    • Molecular mechanisms modulating muscle mass
    • Glass DJ. Molecular mechanisms modulating muscle mass. Trends Mol Med 2003; 9 (8): 344-50
    • (2003) Trends Mol Med , vol.9 , Issue.8 , pp. 344-350
    • Glass, D.J.1
  • 86
    • 23944480371 scopus 로고    scopus 로고
    • Molecular determinants of skeletal muscle mass: Getting the 'AKT' together
    • Nader GA. Molecular determinants of skeletal muscle mass: getting the 'AKT' together. Int J Biochem Cell Biol 2005; 37 (10): 1985-96
    • (2005) Int J Biochem Cell Biol , vol.37 , Issue.10 , pp. 1985-1996
    • Nader, G.A.1
  • 87
    • 13844312400 scopus 로고    scopus 로고
    • Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex
    • Sarbassov DD, Guertin DA, Ali SM, et al. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 2005; 307 (5712): 1098-101
    • (2005) Science , vol.307 , Issue.5712 , pp. 1098-1101
    • Sarbassov, D.D.1    Guertin, D.A.2    Ali, S.M.3
  • 88
    • 0035736260 scopus 로고    scopus 로고
    • Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo
    • Bodine SC, Stitt TN, Gonzalez M, et al. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol 2001; 3: 1014-9
    • (2001) Nat Cell Biol , vol.3 , pp. 1014-1019
    • Bodine, S.C.1    Stitt, T.N.2    Gonzalez, M.3
  • 89
    • 12144271277 scopus 로고    scopus 로고
    • Increased phosphorylation of Akt substrate of 160 kDa (AS160) in rat skeletal muscle in response to insulin or contractile activity
    • Bruss MD, Arias EB, Lienhard GE, et al. Increased phosphorylation of Akt substrate of 160 kDa (AS160) in rat skeletal muscle in response to insulin or contractile activity. Diabetes 2005; 54 (1): 41-50
    • (2005) Diabetes , vol.54 , Issue.1 , pp. 41-50
    • Bruss, M.D.1    Arias, E.B.2    Lienhard, G.E.3
  • 90
    • 33646111903 scopus 로고    scopus 로고
    • Activity of TSC2 is inhibited by AKT-mediated phosphorylation and membrane partitioning
    • Cai S-L, Tee AR, Short JD, et al. Activity of TSC2 is inhibited by AKT-mediated phosphorylation and membrane partitioning. J Cell Biol 2006; 173 (2): 279-89
    • (2006) J Cell Biol , vol.173 , Issue.2 , pp. 279-289
    • Cai, S.-L.1    Tee, A.R.2    Short, J.D.3
  • 91
    • 0036713778 scopus 로고    scopus 로고
    • TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling
    • Inoki K, Li Y, Zhu T, et al. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 2002; 4 (9): 648-57
    • (2002) Nat Cell Biol , vol.4 , Issue.9 , pp. 648-657
    • Inoki, K.1    Li, Y.2    Zhu, T.3
  • 92
    • 27744549321 scopus 로고    scopus 로고
    • mTOR function in exerskeletal muscle hypertrophy: Increased ribosomal RNA via cell cycle regulators
    • Nader GA, McLoughlin TJ, Esser KA. mTOR function in exerskeletal muscle hypertrophy: increased ribosomal RNA via cell cycle regulators. Am J Physiol Cell Physiol 2005; 289 (6): C1457-65
    • (2005) Am J Physiol Cell Physiol , vol.289 , Issue.6
    • Nader, G.A.1    McLoughlin, T.J.2    Esser, K.A.3
  • 93
    • 6344256238 scopus 로고    scopus 로고
    • Conditional activation of Akt in adult skeletal muscle induces rapid hypertrophy
    • Lai K-MV, Gonzalez M, Poueymirou WT, et al. Conditional activation of Akt in adult skeletal muscle induces rapid hypertrophy. Mol Cell Biol 2004; 24 (21): 9295-304
    • (2004) Mol Cell Biol , vol.24 , Issue.21 , pp. 9295-9304
    • Lai, K.-M.V.1    Gonzalez, M.2    Poueymirou, W.T.3
  • 94
    • 25444524850 scopus 로고    scopus 로고
    • Akt activates the mammalian target of rapamycin by regulating cellular ATP level and AMPK activity
    • Hahn-Windgassen A, Nogueira V, Chen C-C, et al. Akt activates the mammalian target of rapamycin by regulating cellular ATP level and AMPK activity. J Biol Chem 2005; 280 (37): 32081-9
    • (2005) J Biol Chem , vol.280 , Issue.37 , pp. 32081-32089
    • Hahn-Windgassen, A.1    Nogueira, V.2    Chen, C.-C.3
  • 96
    • 0037108750 scopus 로고    scopus 로고
    • Tuberous sclerosis complex-1 and -2 gene products function together to inhibit mammalian target of rapamycin (mTOR)-mediated down-stream signaling
    • Tee AR, Fingar DC, Manning BD, et al. Tuberous sclerosis complex-1 and -2 gene products function together to inhibit mammalian target of rapamycin (mTOR)-mediated down-stream signaling. PNAS 2002; 99 (21): 13571-6
    • (2002) PNAS , vol.99 , Issue.21 , pp. 13571-13576
    • Tee, A.R.1    Fingar, D.C.2    Manning, B.D.3
  • 97
    • 0036566003 scopus 로고    scopus 로고
    • Two novel phosphorylation sites on FKHR that are critical for its nuclear exclusion
    • Rena G, Woods YL, Prescott AR, et al. Two novel phosphorylation sites on FKHR that are critical for its nuclear exclusion. EMBO J 2002; 21 (9): 2263-71
    • (2002) EMBO J , vol.21 , Issue.9 , pp. 2263-2271
    • Rena, G.1    Woods, Y.L.2    Prescott, A.R.3
  • 98
    • 0344033820 scopus 로고    scopus 로고
    • Immediate response of mammalian target of rapamycin (mTOR)-mediated signalling following acute resistance exercise in rat skeletal muscle
    • Bolster DR, Kubica N, Crozier SJ, et al. Immediate response of mammalian target of rapamycin (mTOR)-mediated signalling following acute resistance exercise in rat skeletal muscle. J Physiol (Lond) 2003; 553 (1): 213-20
    • (2003) J Physiol (Lond) , vol.553 , Issue.1 , pp. 213-220
    • Bolster, D.R.1    Kubica, N.2    Crozier, S.J.3
  • 99
    • 33644859744 scopus 로고    scopus 로고
    • Exercise does not alter subcellular localization, but increases phosphorylation of insulin-signaling proteins in human skeletal muscle
    • Wilson C, Hargreaves M, Howlett KF. Exercise does not alter subcellular localization, but increases phosphorylation of insulin-signaling proteins in human skeletal muscle. Am J Physiol Endocrinol Metab 2006; 290 (2): E341-6
    • (2006) Am J Physiol Endocrinol Metab , vol.290 , Issue.2
    • Wilson, C.1    Hargreaves, M.2    Howlett, K.F.3
  • 100
    • 2642541582 scopus 로고    scopus 로고
    • Exercise regulates Akt and glycogen synthase kinase-3 activities in human skeletal muscle
    • Sakamoto K, Arnolds DEW, Ekberg I, et al. Exercise regulates Akt and glycogen synthase kinase-3 activities in human skeletal muscle. Biochem Biophys Res Commun 2004; 319 (2): 419-25
    • (2004) Biochem Biophys Res Commun , vol.319 , Issue.2 , pp. 419-425
    • Sakamoto, K.1    Arnolds, D.E.W.2    Ekberg, I.3
  • 101
    • 0032758457 scopus 로고    scopus 로고
    • Exercise and insulin cause GLUT-4 translocation in human skeletal muscle
    • Thorell A, Hirshman MF, Nygren J, et al. Exercise and insulin cause GLUT-4 translocation in human skeletal muscle. Am J Physiol Endocrinol Metab 1999; 277 (4): E733-41
    • (1999) Am J Physiol Endocrinol Metab , vol.277 , Issue.4
    • Thorell, A.1    Hirshman, M.F.2    Nygren, J.3
  • 102
    • 3543054528 scopus 로고    scopus 로고
    • Divergent effects of exercise on metabolic and mitogenic signaling pathways in human skeletal muscle
    • Widegren U, Jiang XJ, Krook A, et al. Divergent effects of exercise on metabolic and mitogenic signaling pathways in human skeletal muscle. FASEB J 1998; 12: 1379-89
    • (1998) FASEB J , vol.12 , pp. 1379-1389
    • Widegren, U.1    Jiang, X.J.2    Krook, A.3
  • 103
    • 24044466141 scopus 로고    scopus 로고
    • Influence of muscle glycogen availability on ERK1/2 and Akt signaling after resistance exercise in human skeletal muscle
    • Creer A, Gallagher P, Slivka D, et al. Influence of muscle glycogen availability on ERK1/2 and Akt signaling after resistance exercise in human skeletal muscle. J Appl Physiol 2005; 99 (3): 950-6
    • (2005) J Appl Physiol , vol.99 , Issue.3 , pp. 950-956
    • Creer, A.1    Gallagher, P.2    Slivka, D.3
  • 104
    • 33750400410 scopus 로고    scopus 로고
    • Akt signalling through GSK-3β, mTOR and Foxo1 is involved in human skeletal muscle hypertrophy and atrophy
    • Leger B, Cartoni R, Praz M, et al. Akt signalling through GSK-3β, mTOR and Foxo1 is involved in human skeletal muscle hypertrophy and atrophy. J Physiol (Lond) 2006; 576 (Pt 3): 923-33
    • (2006) J Physiol (Lond) , vol.576 , Issue.PART 3 , pp. 923-933
    • Leger, B.1    Cartoni, R.2    Praz, M.3
  • 105
    • 33750371417 scopus 로고    scopus 로고
    • Maximal lengthening contractions increase p70S6 kinase phosphorylation in human skeletal muscle in the absence of nutritional supply
    • Eliasson J, Elfegoun T, Nilsson J, et al. Maximal lengthening contractions increase p70S6 kinase phosphorylation in human skeletal muscle in the absence of nutritional supply. Am J Physiol Endocrinol Metab 2006; 291 (6): E1197-205
    • (2006) Am J Physiol Endocrinol Metab , vol.291 , Issue.6
    • Eliasson, J.1    Elfegoun, T.2    Nilsson, J.3
  • 106
    • 33745024082 scopus 로고    scopus 로고
    • Exercise-induced alterations in extracellular signal-regulated kinase 1/2 and mammalian target of rapamycin (mTOR) signalling to regulatory mechanisms of mRNA translation in mouse muscle
    • Williamson DL, Kubica N, Kimball SR, et al. Exercise-induced alterations in extracellular signal-regulated kinase 1/2 and mammalian target of rapamycin (mTOR) signalling to regulatory mechanisms of mRNA translation in mouse muscle. J Physiol (Lond) 2006; 573 (2): 497-510
    • (2006) J Physiol (Lond) , vol.573 , Issue.2 , pp. 497-510
    • Williamson, D.L.1    Kubica, N.2    Kimball, S.R.3
  • 107
    • 1342265402 scopus 로고    scopus 로고
    • Effects of aerobic exercise training on the protein kinase B (PKB)/mammalian target of rapamycin (mTOR) signaling pathway in aged skeletal muscle
    • Reynolds TH, Reid P, Larkin LM, et al. Effects of aerobic exercise training on the protein kinase B (PKB)/mammalian target of rapamycin (mTOR) signaling pathway in aged skeletal muscle. Exp Gerontol 2004; 39 (3): 379-85
    • (2004) Exp Gerontol , vol.39 , Issue.3 , pp. 379-385
    • Reynolds, T.H.1    Reid, P.2    Larkin, L.M.3
  • 108
    • 2342452623 scopus 로고    scopus 로고
    • Resistance training enhances components of the insulin signaling cascade in normal and high-fat-fed rodent skeletal muscle
    • Krisan AD, Collins DE, Crain AM, et al. Resistance training enhances components of the insulin signaling cascade in normal and high-fat-fed rodent skeletal muscle. J Appl Physiol 2004; 96 (5): 1691-700
    • (2004) J Appl Physiol , vol.96 , Issue.5 , pp. 1691-1700
    • Krisan, A.D.1    Collins, D.E.2    Crain, A.M.3
  • 109
    • 0142052855 scopus 로고    scopus 로고
    • Akt signaling in skeletal muscle: Regulation by exercise and passive stretch
    • Sakamoto K, Aschenbach WG, Hirshman MF, et al. Akt signaling in skeletal muscle: regulation by exercise and passive stretch. Am J Physiol Endocrinol Metab 2003; 285 (5): E1081-8
    • (2003) Am J Physiol Endocrinol Metab , vol.285 , Issue.5
    • Sakamoto, K.1    Aschenbach, W.G.2    Hirshman, M.F.3
  • 110
    • 0033609812 scopus 로고    scopus 로고
    • Insulin and exercise decrease glycogen synthase kinase-3 activity by different mechanisms in rat skeletal muscle
    • Markuns JF, Wojtaszewski JFP, Goodyear LJ. Insulin and exercise decrease glycogen synthase kinase-3 activity by different mechanisms in rat skeletal muscle. J Biol Chem 1999; 274 (35): 24896-900
    • (1999) J Biol Chem , vol.274 , Issue.35 , pp. 24896-24900
    • Markuns, J.F.1    Wojtaszewski, J.F.P.2    Goodyear, L.J.3
  • 111
    • 0032697037 scopus 로고    scopus 로고
    • Exercise modulates postreceptor insulin signaling and glucose transport in muscle-specific insulin receptor knockout mice
    • Wojtaszewski JFP, Higaki Y, Hirshman MF, et al. Exercise modulates postreceptor insulin signaling and glucose transport in muscle-specific insulin receptor knockout mice. J Clin Invest 1999; 104 (9): 1257-64
    • (1999) J Clin Invest , vol.104 , Issue.9 , pp. 1257-1264
    • Wojtaszewski, J.F.P.1    Higaki, Y.2    Hirshman, M.F.3
  • 113
    • 0037623417 scopus 로고    scopus 로고
    • G[β]L, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR
    • Kim D-H, Sarbassov DD, Ali SM, et al. G[β]L, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR. Mol Cell 2003; 11 (4): 895-904
    • (2003) Mol Cell , vol.11 , Issue.4 , pp. 895-904
    • Kim, D.-H.1    Sarbassov, D.D.2    Ali, S.M.3
  • 114
    • 33646023695 scopus 로고    scopus 로고
    • Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB
    • Sarbassov DD, Ali SM, Sengupta S, et al. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell 2006; 22 (2): 159-68
    • (2006) Mol Cell , vol.22 , Issue.2 , pp. 159-168
    • Sarbassov, D.D.1    Ali, S.M.2    Sengupta, S.3
  • 115
    • 23944521632 scopus 로고    scopus 로고
    • Skeletal myocyte hypertrophy requires mTOR kinase activity and S6K1
    • Park I-H, Erbay E, Nuzzi P, et al. Skeletal myocyte hypertrophy requires mTOR kinase activity and S6K1. Exp Cell Res 2005; 309 (1): 211-9
    • (2005) Exp Cell Res , vol.309 , Issue.1 , pp. 211-219
    • Park, I.-H.1    Erbay, E.2    Nuzzi, P.3
  • 116
    • 3342895823 scopus 로고    scopus 로고
    • Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton
    • Sarbassov DD, Ali SM, Kim D-H, et al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol 2004; 14 (14): 1296-302
    • (2004) Curr Biol , vol.14 , Issue.14 , pp. 1296-1302
    • Sarbassov, D.D.1    Ali, S.M.2    Kim, D.-H.3
  • 117
    • 15044340650 scopus 로고    scopus 로고
    • Distinct signaling events downstream of mTOR cooperate to mediate the effects of amino acids and insulin on initiation factor 4E-binding proteins
    • Wang X, Beugnet A, Murakami M, et al. Distinct signaling events downstream of mTOR cooperate to mediate the effects of amino acids and insulin on initiation factor 4E-binding proteins. Mol Cell Biol 2005; 25 (7): 2558-72
    • (2005) Mol Cell Biol , vol.25 , Issue.7 , pp. 2558-2572
    • Wang, X.1    Beugnet, A.2    Murakami, M.3
  • 118
    • 0347716759 scopus 로고    scopus 로고
    • Rheb fills a GAP between TSC and TOR
    • Manning BD, Cantley LC. Rheb fills a GAP between TSC and TOR. Trends Biochem Sci 2003; 28 (11): 573-6
    • (2003) Trends Biochem Sci , vol.28 , Issue.11 , pp. 573-576
    • Manning, B.D.1    Cantley, L.C.2
  • 119
    • 0038433304 scopus 로고    scopus 로고
    • Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and 2
    • Garami A, Zwartkruis FJT, Nobukuni T, et al. Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and 2. Mol Cell 2003; 11 (6): 1457-66
    • (2003) Mol Cell , vol.11 , Issue.6 , pp. 1457-1466
    • Garami, A.1    Zwartkruis, F.J.T.2    Nobukuni, T.3
  • 120
    • 20044392290 scopus 로고    scopus 로고
    • Atrophy of S6K1-/-skeletal muscle cells reveals distinct mTOR effectors for cell cycle and size control
    • Ohanna M, Sobering AK, Lapointe T, et al. Atrophy of S6K1-/-skeletal muscle cells reveals distinct mTOR effectors for cell cycle and size control. Nat Cell Biol 2005; 7 (3): 286-94
    • (2005) Nat Cell Biol , vol.7 , Issue.3 , pp. 286-294
    • Ohanna, M.1    Sobering, A.K.2    Lapointe, T.3
  • 121
    • 21244458013 scopus 로고    scopus 로고
    • Structure of S6 kinase 1 determines whether raptor-mTOR or rictor-mTOR phosphorylates its hydrophobic motif site
    • Ali SM, Sabatini DM. Structure of S6 kinase 1 determines whether raptor-mTOR or rictor-mTOR phosphorylates its hydrophobic motif site. J Biol Chem 2005; 280 (20): 19445-8
    • (2005) J Biol Chem , vol.280 , Issue.20 , pp. 19445-19448
    • Ali, S.M.1    Sabatini, D.M.2
  • 122
    • 33745150462 scopus 로고    scopus 로고
    • Ribosomal protein S6 phosphorylation: From protein synthesis to cell size
    • Ruvinsky I, Meyuhas O. Ribosomal protein S6 phosphorylation: from protein synthesis to cell size. Trends Biochem Sci 2006; 31 (6): 342-8
    • (2006) Trends Biochem Sci , vol.31 , Issue.6 , pp. 342-348
    • Ruvinsky, I.1    Meyuhas, O.2
  • 123
    • 33745206561 scopus 로고    scopus 로고
    • Impaired overload-induced muscle growth is associated with diminished translational signaling in aged rat fast-twitch skeletal muscle
    • Thomson DM, Gordon SE. Impaired overload-induced muscle growth is associated with diminished translational signaling in aged rat fast-twitch skeletal muscle. J Physiol (Lond) 2006; 574 (Pt 1): 291-305
    • (2006) J Physiol (Lond) , vol.574 , Issue.PART 1 , pp. 291-305
    • Thomson, D.M.1    Gordon, S.E.2
  • 124
    • 0037123438 scopus 로고    scopus 로고
    • Reynolds TH IV, Bodine SC, et al. Control of Ser2448 phosphorylation in the mammalian target of rapamycin by insulin and skeletal muscle load. J Biol Chem 2002; 277 (20): 17657-62
    • Reynolds TH IV, Bodine SC, et al. Control of Ser2448 phosphorylation in the mammalian target of rapamycin by insulin and skeletal muscle load. J Biol Chem 2002; 277 (20): 17657-62
  • 125
    • 3042651698 scopus 로고    scopus 로고
    • Contraction-mediated mTOR, p70S6k, and ERK1/2 phosphorylation in aged skeletal muscle
    • Parkington JD, LeBrasseur NK, Siebert AP, et al. Contraction-mediated mTOR, p70S6k, and ERK1/2 phosphorylation in aged skeletal muscle. J Appl Physiol 2004; 97 (1): 243-8
    • (2004) J Appl Physiol , vol.97 , Issue.1 , pp. 243-248
    • Parkington, J.D.1    LeBrasseur, N.K.2    Siebert, A.P.3
  • 127
    • 33748752151 scopus 로고    scopus 로고
    • The mTOR pathway regulates mitochondrial oxygen consumption and oxidative capacity
    • Schieke SM, Phillips D, McCoy JP Jr, et al. The mTOR pathway regulates mitochondrial oxygen consumption and oxidative capacity. J Biol Chem 2006; 281 (37): 27643-52
    • (2006) J Biol Chem , vol.281 , Issue.37 , pp. 27643-27652
    • Schieke, S.M.1    Phillips, D.2    McCoy Jr, J.P.3
  • 128
    • 0037622952 scopus 로고    scopus 로고
    • Translational control mechanisms modulate skeletal muscle gene expression during hypertrophy
    • Bolster DR, Kimball SR, Jefferson LS. Translational control mechanisms modulate skeletal muscle gene expression during hypertrophy. Exerc Sport Sci Rev 2003; 31 (3): 111-6
    • (2003) Exerc Sport Sci Rev , vol.31 , Issue.3 , pp. 111-116
    • Bolster, D.R.1    Kimball, S.R.2    Jefferson, L.S.3
  • 129
    • 0032538890 scopus 로고    scopus 로고
    • Disruption of the p70(s6k)/p85(s6k) gene reveals a small mouse phenotype and a new functional S6 kinase
    • Shima H, Pende M, Chen Y, et al. Disruption of the p70(s6k)/p85(s6k) gene reveals a small mouse phenotype and a new functional S6 kinase. EMBO J 1998; 17 (22): 6649-59
    • (1998) EMBO J , vol.17 , Issue.22 , pp. 6649-6659
    • Shima, H.1    Pende, M.2    Chen, Y.3
  • 130
    • 13444259647 scopus 로고    scopus 로고
    • Regulation of cap-dependent translation by eIF4E inhibitory proteins
    • Richter JD, Sonenberg N. Regulation of cap-dependent translation by eIF4E inhibitory proteins. Nature 2005; 433 (7025): 477-80
    • (2005) Nature , vol.433 , Issue.7025 , pp. 477-480
    • Richter, J.D.1    Sonenberg, N.2
  • 131
    • 0035055777 scopus 로고    scopus 로고
    • Intracellular signaling specificity in skeletal muscle in response to different modes of exercise
    • Nader GA, Esser KA. Intracellular signaling specificity in skeletal muscle in response to different modes of exercise. J Appl Physiol 2001; 90: 1936-42
    • (2001) J Appl Physiol , vol.90 , pp. 1936-1942
    • Nader, G.A.1    Esser, K.A.2
  • 132
    • 3042822477 scopus 로고    scopus 로고
    • Branched-chain amino acids increase p70S6k phosphorylation in human skeletal muscle after resistance exercise
    • Karlsson HKR, Nilsson P-A, Nilsson J, et al. Branched-chain amino acids increase p70S6k phosphorylation in human skeletal muscle after resistance exercise. Am J Physiol Endocrinol Metab 2004; 287 (1): E1-7
    • (2004) Am J Physiol Endocrinol Metab , vol.287 , Issue.1
    • Karlsson, H.K.R.1    Nilsson, P.-A.2    Nilsson, J.3
  • 133
    • 14844302667 scopus 로고    scopus 로고
    • Resistance exercise increases muscle protein synthesis and translation of eukaryotic initiation factor 2Bε mRNA in a mammalian target of rapamycin-dependent manner
    • Kubica N, Bolster DR, Farrell PA, et al. Resistance exercise increases muscle protein synthesis and translation of eukaryotic initiation factor 2Bε mRNA in a mammalian target of rapamycin-dependent manner. J Biol Chem 2005; 280 (9): 7570-80
    • (2005) J Biol Chem , vol.280 , Issue.9 , pp. 7570-7580
    • Kubica, N.1    Bolster, D.R.2    Farrell, P.A.3
  • 134
    • 15444370116 scopus 로고    scopus 로고
    • Aging does not alter the mechanosensitivity of the p38, p70S6k, and JNK2 signaling pathways in skeletal muscle
    • Hornberger TA, Mateja RD, Chin ER, et al. Aging does not alter the mechanosensitivity of the p38, p70S6k, and JNK2 signaling pathways in skeletal muscle. J Appl Physiol 2005; 98 (4): 1562-6
    • (2005) J Appl Physiol , vol.98 , Issue.4 , pp. 1562-1566
    • Hornberger, T.A.1    Mateja, R.D.2    Chin, E.R.3
  • 135
    • 33644826679 scopus 로고    scopus 로고
    • Inhibition of stretch-activated channels during eccentric muscle contraction attenuates p70S6K activation
    • Spangenburg EE, McBride TA. Inhibition of stretch-activated channels during eccentric muscle contraction attenuates p70S6K activation. J Appl Physiol 2006; 100 (1): 129-35
    • (2006) J Appl Physiol , vol.100 , Issue.1 , pp. 129-135
    • Spangenburg, E.E.1    McBride, T.A.2
  • 137
    • 0036889286 scopus 로고    scopus 로고
    • Inhibition of muscle insulin-like growth factor I expression by tumor necrosis factor-α
    • Fernandez-Celemin L, Pasko N, Blomart V, et al. Inhibition of muscle insulin-like growth factor I expression by tumor necrosis factor-α. Am J Physiol Endocrinol Metab 2002; 283 (6): E1279-90
    • (2002) Am J Physiol Endocrinol Metab , vol.283 , Issue.6
    • Fernandez-Celemin, L.1    Pasko, N.2    Blomart, V.3
  • 138
    • 0027266801 scopus 로고
    • Tumour necrosis factor-[α] increases the ubiquitinization of rat skeletal muscle proteins
    • Garcia-Martinez C, Agell N, Llovera M, et al. Tumour necrosis factor-[α] increases the ubiquitinization of rat skeletal muscle proteins. FEBS Lett 1993; 323 (3): 211-4
    • (1993) FEBS Lett , vol.323 , Issue.3 , pp. 211-214
    • Garcia-Martinez, C.1    Agell, N.2    Llovera, M.3
  • 139
    • 33646473089 scopus 로고    scopus 로고
    • Sepsis and inflammatory insults downregulate IGFBP-5, but not IGFBP-4, in skeletal muscle via a TNF-dependent mechanism
    • Lang CH, Krawiec BJ, Huber D, et al. Sepsis and inflammatory insults downregulate IGFBP-5, but not IGFBP-4, in skeletal muscle via a TNF-dependent mechanism. Am J Physiol Regul Integr Comp Physiol 2006; 290 (4): R963-72
    • (2006) Am J Physiol Regul Integr Comp Physiol , vol.290 , Issue.4
    • Lang, C.H.1    Krawiec, B.J.2    Huber, D.3
  • 140
    • 21044440466 scopus 로고    scopus 로고
    • Acute treatment with TNF-α attenuates insulin-stimulated protein synthesis in cultures of C2C12 myotubes through a MEK1-sensitive mechanism
    • Williamson DL, Kimball SR, Jefferson LS. Acute treatment with TNF-α attenuates insulin-stimulated protein synthesis in cultures of C2C12 myotubes through a MEK1-sensitive mechanism. Am J Physiol Endocrinol Metab 2005; 289 (1): E95-104
    • (2005) Am J Physiol Endocrinol Metab , vol.289 , Issue.1
    • Williamson, D.L.1    Kimball, S.R.2    Jefferson, L.S.3
  • 141
    • 0442324933 scopus 로고    scopus 로고
    • Tumor necrosis factor-α inhibits myogenic differentiation through MyoD protein destabilization
    • Langen RCJ, Van Der Velden JLJ, Schols AMWJ, et al. Tumor necrosis factor-α inhibits myogenic differentiation through MyoD protein destabilization. FASEB J 2004; 18 (2): 227-37
    • (2004) FASEB J , vol.18 , Issue.2 , pp. 227-237
    • Langen, R.C.J.1    Van Der Velden, J.L.J.2    Schols, A.M.W.J.3
  • 142
    • 33645772214 scopus 로고    scopus 로고
    • Tumor necrosis factor-α depletes histone deacetylase 1 protein through IKK2
    • Vashisht Gopal Y, Arora T, Van Dyke M. Tumor necrosis factor-α depletes histone deacetylase 1 protein through IKK2. EMBO Rep 2006; 7 (3): 291-6
    • (2006) EMBO Rep , vol.7 , Issue.3 , pp. 291-296
    • Vashisht Gopal, Y.1    Arora, T.2    Van Dyke, M.3
  • 143
    • 0033008005 scopus 로고    scopus 로고
    • TNF-α impairs insulin signaling and insulin stimulation of glucose uptake in C2C12 muscle cells
    • Del Aguila LF, Claffey KP, Kirwan JP. TNF-α impairs insulin signaling and insulin stimulation of glucose uptake in C2C12 muscle cells. Am J Physiol Endocrinol Metab 1999; 276 (5): E849-55
    • (1999) Am J Physiol Endocrinol Metab , vol.276 , Issue.5
    • Del Aguila, L.F.1    Claffey, K.P.2    Kirwan, J.P.3
  • 144
    • 25844456730 scopus 로고    scopus 로고
    • Tumor necrosis factor-α induces skeletal muscle insulin resistance in healthy human subjects via inhibition of Akt substrate 160 phosphorylation
    • Plomgaard P, Bouzakri K, Krogh-Madsen R, et al. Tumor necrosis factor-α induces skeletal muscle insulin resistance in healthy human subjects via inhibition of Akt substrate 160 phosphorylation. Diabetes 2005; 54 (10): 2939-45
    • (2005) Diabetes , vol.54 , Issue.10 , pp. 2939-2945
    • Plomgaard, P.1    Bouzakri, K.2    Krogh-Madsen, R.3
  • 145
    • 2342428466 scopus 로고    scopus 로고
    • Tumor necrosis factor α produces insulin resistance in skeletal muscle by activation of inhibitor κB kinase in a p38 MAPK-dependent manner
    • de Alvaro C, Teruel T, Hernandez R, et al. Tumor necrosis factor α produces insulin resistance in skeletal muscle by activation of inhibitor κB kinase in a p38 MAPK-dependent manner. J Biol Chem 2004; 279 (17): 17070-8
    • (2004) J Biol Chem , vol.279 , Issue.17 , pp. 17070-17078
    • de Alvaro, C.1    Teruel, T.2    Hernandez, R.3
  • 146
    • 0037711091 scopus 로고    scopus 로고
    • TNF-α increases ubiquitin-conjugating activity in skeletal muscle by up-regulating UbcH2/E220k
    • Li Y-P, Lecker SH, Chen Y, et al. TNF-α increases ubiquitin-conjugating activity in skeletal muscle by up-regulating UbcH2/E220k. FASEB J 2003; 17 (9): 1048-57
    • (2003) FASEB J , vol.17 , Issue.9 , pp. 1048-1057
    • Li, Y.-P.1    Lecker, S.H.2    Chen, Y.3
  • 147
    • 14644400387 scopus 로고    scopus 로고
    • TNF-α acts via p38 MAPK to stimulate expression of the ubiquitin ligase atrogin1/MAFbx in skeletal muscle
    • Li Y-P, Chen Y, John J, et al. TNF-α acts via p38 MAPK to stimulate expression of the ubiquitin ligase atrogin1/MAFbx in skeletal muscle. FASEB J 2005; 19 (3): 362-70
    • (2005) FASEB J , vol.19 , Issue.3 , pp. 362-370
    • Li, Y.-P.1    Chen, Y.2    John, J.3
  • 148
    • 0036087765 scopus 로고    scopus 로고
    • TNF-α impairs heart and skeletal muscle protein synthesis by altering translation initiation
    • Lang CH, Frost RA, Nairn AC, et al. TNF-α impairs heart and skeletal muscle protein synthesis by altering translation initiation. Am J Physiol Endocrinol Metab 2002; 282 (2): E336-47
    • (2002) Am J Physiol Endocrinol Metab , vol.282 , Issue.2
    • Lang, C.H.1    Frost, R.A.2    Nairn, A.C.3
  • 149
    • 33644750536 scopus 로고    scopus 로고
    • Reduced skeletal muscle inhibitor of κBβ content is associated with insulin resistance in subjects with type 2 diabetes: Reversal by exercise training
    • Sriwijitkamol A, Christ-Roberts C, Berria R, et al. Reduced skeletal muscle inhibitor of κBβ content is associated with insulin resistance in subjects with type 2 diabetes: reversal by exercise training. Diabetes 2006; 55 (3): 760-7
    • (2006) Diabetes , vol.55 , Issue.3 , pp. 760-767
    • Sriwijitkamol, A.1    Christ-Roberts, C.2    Berria, R.3
  • 150
    • 0033557703 scopus 로고    scopus 로고
    • Pro- and anti-inflammatory cytokine balance in strenuous exercise in humans
    • Ostrowski K, Rohde T, Asp S, et al. Pro- and anti-inflammatory cytokine balance in strenuous exercise in humans. J Physiol 1999; 515 (1): 287-91
    • (1999) J Physiol , vol.515 , Issue.1 , pp. 287-291
    • Ostrowski, K.1    Rohde, T.2    Asp, S.3
  • 151
    • 0033854209 scopus 로고    scopus 로고
    • Muscle damage impairs insulin stimulation of IRS-1, PI 3-kinase, and Akt-kinase in human skeletal muscle
    • Del Aguila LF, Krishnan RK, Ulbrecht JS, et al. Muscle damage impairs insulin stimulation of IRS-1, PI 3-kinase, and Akt-kinase in human skeletal muscle. Am J Physiol Endocrinol Metab 2000; 279 (1): E206-12
    • (2000) Am J Physiol Endocrinol Metab , vol.279 , Issue.1
    • Del Aguila, L.F.1    Krishnan, R.K.2    Ulbrecht, J.S.3
  • 152
    • 13244281764 scopus 로고    scopus 로고
    • Senescence of human skeletal muscle impairs the local inflammatory cytokine response to acute eccentric exercise
    • Hamada K, Vannier E, Sacheck JM, et al. Senescence of human skeletal muscle impairs the local inflammatory cytokine response to acute eccentric exercise. FASEB J 2004; 19 (2): 264-6
    • (2004) FASEB J , vol.19 , Issue.2 , pp. 264-266
    • Hamada, K.1    Vannier, E.2    Sacheck, J.M.3
  • 153
    • 23144449789 scopus 로고    scopus 로고
    • Ubiquitin signalling in the NF-[κ]B pathway
    • Chen ZJ. Ubiquitin signalling in the NF-[κ]B pathway. Nat Cell Biol 2005; 7 (8): 758-65
    • (2005) Nat Cell Biol , vol.7 , Issue.8 , pp. 758-765
    • Chen, Z.J.1
  • 154
    • 33645977821 scopus 로고    scopus 로고
    • Ubiquitin, TAK1 and IKK: Is there a connection?
    • Chen ZJ, Bhoj V, Seth RB. Ubiquitin, TAK1 and IKK: is there a connection? Cell Death Differ 2006; 13 (5): 687-92
    • (2006) Cell Death Differ , vol.13 , Issue.5 , pp. 687-692
    • Chen, Z.J.1    Bhoj, V.2    Seth, R.B.3
  • 155
    • 26944443968 scopus 로고    scopus 로고
    • Distinct roles of I[κ]B proteins in regulating constitutive NF-[κ]B activity
    • Tergaonkar V, Correa RG, Ikawa M, et al. Distinct roles of I[κ]B proteins in regulating constitutive NF-[κ]B activity. Nat Cell Biol 2005; 7 (9): 921-3
    • (2005) Nat Cell Biol , vol.7 , Issue.9 , pp. 921-923
    • Tergaonkar, V.1    Correa, R.G.2    Ikawa, M.3
  • 156
    • 0028970734 scopus 로고
    • Stimulation-dependent IκBα phosphorylation marks the NF-κB inhibitor for degradation via the ubiquitin-proteasome pathway
    • Alkalay I, Yaron A, Hatzubai A, et al. Stimulation-dependent IκBα phosphorylation marks the NF-κB inhibitor for degradation via the ubiquitin-proteasome pathway. PNAS 1995; 92 (23): 10599-603
    • (1995) PNAS , vol.92 , Issue.23 , pp. 10599-10603
    • Alkalay, I.1    Yaron, A.2    Hatzubai, A.3
  • 157
    • 0028972488 scopus 로고
    • Signal-induced degradation of IκBα requires site-specific ubiquitination
    • Scherer D, Brockman J, Chen Z, et al. Signal-induced degradation of IκBα requires site-specific ubiquitination. PNAS 1995; 92 (24): 11259-63
    • (1995) PNAS , vol.92 , Issue.24 , pp. 11259-11263
    • Scherer, D.1    Brockman, J.2    Chen, Z.3
  • 158
    • 0029146930 scopus 로고
    • Signal-induced site-specific phosphorylation targets IκBα to the ubiquitin-proteasome pathway
    • Chen Z, Hagler J, Palombella V, et al. Signal-induced site-specific phosphorylation targets IκBα to the ubiquitin-proteasome pathway. Gene Dev 1995; 9 (13): 1586-97
    • (1995) Gene Dev , vol.9 , Issue.13 , pp. 1586-1597
    • Chen, Z.1    Hagler, J.2    Palombella, V.3
  • 159
    • 5444262078 scopus 로고    scopus 로고
    • IKK[β]/NF-[κ]B activation causes severe muscle wasting in mice
    • Cai D, Frantz JD, Tawa J, et al. IKK[β]/NF-[κ]B activation causes severe muscle wasting in mice. Cell 2004; 119 (2): 285-98
    • (2004) Cell , vol.119 , Issue.2 , pp. 285-298
    • Cai, D.1    Frantz, J.D.2    Tawa, J.3
  • 160
    • 0036208356 scopus 로고    scopus 로고
    • Activation of an alternative NF-κB pathway in skeletal muscle during disuse atrophy
    • Hunter RB, Stevenson E, Koncarevic A, et al. Activation of an alternative NF-κB pathway in skeletal muscle during disuse atrophy. FASEB J 2002; 16 (6): 529-38
    • (2002) FASEB J , vol.16 , Issue.6 , pp. 529-538
    • Hunter, R.B.1    Stevenson, E.2    Koncarevic, A.3
  • 161
    • 0037336186 scopus 로고    scopus 로고
    • Mechanical stress activates the nuclear factor-κB pathway in skeletal muscle fibers: A possible role in Duchenne muscular dystrophy
    • Kumar A, Boriek AM. Mechanical stress activates the nuclear factor-κB pathway in skeletal muscle fibers: a possible role in Duchenne muscular dystrophy. FASEB J 2003; 17 (3): 386-96
    • (2003) FASEB J , vol.17 , Issue.3 , pp. 386-396
    • Kumar, A.1    Boriek, A.M.2
  • 162
    • 14944352786 scopus 로고    scopus 로고
    • NF-κB mediates proteolysis-inducing factor induced protein degradation and expression of the ubiquitin-proteasome system in skeletal muscle
    • Wyke S, Tisdale M. NF-κB mediates proteolysis-inducing factor induced protein degradation and expression of the ubiquitin-proteasome system in skeletal muscle. Br J Cancer 2005; 92 (4): 711-21
    • (2005) Br J Cancer , vol.92 , Issue.4 , pp. 711-721
    • Wyke, S.1    Tisdale, M.2
  • 163
    • 5044227528 scopus 로고    scopus 로고
    • Acute exercise activates nuclear factor (NF)-κB signaling pathway in rat skeletal muscle
    • Ji LL, Gomez-Cabrera MC, Steinhafel N, et al. Acute exercise activates nuclear factor (NF)-κB signaling pathway in rat skeletal muscle. FASEB J 2004; 18 (13): 1499-506
    • (2004) FASEB J , vol.18 , Issue.13 , pp. 1499-1506
    • Ji, L.L.1    Gomez-Cabrera, M.C.2    Steinhafel, N.3
  • 164
    • 25444492611 scopus 로고    scopus 로고
    • Regulation of IμB kinase and NF-κB in contracting adult rat skeletal muscle
    • Ho RC, Hirshman MF, Li Y, et al. Regulation of IμB kinase and NF-κB in contracting adult rat skeletal muscle. Am J Physiol Cell Physiol 2005; 289 (4): C794-801
    • (2005) Am J Physiol Cell Physiol , vol.289 , Issue.4
    • Ho, R.C.1    Hirshman, M.F.2    Li, Y.3
  • 165
    • 7044229640 scopus 로고    scopus 로고
    • Fatiguing exercise reduces DNA binding activity of NF-κB in skeletal muscle nuclei
    • Durham WJ, Li Y-P, Gerken E, et al. Fatiguing exercise reduces DNA binding activity of NF-κB in skeletal muscle nuclei. J Appl Physiol 2004; 97 (5): 1740-5
    • (2004) J Appl Physiol , vol.97 , Issue.5 , pp. 1740-1745
    • Durham, W.J.1    Li, Y.-P.2    Gerken, E.3
  • 166
    • 0345732643 scopus 로고    scopus 로고
    • A network of immediate early gene products propagates subtle differences in mitogen-activated protein kinase signal amplitude and duration
    • Murphy LO, MacKeigan JP, Blenis J. A network of immediate early gene products propagates subtle differences in mitogen-activated protein kinase signal amplitude and duration. Mol Cell Biol 2004; 24 (1): 144-53
    • (2004) Mol Cell Biol , vol.24 , Issue.1 , pp. 144-153
    • Murphy, L.O.1    MacKeigan, J.P.2    Blenis, J.3
  • 167
    • 3042763342 scopus 로고    scopus 로고
    • p38 pathway targets SWI-SNF chromatin-remodeling complex to muscle-specific loci
    • Simone C, Forcales CS, Hill DA, et al. p38 pathway targets SWI-SNF chromatin-remodeling complex to muscle-specific loci. Nat Genet 2004; 36 (7): 738-42
    • (2004) Nat Genet , vol.36 , Issue.7 , pp. 738-742
    • Simone, C.1    Forcales, C.S.2    Hill, D.A.3
  • 168
    • 0032953307 scopus 로고    scopus 로고
    • Regulation of the MEF2 family of transcription factors by p38
    • Zhao M, New L, Kravchenko VV, et al. Regulation of the MEF2 family of transcription factors by p38. Mol Cell Biol 1999; 19 (1): 21-30
    • (1999) Mol Cell Biol , vol.19 , Issue.1 , pp. 21-30
    • Zhao, M.1    New, L.2    Kravchenko, V.V.3
  • 169
    • 11144356337 scopus 로고    scopus 로고
    • Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy
    • Sandri M, Sandri C, Gilbert A, et al. Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 2004; 117 (3): 399-412
    • (2004) Cell , vol.117 , Issue.3 , pp. 399-412
    • Sandri, M.1    Sandri, C.2    Gilbert, A.3
  • 170
    • 0037610288 scopus 로고    scopus 로고
    • Molecular basis of skeletal muscle plasticity-from gene to form and function
    • Flück M, Hoppeler H. Molecular basis of skeletal muscle plasticity-from gene to form and function. Rev Physiol Biochem Pharmacol 2003; 146: 159-216
    • (2003) Rev Physiol Biochem Pharmacol , vol.146 , pp. 159-216
    • Flück, M.1    Hoppeler, H.2
  • 171
    • 0036128097 scopus 로고    scopus 로고
    • Adaptations of skeletal muscle to prolonged, intense endurance training
    • Hawley JA. Adaptations of skeletal muscle to prolonged, intense endurance training. Clin Exp Pharmacol Physiol 2002; 29: 218-22
    • (2002) Clin Exp Pharmacol Physiol , vol.29 , pp. 218-222
    • Hawley, J.A.1
  • 172
    • 0037247359 scopus 로고    scopus 로고
    • Plasticity of skeletal muscle mitochondria in response to contractile activity
    • Adhihetty PJ, Irrcher I, Joseph AM, et al. Plasticity of skeletal muscle mitochondria in response to contractile activity. Exp Physiol 2003; 88 (1): 99-107
    • (2003) Exp Physiol , vol.88 , Issue.1 , pp. 99-107
    • Adhihetty, P.J.1    Irrcher, I.2    Joseph, A.M.3
  • 173
    • 0037230261 scopus 로고    scopus 로고
    • Plasticity of skeletal muscle mitochondria: Structure and function
    • Hoppeler H, Flück M. Plasticity of skeletal muscle mitochondria: structure and function. Med Sci Sports Exerc 2003; 35 (1): 95-104
    • (2003) Med Sci Sports Exerc , vol.35 , Issue.1 , pp. 95-104
    • Hoppeler, H.1    Flück, M.2
  • 174
    • 0037250915 scopus 로고    scopus 로고
    • Regulation and co-ordination of nuclear gene expression during mitochondrial biogenesis
    • Goffart S, Wiesner RJ. Regulation and co-ordination of nuclear gene expression during mitochondrial biogenesis. Exp Physiol 2003; 88 (1): 33-40
    • (2003) Exp Physiol , vol.88 , Issue.1 , pp. 33-40
    • Goffart, S.1    Wiesner, R.J.2
  • 175
    • 33746009957 scopus 로고    scopus 로고
    • Coordination of metabolic plasticity in skeletal muscle
    • Hood DA, Irrcher I, Ljubicic V, et al. Coordination of metabolic plasticity in skeletal muscle. J Exp Biol 2006; 209 (12): 2265-75
    • (2006) J Exp Biol , vol.209 , Issue.12 , pp. 2265-2275
    • Hood, D.A.1    Irrcher, I.2    Ljubicic, V.3
  • 176
    • 1842645231 scopus 로고    scopus 로고
    • Calcium-regulated changes in the mitochondrial phenotype in skeletal muscle cells
    • Freyssenet D, Irrcher I, Connor MK, et al. Calcium-regulated changes in the mitochondrial phenotype in skeletal muscle cells. Am J Physiol Cell Physiol 2004; 286: C1053-61
    • (2004) Am J Physiol Cell Physiol , vol.286
    • Freyssenet, D.1    Irrcher, I.2    Connor, M.K.3
  • 177
    • 13444306450 scopus 로고    scopus 로고
    • Control of mitochondrial transcription specificity factors (TFB1M and TFB2M) by nuclear respiratory factors (NRF-1 and NRF-2) and PGC-1 family coactivators
    • Gleyzer N, Vercauteren K, Scarpulla RC. Control of mitochondrial transcription specificity factors (TFB1M and TFB2M) by nuclear respiratory factors (NRF-1 and NRF-2) and PGC-1 family coactivators. Mol Cell Biol 2005; 25 (4): 1354-66
    • (2005) Mol Cell Biol , vol.25 , Issue.4 , pp. 1354-1366
    • Gleyzer, N.1    Vercauteren, K.2    Scarpulla, R.C.3
  • 178
    • 0037029049 scopus 로고    scopus 로고
    • Transcriptional activators and coactivators in the nuclear control of mitochondrial function in mammalian cells
    • Scarpulla RC. Transcriptional activators and coactivators in the nuclear control of mitochondrial function in mammalian cells. Gene 2002; 286 (1): 81-9
    • (2002) Gene , vol.286 , Issue.1 , pp. 81-89
    • Scarpulla, R.C.1
  • 179
    • 9244229027 scopus 로고    scopus 로고
    • Regulation of Egr-1, SRF, and Sp1 mRNA proliferexpression in contracting skeletal muscle cells
    • Irrcher I, Hood DA. Regulation of Egr-1, SRF, and Sp1 mRNA proliferexpression in contracting skeletal muscle cells. J Appl Physiol 2004; 97 (6): 2207-13
    • (2004) J Appl Physiol , vol.97 , Issue.6 , pp. 2207-2213
    • Irrcher, I.1    Hood, D.A.2
  • 180
    • 0035844172 scopus 로고    scopus 로고
    • Contractile activity-induced transcriptional activation of cytochrome c involves Sp1 and is proportional to mitochondrial ATP synthesis in C2C12 muscle cells
    • Connor MK, Irrcher I, Hood DA. Contractile activity-induced transcriptional activation of cytochrome c involves Sp1 and is proportional to mitochondrial ATP synthesis in C2C12 muscle cells. J Biol Chem 2001; 276 (19): 15898-904
    • (2001) J Biol Chem , vol.276 , Issue.19 , pp. 15898-15904
    • Connor, M.K.1    Irrcher, I.2    Hood, D.A.3
  • 181
    • 0042266366 scopus 로고    scopus 로고
    • Impact of aerobic exercise training on age-related changes in insulin sensitivity and muscle oxidative capacity
    • Short KR, Vittone JL, Bigelow ML, et al. Impact of aerobic exercise training on age-related changes in insulin sensitivity and muscle oxidative capacity. Diabetes 2003; 52 (8): 1888-96
    • (2003) Diabetes , vol.52 , Issue.8 , pp. 1888-1896
    • Short, K.R.1    Vittone, J.L.2    Bigelow, M.L.3
  • 182
    • 0036903174 scopus 로고    scopus 로고
    • Adaptations of skeletal muscle to exercise: Rapid increase in the transcriptional coactivator PGC-1
    • Baar K, Wende AR, Jones TE, et al. Adaptations of skeletal muscle to exercise: rapid increase in the transcriptional coactivator PGC-1. FASEB J 2002; 16 (14): 1879-86
    • (2002) FASEB J , vol.16 , Issue.14 , pp. 1879-1886
    • Baar, K.1    Wende, A.R.2    Jones, T.E.3
  • 183
    • 33645011201 scopus 로고    scopus 로고
    • Nuclear control of respiratory gene expression in mammalian cells
    • Scarpulla RC. Nuclear control of respiratory gene expression in mammalian cells. J Cell Biochem 2006; 97 (4): 673-83
    • (2006) J Cell Biochem , vol.97 , Issue.4 , pp. 673-683
    • Scarpulla, R.C.1
  • 184
    • 0037102256 scopus 로고    scopus 로고
    • Transcriptional co-activator PG-C-1[α] drives the formation of slow-twitch muscle fibres
    • Lin J, Wu H, Tarr PT, et al. Transcriptional co-activator PG-C-1[α] drives the formation of slow-twitch muscle fibres. Nature 2002; 418 (6899): 797-801
    • (2002) Nature , vol.418 , Issue.6899 , pp. 797-801
    • Lin, J.1    Wu, H.2    Tarr, P.T.3
  • 185
    • 0035057837 scopus 로고    scopus 로고
    • Control of mitochondrial morphology by a exercishuman mitofusin
    • Santel A, Fuller M. Control of mitochondrial morphology by a exercishuman mitofusin. J Cell Sci 2001; 114 (5): 867-74
    • (2001) J Cell Sci , vol.114 , Issue.5 , pp. 867-874
    • Santel, A.1    Fuller, M.2
  • 186
    • 0038783254 scopus 로고    scopus 로고
    • Mitofusin-1 protein is a generally expressed mediator of mitochondrial fusion in mammalian cells
    • Santel A, Frank S, Gaume B, et al. Mitofusin-1 protein is a generally expressed mediator of mitochondrial fusion in mammalian cells. J Cell Sci 2003; 116 (13): 2763-74
    • (2003) J Cell Sci , vol.116 , Issue.13 , pp. 2763-2774
    • Santel, A.1    Frank, S.2    Gaume, B.3
  • 187
    • 0037593949 scopus 로고    scopus 로고
    • Mitofusin-2 determines mitochondrial network architecture and mitochondrial metabolism
    • Bach D, Pich S, Soriano FX, et al. Mitofusin-2 determines mitochondrial network architecture and mitochondrial metabolism. J Biol Chem 2003; 278 (19): 17190-7
    • (2003) J Biol Chem , vol.278 , Issue.19 , pp. 17190-17197
    • Bach, D.1    Pich, S.2    Soriano, F.X.3
  • 188
    • 23844494686 scopus 로고    scopus 로고
    • Mitofusins 1/2 and ERRα expression are increased in human skeletal muscle after physical exercise
    • Cartoni R, Leger B, Hock MB, et al. Mitofusins 1/2 and ERRα expression are increased in human skeletal muscle after physical exercise. J Physiol 2005; 567 (1): 349-58
    • (2005) J Physiol , vol.567 , Issue.1 , pp. 349-358
    • Cartoni, R.1    Leger, B.2    Hock, M.B.3
  • 189
    • 33748314528 scopus 로고    scopus 로고
    • Evidence for a mitochondrial regulatory pathway defined by peroxisome proliferator-activated receptor-γ coactivator-1α, estrogen-related receptor-α, and mitofusin 2
    • Soriano FX, Liesa M, Bach D, et al. Evidence for a mitochondrial regulatory pathway defined by peroxisome proliferator-activated receptor-γ coactivator-1α, estrogen-related receptor-α, and mitofusin 2. Diabetes 2006; 55 (6): 1783-91
    • (2006) Diabetes , vol.55 , Issue.6 , pp. 1783-1791
    • Soriano, F.X.1    Liesa, M.2    Bach, D.3
  • 190
    • 7644237446 scopus 로고    scopus 로고
    • Architectural role of mitochondrial transcription factor A in maintenance of human mitochondrial DNA
    • Kanki T, Ohgaki K, Gaspari M, et al. Architectural role of mitochondrial transcription factor A in maintenance of human mitochondrial DNA. Mol Cell Biol 2004; 24 (22): 9823-34
    • (2004) Mol Cell Biol , vol.24 , Issue.22 , pp. 9823-9834
    • Kanki, T.1    Ohgaki, K.2    Gaspari, M.3
  • 191
    • 11344277076 scopus 로고    scopus 로고
    • Transient overexpression of mitochondrial transcription factor A (TFAM) is sufficient to stimulate mitochondrial DNA transcription, but not sufficient to increase mtDNA copy number in cultured cells
    • Maniura-Weber K, Goffart S, Garstka HL, et al. Transient overexpression of mitochondrial transcription factor A (TFAM) is sufficient to stimulate mitochondrial DNA transcription, but not sufficient to increase mtDNA copy number in cultured cells. Nucl Acid Res 2004; 32 (20): 6015-27
    • (2004) Nucl Acid Res , vol.32 , Issue.20 , pp. 6015-6027
    • Maniura-Weber, K.1    Goffart, S.2    Garstka, H.L.3
  • 192
    • 0033538473 scopus 로고    scopus 로고
    • Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1
    • Wu Z, Puigserver P, Andersson U, et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 1999; 98 (1): 115-24
    • (1999) Cell , vol.98 , Issue.1 , pp. 115-124
    • Wu, Z.1    Puigserver, P.2    Andersson, U.3
  • 193
    • 0035168996 scopus 로고    scopus 로고
    • Plasticity in skeletal, cardiac and smooth muscle selected contribution: Effects of contractile activity on mitochondrial transcription factor A expression in skeletal muscle
    • Gordon JW, Rungi AA, Inagaki H, et al. Plasticity in skeletal, cardiac and smooth muscle selected contribution: effects of contractile activity on mitochondrial transcription factor A expression in skeletal muscle. J Appl Physiol 2001; 90: 389-96
    • (2001) J Appl Physiol , vol.90 , pp. 389-396
    • Gordon, J.W.1    Rungi, A.A.2    Inagaki, H.3
  • 194
    • 0035170361 scopus 로고    scopus 로고
    • Mitochondrial transcription factor A and respiratory complex IV increase in response to exercise training in humans
    • Bengtsson J, Gustafsson T, Widegren U, et al. Mitochondrial transcription factor A and respiratory complex IV increase in response to exercise training in humans. Pflugers Arch 2001; 443 (1): 61-6
    • (2001) Pflugers Arch , vol.443 , Issue.1 , pp. 61-66
    • Bengtsson, J.1    Gustafsson, T.2    Widegren, U.3
  • 195
    • 0033977890 scopus 로고    scopus 로고
    • The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor α in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes
    • Vega RB, Huss JM, Kelly DP. The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor α in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Mol Cell Biol 2000; 20 (5): 1868-76
    • (2000) Mol Cell Biol , vol.20 , Issue.5 , pp. 1868-1876
    • Vega, R.B.1    Huss, J.M.2    Kelly, D.P.3
  • 196
    • 0037053326 scopus 로고    scopus 로고
    • Peroxisome proliferator-activated receptor (PPAR) gamma coactivator-1 recruitment regulates PPAR subtype specificity
    • Oberkofler H, Esterbauer H, Linnemayr V, et al. Peroxisome proliferator-activated receptor (PPAR) gamma coactivator-1 recruitment regulates PPAR subtype specificity. J Biol Chem 2002; 277 (19): 16750-7
    • (2002) J Biol Chem , vol.277 , Issue.19 , pp. 16750-16757
    • Oberkofler, H.1    Esterbauer, H.2    Linnemayr, V.3
  • 197
    • 33644660537 scopus 로고    scopus 로고
    • PGC-1 coactivators: Inducible regulators of energy metabolism in health and disease
    • Finck BN, Kelly DP. PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. J Clin Invest 2006; 116 (3): 615-22
    • (2006) J Clin Invest , vol.116 , Issue.3 , pp. 615-622
    • Finck, B.N.1    Kelly, D.P.2
  • 198
    • 0037900979 scopus 로고    scopus 로고
    • Lipid metabolism, metabolic diseases, and peroxisome proliferator-activated receptors (minireview)
    • Lee C-H, Olson P, Evans RM. Lipid metabolism, metabolic diseases, and peroxisome proliferator-activated receptors (minireview). Endocrinology 2003; 144 (6): 2201-7
    • (2003) Endocrinology , vol.144 , Issue.6 , pp. 2201-2207
    • Lee, C.-H.1    Olson, P.2    Evans, R.M.3
  • 199
    • 0642303113 scopus 로고    scopus 로고
    • Peroxisome proliferator-activated receptor-δ controls muscle development and oxidative capability
    • Luquet S, Lopez-Soriano J, Holst D, et al. Peroxisome proliferator-activated receptor-δ controls muscle development and oxidative capability. FASEB J 2003; 17 (15): 2299-301
    • (2003) FASEB J , vol.17 , Issue.15 , pp. 2299-2301
    • Luquet, S.1    Lopez-Soriano, J.2    Holst, D.3
  • 200
    • 8844276054 scopus 로고    scopus 로고
    • Regulation of muscle fiber type and running endurance by PPARdelta
    • Wang Y, Zhang C, Yu RT, et al. Regulation of muscle fiber type and running endurance by PPARdelta. PLoS Biol 2004; 2 (10): e294
    • (2004) PLoS Biol , vol.2 , Issue.10
    • Wang, Y.1    Zhang, C.2    Yu, R.T.3
  • 201
    • 20444477952 scopus 로고    scopus 로고
    • Regulation of metabolic transcriptional co-activators and transcription factors with acute exercise
    • Russell AP, Hesselink MKC, Lo SK, et al. Regulation of metabolic transcriptional co-activators and transcription factors with acute exercise. FASEB J 2005; 19 (8): 986-8
    • (2005) FASEB J , vol.19 , Issue.8 , pp. 986-988
    • Russell, A.P.1    Hesselink, M.K.C.2    Lo, S.K.3
  • 202
    • 33751161929 scopus 로고    scopus 로고
    • Low-intensity exercise increases skeletal muscle protein expression of PPARdelta and UCP3 in type 2 diabetic patients
    • Fritz T, Kramer DK, Karlsson HK, et al. Low-intensity exercise increases skeletal muscle protein expression of PPARdelta and UCP3 in type 2 diabetic patients. Diabetes Metab Res Rev 2006; 22 (6): 492-8
    • (2006) Diabetes Metab Res Rev , vol.22 , Issue.6 , pp. 492-498
    • Fritz, T.1    Kramer, D.K.2    Karlsson, H.K.3
  • 203
    • 33646400260 scopus 로고    scopus 로고
    • Interaction of contractile activity and training history on mRNA abundance in skeletal muscle from trained athletes
    • Coffey VG, Shield A, Canny BJ, et al. Interaction of contractile activity and training history on mRNA abundance in skeletal muscle from trained athletes. Am J Physiol Endocrinol Metab 2006; 290 (5): E849-55
    • (2006) Am J Physiol Endocrinol Metab , vol.290 , Issue.5
    • Coffey, V.G.1    Shield, A.2    Canny, B.J.3
  • 204
    • 0347993714 scopus 로고    scopus 로고
    • PGC-1α mRNA expression is influenced by metabolic perturbation in exercising human skeletal muscle
    • Norrbom J, Sundberg CJ, Ameln H, et al. PGC-1α mRNA expression is influenced by metabolic perturbation in exercising human skeletal muscle. J Appl Physiol 2003; 96 (1): 189-94
    • (2003) J Appl Physiol , vol.96 , Issue.1 , pp. 189-194
    • Norrbom, J.1    Sundberg, C.J.2    Ameln, H.3
  • 205
    • 0037322888 scopus 로고    scopus 로고
    • Exercise induces transient transcriptional activation of the PGC-1α gene in human skeletal muscle
    • Pilegaard H, Saltin B, Neufer PD. Exercise induces transient transcriptional activation of the PGC-1α gene in human skeletal muscle. J Physiol 2003; 546 (3): 851-8
    • (2003) J Physiol , vol.546 , Issue.3 , pp. 851-858
    • Pilegaard, H.1    Saltin, B.2    Neufer, P.D.3
  • 206
    • 0036288154 scopus 로고    scopus 로고
    • Exercise training increases lipid metabolism gene expression in human skeletal muscle
    • Tunstall RJ, Mehan KA, Wadley GD, et al. Exercise training increases lipid metabolism gene expression in human skeletal muscle. Am J Physiol Endocrinol Metab 2002; 283: E66-72
    • (2002) Am J Physiol Endocrinol Metab , vol.283
    • Tunstall, R.J.1    Mehan, K.A.2    Wadley, G.D.3
  • 207
    • 22744446447 scopus 로고    scopus 로고
    • Substrate availability and transcriptional regulation of metabolic genes in human skeletal muscle during recovery from exercise
    • Pilegaard H, Osada T, Andersen LT, et al. Substrate availability and transcriptional regulation of metabolic genes in human skeletal muscle during recovery from exercise. Metabolism 2005; 54 (8): 1048-55
    • (2005) Metabolism , vol.54 , Issue.8 , pp. 1048-1055
    • Pilegaard, H.1    Osada, T.2    Andersen, L.T.3
  • 208
    • 0142020833 scopus 로고    scopus 로고
    • Differential transcriptional activation of select metabolic genes in response to variations in exercise intensity and duration in red and white skeletal muscle
    • Hildebrandt AL, Pilegaard H, Neufer PD. Differential transcriptional activation of select metabolic genes in response to variations in exercise intensity and duration in red and white skeletal muscle. Am J Physiol Endocrinol Metab 2003; 285 (5): E1021-7
    • (2003) Am J Physiol Endocrinol Metab , vol.285 , Issue.5
    • Hildebrandt, A.L.1    Pilegaard, H.2    Neufer, P.D.3
  • 209
    • 0030822785 scopus 로고    scopus 로고
    • Mixed muscle protein synthesis and breakdown after resistance exercise in humans
    • Phillips SM, Tipton KD, Aarsland A, et al. Mixed muscle protein synthesis and breakdown after resistance exercise in humans. Am J Physiol Endocrinol Metab 1997; 36: E99-107
    • (1997) Am J Physiol Endocrinol Metab , vol.36
    • Phillips, S.M.1    Tipton, K.D.2    Aarsland, A.3
  • 210
    • 0026705777 scopus 로고
    • Changes in human muscle protein synthesis after resistance exercise
    • Chesley A, MacDougall JD, Tarnopolsky MA, et al. Changes in human muscle protein synthesis after resistance exercise. J Appl Physiol 1992; 73 (4): 1383-8
    • (1992) J Appl Physiol , vol.73 , Issue.4 , pp. 1383-1388
    • Chesley, A.1    MacDougall, J.D.2    Tarnopolsky, M.A.3
  • 211
    • 6944226810 scopus 로고    scopus 로고
    • Disuse atrophy and exercise rehabilitation in humans profoundly affects the expression of genes associated with regulation of skeletal muscle mass
    • Jones SW, Hill RJ, Krasney PA, et al. Disuse atrophy and exercise rehabilitation in humans profoundly affects the expression of genes associated with regulation of skeletal muscle mass. FASEB J 2004; 18 (9): 1025-7
    • (2004) FASEB J , vol.18 , Issue.9 , pp. 1025-1027
    • Jones, S.W.1    Hill, R.J.2    Krasney, P.A.3
  • 212
    • 0035881470 scopus 로고    scopus 로고
    • Regulation of elongation factor 2 kinase by p90(RSK1) and p70 S6 kinase
    • Wang X, Li W, Williams M, et al. Regulation of elongation factor 2 kinase by p90(RSK1) and p70 S6 kinase. EMBO J 2001; 20 (16): 4370-9
    • (2001) EMBO J , vol.20 , Issue.16 , pp. 4370-4379
    • Wang, X.1    Li, W.2    Williams, M.3
  • 213
    • 0034093436 scopus 로고    scopus 로고
    • Eukaryotic initiation factors and protein synthesis after resistance exercise in rats
    • Farrell PA, Hernandez JM, Fedele MJ, et al. Eukaryotic initiation factors and protein synthesis after resistance exercise in rats. J Appl Physiol 2000; 88 (3): 1036-42
    • (2000) J Appl Physiol , vol.88 , Issue.3 , pp. 1036-1042
    • Farrell, P.A.1    Hernandez, J.M.2    Fedele, M.J.3
  • 214
    • 0242637318 scopus 로고    scopus 로고
    • mTOR-dependent regulation of ribosomal gene transcription requires S6K1 and is mediated by phosphorylation of the carboxy-terminal activation domain of the nucleolar transcription factor UBF
    • Hannan KM, Brandenburger Y, Jenkins A, et al. mTOR-dependent regulation of ribosomal gene transcription requires S6K1 and is mediated by phosphorylation of the carboxy-terminal activation domain of the nucleolar transcription factor UBF. Mol Cell Biol 2003; 23 (23): 8862-77
    • (2003) Mol Cell Biol , vol.23 , Issue.23 , pp. 8862-8877
    • Hannan, K.M.1    Brandenburger, Y.2    Jenkins, A.3
  • 215
    • 0035136062 scopus 로고    scopus 로고
    • Localized IGF-1 trans-gene expression sustains hypertrophy and regeneration in senescent skeletal muscle
    • Musaro A, McCullagh K, Paul A, et al. Localized IGF-1 trans-gene expression sustains hypertrophy and regeneration in senescent skeletal muscle. Nat Genet 2001; 27 (2): 195-200
    • (2001) Nat Genet , vol.27 , Issue.2 , pp. 195-200
    • Musaro, A.1    McCullagh, K.2    Paul, A.3
  • 216
    • 0031965872 scopus 로고    scopus 로고
    • Localized infusion of IGF-I results in skeletal muscle hypertrophy in rats
    • Adams GR, McCue SA. Localized infusion of IGF-I results in skeletal muscle hypertrophy in rats. J Appl Physiol 1998; 84 (5): 1716-22
    • (1998) J Appl Physiol , vol.84 , Issue.5 , pp. 1716-1722
    • Adams, G.R.1    McCue, S.A.2
  • 217
    • 18944402728 scopus 로고    scopus 로고
    • Insulin-like growth factor I-mediated skeletal muscle hypertrophy is characterized by increased mTOR-p70S6K signaling without increased Akt phosphorylation
    • Song YH, Godard M, Li Y, et al. Insulin-like growth factor I-mediated skeletal muscle hypertrophy is characterized by increased mTOR-p70S6K signaling without increased Akt phosphorylation. J Investig Med 2005; 53 (3): 135-42
    • (2005) J Investig Med , vol.53 , Issue.3 , pp. 135-142
    • Song, Y.H.1    Godard, M.2    Li, Y.3
  • 218
    • 18844390423 scopus 로고    scopus 로고
    • Insulin and IGF-I stimulate the formation of the eukaryotic initiation factor 4F complex and protein synthesis in C2C12 myotubes independent of availability of external amino acids
    • Shen W-H, Boyle DW, Wisniowski P, et al. Insulin and IGF-I stimulate the formation of the eukaryotic initiation factor 4F complex and protein synthesis in C2C12 myotubes independent of availability of external amino acids. J Endocrinol 2005; 185 (2): 275-89
    • (2005) J Endocrinol , vol.185 , Issue.2 , pp. 275-289
    • Shen, W.-H.1    Boyle, D.W.2    Wisniowski, P.3
  • 219
    • 33644864086 scopus 로고    scopus 로고
    • IGF-I stimulates protein synthesis in skeletal muscle through multiple signaling pathways during sepsis
    • Vary TC. IGF-I stimulates protein synthesis in skeletal muscle through multiple signaling pathways during sepsis. Am J Physiol Regul Integr Comp Physiol 2006; 290 (2): R313-21
    • (2006) Am J Physiol Regul Integr Comp Physiol , vol.290 , Issue.2
    • Vary, T.C.1
  • 220
    • 0034680932 scopus 로고    scopus 로고
    • Insulin-like growth factor-I extends in vitro replicative life span of skeletal muscle satellite cells by enhancing G1/S cell cycle progression via the activation of phosphatidylinositol 3′-kinase/Akt signaling pathway
    • Chakravarthy MV, Abraha TW, Schwartz RJ, et al. Insulin-like growth factor-I extends in vitro replicative life span of skeletal muscle satellite cells by enhancing G1/S cell cycle progression via the activation of phosphatidylinositol 3′-kinase/Akt signaling pathway. J Biol Chem 2000; 275 (46): 35942-52
    • (2000) J Biol Chem , vol.275 , Issue.46 , pp. 35942-35952
    • Chakravarthy, M.V.1    Abraha, T.W.2    Schwartz, R.J.3
  • 221
    • 4043061445 scopus 로고    scopus 로고
    • IGF-1 induces human myotube hypertrophy by increasing cell recruitment
    • Jacquemin V, Furling D, Bigot A, et al. IGF-1 induces human myotube hypertrophy by increasing cell recruitment. Exp Cell Res 2004; 299 (1): 148-58
    • (2004) Exp Cell Res , vol.299 , Issue.1 , pp. 148-158
    • Jacquemin, V.1    Furling, D.2    Bigot, A.3
  • 222
    • 0032748436 scopus 로고    scopus 로고
    • Time course of changes in markers of myogenesis in overloaded rat skeletal muscles
    • Adams GR, Haddad F, Baldwin KM. Time course of changes in markers of myogenesis in overloaded rat skeletal muscles. J Appl Physiol 1999; 87 (5): 1705-12
    • (1999) J Appl Physiol , vol.87 , Issue.5 , pp. 1705-1712
    • Adams, G.R.1    Haddad, F.2    Baldwin, K.M.3
  • 223
    • 2342571021 scopus 로고    scopus 로고
    • Skeletal muscle hypertrophy in response to isometric, lengthening, and shortening training bouts of equivalent duration
    • Adams GR, Cheng DC, Haddad F, et al. Skeletal muscle hypertrophy in response to isometric, lengthening, and shortening training bouts of equivalent duration. J Appl Physiol 2004; 96: 1613-8
    • (2004) J Appl Physiol , vol.96 , pp. 1613-1618
    • Adams, G.R.1    Cheng, D.C.2    Haddad, F.3
  • 224
    • 0037440667 scopus 로고    scopus 로고
    • Expression of IGF-I splice variants in young and old human skeletal muscle after high resistance training
    • Hameed M, Orrell RW, Cobbold M, et al. Expression of IGF-I splice variants in young and old human skeletal muscle after high resistance training. J Physiol 2003; 547 (1): 247-54
    • (2003) J Physiol , vol.547 , Issue.1 , pp. 247-254
    • Hameed, M.1    Orrell, R.W.2    Cobbold, M.3
  • 225
    • 19444370186 scopus 로고    scopus 로고
    • Impact of resistance loading on myostatin expression and cell cycle regulation in young and older men and women
    • Kim J-S, Cross JM, Bamman MM. Impact of resistance loading on myostatin expression and cell cycle regulation in young and older men and women. Am J Physiol Endocrinol Metab 2005; 288 (6): E1110-19
    • (2005) Am J Physiol Endocrinol Metab , vol.288 , Issue.6
    • Kim, J.-S.1    Cross, J.M.2    Bamman, M.M.3
  • 226
    • 0037304275 scopus 로고    scopus 로고
    • Skeletal muscle IGF-binding protein-3 and -5 expressions are age, muscle and load dependent
    • Spangenburg EE, Abraha T, Childs TE, et al. Skeletal muscle IGF-binding protein-3 and -5 expressions are age, muscle and load dependent. Am J Physiol Endocrinol Metab 2002; 284: E340-50
    • (2002) Am J Physiol Endocrinol Metab , vol.284
    • Spangenburg, E.E.1    Abraha, T.2    Childs, T.E.3
  • 227
    • 33751175205 scopus 로고    scopus 로고
    • Efficacy of myonuclear addition may explain differential myofiber growth among resistance trained young and older men and women
    • Petrella JK, Kim J-S, Cross JM, et al. Efficacy of myonuclear addition may explain differential myofiber growth among resistance trained young and older men and women. Am J Physiol Endocrinol Metab 2006; 291 (5): E937-46
    • (2006) Am J Physiol Endocrinol Metab , vol.291 , Issue.5
    • Petrella, J.K.1    Kim, J.-S.2    Cross, J.M.3
  • 228
    • 0035023210 scopus 로고    scopus 로고
    • Mechanical load increases muscle IGF-I and androgen receptor mRNA concentrations in humans
    • Bamman MM, Shipp JR, Jiang J, et al. Mechanical load increases muscle IGF-I and androgen receptor mRNA concentrations in humans. Am J Physiol Endocrinol Metab 2001; 280 (3): E383-90
    • (2001) Am J Physiol Endocrinol Metab , vol.280 , Issue.3
    • Bamman, M.M.1    Shipp, J.R.2    Jiang, J.3
  • 229
    • 0041922409 scopus 로고    scopus 로고
    • Resistance exercise alters MRF and IGF-1 mRNA content in human skeletal muscle
    • Psilander N, Damsgaard R, Pilegaard H. Resistance exercise alters MRF and IGF-1 mRNA content in human skeletal muscle. J Appl Physiol 2003; 95: 1038-44
    • (2003) J Appl Physiol , vol.95 , pp. 1038-1044
    • Psilander, N.1    Damsgaard, R.2    Pilegaard, H.3
  • 230
    • 0037840579 scopus 로고    scopus 로고
    • Acute molecular responses of skeletal muscle to resistance exercise in able-bodied and spinal cord-injured subjects
    • Bickel CS, Slade JM, Haddad F, et al. Acute molecular responses of skeletal muscle to resistance exercise in able-bodied and spinal cord-injured subjects. J Appl Physiol 2003; 94 (6): 2255-62
    • (2003) J Appl Physiol , vol.94 , Issue.6 , pp. 2255-2262
    • Bickel, C.S.1    Slade, J.M.2    Haddad, F.3
  • 231
    • 19444362525 scopus 로고    scopus 로고
    • Muscle strength response to strength training is influenced by insulin-like growth factor 1 genotype in older adults
    • Kostek MC, Delmonico MJ, Reichel JB, et al. Muscle strength response to strength training is influenced by insulin-like growth factor 1 genotype in older adults. J Appl Physiol 2005; 98 (6): 2147-54
    • (2005) J Appl Physiol , vol.98 , Issue.6 , pp. 2147-2154
    • Kostek, M.C.1    Delmonico, M.J.2    Reichel, J.B.3
  • 232
    • 0030938965 scopus 로고    scopus 로고
    • Sarcomere dynamics and contraction-induced injury to maximally activated single muscle fibres from soleus muscles of rats
    • MacPherson P, Dennis R, Faulkner J. Sarcomere dynamics and contraction-induced injury to maximally activated single muscle fibres from soleus muscles of rats. J Physiol 1997; 500: 523-80
    • (1997) J Physiol , vol.500 , pp. 523-580
    • MacPherson, P.1    Dennis, R.2    Faulkner, J.3
  • 233
    • 0022362757 scopus 로고
    • Injury to skeletal muscle fibers of mice following lengthening contractions
    • McCully KK, Faulkner JA. Injury to skeletal muscle fibers of mice following lengthening contractions. J Appl Physiol 1985; 59 (1): 119-26
    • (1985) J Appl Physiol , vol.59 , Issue.1 , pp. 119-126
    • McCully, K.K.1    Faulkner, J.A.2
  • 234
    • 3543123015 scopus 로고    scopus 로고
    • Muscle satellite cells adopt divergent fates: A mechanism for self-renewal?
    • Zammit PS, Golding JP, Nagata Y, et al. Muscle satellite cells adopt divergent fates: a mechanism for self-renewal? J Cell Biol 2004; 166 (3): 347-57
    • (2004) J Cell Biol , vol.166 , Issue.3 , pp. 347-357
    • Zammit, P.S.1    Golding, J.P.2    Nagata, Y.3
  • 235
    • 33744787051 scopus 로고    scopus 로고
    • Resident stem cells are not required for exercise-induced fiber-type switching and angiogenesis but are necessary for activity-dependent muscle growth
    • Li P, Akimoto T, Zhang M, et al. Resident stem cells are not required for exercise-induced fiber-type switching and angiogenesis but are necessary for activity-dependent muscle growth. Am J Physiol Cell Physiol 2006; 290 (6): C1461-8
    • (2006) Am J Physiol Cell Physiol , vol.290 , Issue.6
    • Li, P.1    Akimoto, T.2    Zhang, M.3
  • 236
    • 1542344874 scopus 로고    scopus 로고
    • Localization of MyoD, myogenin and cell cycle regulatory factors in hypertrophying skeletal muscle
    • Ishido M, Kami K, Masuhara M. Localization of MyoD, myogenin and cell cycle regulatory factors in hypertrophying skeletal muscle. Acta Physiol Scand 2004; 180: 281-9
    • (2004) Acta Physiol Scand , vol.180 , pp. 281-289
    • Ishido, M.1    Kami, K.2    Masuhara, M.3
  • 237
    • 0035986083 scopus 로고    scopus 로고
    • Exercise effects on muscle insulin signaling and action: Selected contribution: acute cellular and molecular responses to resistance exercise
    • Haddad F, Adams GR. Exercise effects on muscle insulin signaling and action: selected contribution: acute cellular and molecular responses to resistance exercise. J Appl Physiol 2002; 93 (1): 394-403
    • (2002) J Appl Physiol , vol.93 , Issue.1 , pp. 394-403
    • Haddad, F.1    Adams, G.R.2
  • 238
    • 21644468866 scopus 로고    scopus 로고
    • Gene expression of myogenic factors and phenotype-specific markers in electrically stimulated muscle of paraplegics
    • Vissing K, Andersen JL, Harridge SDR, et al. Gene expression of myogenic factors and phenotype-specific markers in electrically stimulated muscle of paraplegics. J Appl Physiol 2005; 99 (1): 164-72
    • (2005) J Appl Physiol , vol.99 , Issue.1 , pp. 164-172
    • Vissing, K.1    Andersen, J.L.2    Harridge, S.D.R.3
  • 239
    • 33746691931 scopus 로고    scopus 로고
    • Efficacy of 3 D/WK resistance training on myofiber hypertrophy and myogenic mechanisms in young versus older adults
    • Kosek DJ, Kim J-S, Petrella JK, et al. Efficacy of 3 D/WK resistance training on myofiber hypertrophy and myogenic mechanisms in young versus older adults. J Appl Physiol 2006; 101 (2): 531-44
    • (2006) J Appl Physiol , vol.101 , Issue.2 , pp. 531-544
    • Kosek, D.J.1    Kim, J.-S.2    Petrella, J.K.3
  • 240
    • 3042606740 scopus 로고    scopus 로고
    • Myogenin and oxidative enzyme gene expression levels are elevated in rat soleus muscles after endurance training
    • Siu PM, Donley DA, Bryner RW, et al. Myogenin and oxidative enzyme gene expression levels are elevated in rat soleus muscles after endurance training. J Appl Physiol 2004; 97 (1): 277-85
    • (2004) J Appl Physiol , vol.97 , Issue.1 , pp. 277-285
    • Siu, P.M.1    Donley, D.A.2    Bryner, R.W.3
  • 241
    • 2442591707 scopus 로고    scopus 로고
    • Effects of one bout of endurance exercise on the expression of myogenin in human quadriceps muscle
    • Kadi F, Johansson F, Johansson R, et al. Effects of one bout of endurance exercise on the expression of myogenin in human quadriceps muscle. Histochem Cell Biol 2004; 121: 329-34
    • (2004) Histochem Cell Biol , vol.121 , pp. 329-334
    • Kadi, F.1    Johansson, F.2    Johansson, R.3
  • 242
    • 19344372609 scopus 로고    scopus 로고
    • Response of the ubiquitin-proteasome pathway to changes in muscle activity
    • Reid MB. Response of the ubiquitin-proteasome pathway to changes in muscle activity. Am J Physiol Regul Integr Comp Physiol 2005; 288 (6): R1423-31
    • (2005) Am J Physiol Regul Integr Comp Physiol , vol.288 , Issue.6
    • Reid, M.B.1
  • 243
    • 85047693596 scopus 로고    scopus 로고
    • Activation of caspase-3 is an initial step triggering accelerated muscle proteolysis in catabolic conditions
    • Du J, Wang X, Miereles C, et al. Activation of caspase-3 is an initial step triggering accelerated muscle proteolysis in catabolic conditions. J Clin Invest 2004; 113 (1): 115-23
    • (2004) J Clin Invest , vol.113 , Issue.1 , pp. 115-123
    • Du, J.1    Wang, X.2    Miereles, C.3
  • 244
    • 0025353885 scopus 로고
    • Different mechanisms of increased proteolysis in atrophy induced by denervation or unweighting of rat soleus muscle
    • Tischler ME, Rosenberg S, Satarug S, et al. Different mechanisms of increased proteolysis in atrophy induced by denervation or unweighting of rat soleus muscle. Metabolism 1990; 39 (7): 756-63
    • (1990) Metabolism , vol.39 , Issue.7 , pp. 756-763
    • Tischler, M.E.1    Rosenberg, S.2    Satarug, S.3
  • 245
    • 0347285363 scopus 로고    scopus 로고
    • Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression
    • Lecker SH, Jagoe RT, Gilbert A, et al. Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. FASEB J 2004; 18 (1): 39-51
    • (2004) FASEB J , vol.18 , Issue.1 , pp. 39-51
    • Lecker, S.H.1    Jagoe, R.T.2    Gilbert, A.3
  • 246
    • 0035941020 scopus 로고    scopus 로고
    • Identification of ubiquitin ligases required for skeletal muscle atrophy
    • Bodine SC, Latres E, Baumhueter S, et al. Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 2001; 294 (5547): 1704-8
    • (2001) Science , vol.294 , Issue.5547 , pp. 1704-1708
    • Bodine, S.C.1    Latres, E.2    Baumhueter, S.3
  • 247
    • 32144457727 scopus 로고    scopus 로고
    • Intracellular signaling during skeletal muscle atrophy
    • Kandarian S, Jackman R. Intracellular signaling during skeletal muscle atrophy. Muscle Nerve 2006; 33 (2): 155-65
    • (2006) Muscle Nerve , vol.33 , Issue.2 , pp. 155-165
    • Kandarian, S.1    Jackman, R.2
  • 248
    • 13244264946 scopus 로고    scopus 로고
    • Degradation of MyoD mediated by the SCF (MAFbx) ubiquitin ligase
    • Tintignac LA, Lagirand J, Batonnet S, et al. Degradation of MyoD mediated by the SCF (MAFbx) ubiquitin ligase. J Biol Chem 2005; 280 (4): 2847-56
    • (2005) J Biol Chem , vol.280 , Issue.4 , pp. 2847-2856
    • Tintignac, L.A.1    Lagirand, J.2    Batonnet, S.3
  • 249
    • 0035807969 scopus 로고    scopus 로고
    • Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy
    • Gomes MD, Lecker SH, Jagoe RT, et al. Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy. PNAS 2001; 98 (25): 14440-5
    • (2001) PNAS , vol.98 , Issue.25 , pp. 14440-14445
    • Gomes, M.D.1    Lecker, S.H.2    Jagoe, R.T.3
  • 250
    • 14044279926 scopus 로고    scopus 로고
    • Muscle regeneration in the prolonged absence of myostatin
    • Wagner KR, Liu X, Chang X, et al. Muscle regeneration in the prolonged absence of myostatin. PNAS 2005; 102 (7): 2519-24
    • (2005) PNAS , vol.102 , Issue.7 , pp. 2519-2524
    • Wagner, K.R.1    Liu, X.2    Chang, X.3
  • 251
    • 2942748216 scopus 로고    scopus 로고
    • Powerful genes: Myostatin regulation of human muscle mass
    • McNally EM. Powerful genes: myostatin regulation of human muscle mass. N Engl J Med 2004; 350 (26): 2642-4
    • (2004) N Engl J Med , vol.350 , Issue.26 , pp. 2642-2644
    • McNally, E.M.1
  • 252
    • 2942735123 scopus 로고    scopus 로고
    • Myostatin mutation associated with gross hypertrophy in a child
    • Schuelke M, Wagner KR, Stolz LE, et al. Myostatin mutation associated with gross hypertrophy in a child. N Engl J Med 2004; 350: 2682-8
    • (2004) N Engl J Med , vol.350 , pp. 2682-2688
    • Schuelke, M.1    Wagner, K.R.2    Stolz, L.E.3
  • 253
    • 0030840359 scopus 로고    scopus 로고
    • Double muscling in cattle due to mutations in the myostatin gene
    • McPherron AC, Lee S-J. Double muscling in cattle due to mutations in the myostatin gene. PNAS 1997; 94 (23): 12457-61
    • (1997) PNAS , vol.94 , Issue.23 , pp. 12457-12461
    • McPherron, A.C.1    Lee, S.-J.2
  • 254
    • 0141615887 scopus 로고    scopus 로고
    • Lower skeletal muscle mass in male transgenic mice with muscle-specific over expression of myostatin
    • Reisz-Porszasz S, Bhasin S, Artaza JN, et al. Lower skeletal muscle mass in male transgenic mice with muscle-specific over expression of myostatin. Am J Physiol Endocrinol Metab 2003; 285: E876-88
    • (2003) Am J Physiol Endocrinol Metab , vol.285
    • Reisz-Porszasz, S.1    Bhasin, S.2    Artaza, J.N.3
  • 255
    • 0037147210 scopus 로고    scopus 로고
    • Myostatin inhibits myoblast differentiation by down-regulating MyoD expression
    • Langley B, Thomas M, Bishop A, et al. Myostatin inhibits myoblast differentiation by down-regulating MyoD expression. J Biol Chem 2002; 277 (51): 49831-40
    • (2002) J Biol Chem , vol.277 , Issue.51 , pp. 49831-49840
    • Langley, B.1    Thomas, M.2    Bishop, A.3
  • 256
    • 0141768237 scopus 로고    scopus 로고
    • Myostatin negatively regulates satellite cell activation and self-renewal
    • McCroskery S, Thomas M, Maxwell L, et al. Myostatin negatively regulates satellite cell activation and self-renewal. J Cell Biol 2003; 162 (6): 1135-47
    • (2003) J Cell Biol , vol.162 , Issue.6 , pp. 1135-1147
    • McCroskery, S.1    Thomas, M.2    Maxwell, L.3
  • 257
    • 0035979253 scopus 로고    scopus 로고
    • Regulation of myostatin activity and muscle growth
    • Lee S-J, McPherron AC. Regulation of myostatin activity and muscle growth. PNAS 2001; 98 (16): 9306-11
    • (2001) PNAS , vol.98 , Issue.16 , pp. 9306-9311
    • Lee, S.-J.1    McPherron, A.C.2
  • 258
    • 0030638154 scopus 로고    scopus 로고
    • Exercise induces myonuclear ubiquitination and apoptosis in dystrophin-deficient muscle of mice
    • Sandri M, Podhorska-Okolow M, Geromel V, et al. Exercise induces myonuclear ubiquitination and apoptosis in dystrophin-deficient muscle of mice. J Neuropathol Exp Neurol 1997; 56 (1): 45-57
    • (1997) J Neuropathol Exp Neurol , vol.56 , Issue.1 , pp. 45-57
    • Sandri, M.1    Podhorska-Okolow, M.2    Geromel, V.3
  • 259
    • 0034802263 scopus 로고    scopus 로고
    • Cellular adaptation to repeated eccentric exercise-induced muscle damage
    • Stupka N, Tarnopolsky MA, Yardley NJ, et al. Cellular adaptation to repeated eccentric exercise-induced muscle damage. J Appl Physiol 2001; 91 (4): 1669-78
    • (2001) J Appl Physiol , vol.91 , Issue.4 , pp. 1669-1678
    • Stupka, N.1    Tarnopolsky, M.A.2    Yardley, N.J.3
  • 260
    • 0344666783 scopus 로고    scopus 로고
    • Glucocorticoid receptor and ubiquitin expression after repeated eccentric exercise
    • Willoughby DS, Taylor M, Taylor L. Glucocorticoid receptor and ubiquitin expression after repeated eccentric exercise. Med Sci Sports Exerc 2003; 35 (12): 2023-31
    • (2003) Med Sci Sports Exerc , vol.35 , Issue.12 , pp. 2023-2031
    • Willoughby, D.S.1    Taylor, M.2    Taylor, L.3
  • 261
    • 33751173839 scopus 로고    scopus 로고
    • Proteolytic mRNA expression in response to acute resistance exercise in human single skeletal muscle fibers
    • Yang Y, Jemiolo B, Trappe SW. Proteolytic mRNA expression in response to acute resistance exercise in human single skeletal muscle fibers. J Appl Physiol 2006; 101 (5): 1442-50
    • (2006) J Appl Physiol , vol.101 , Issue.5 , pp. 1442-1450
    • Yang, Y.1    Jemiolo, B.2    Trappe, S.W.3
  • 262
    • 33745873666 scopus 로고    scopus 로고
    • Effect of flywheel-based resistance exercise on processes contributing to muscle atrophy during unloading in adult rats
    • Dupont-Versteegden EE, Fluckey JD, Knox M, et al. Effect of flywheel-based resistance exercise on processes contributing to muscle atrophy during unloading in adult rats. J Appl Physiol 2006; 101 (1): 202-12
    • (2006) J Appl Physiol , vol.101 , Issue.1 , pp. 202-212
    • Dupont-Versteegden, E.E.1    Fluckey, J.D.2    Knox, M.3
  • 263
    • 0038505243 scopus 로고    scopus 로고
    • Myostatin gene expression is reduced in humans with heavy-resistance strength training
    • Roth SM, Martel GF, Ferrell RE, et al. Myostatin gene expression is reduced in humans with heavy-resistance strength training. Exp Biol Med 2003; 228: 706-9
    • (2003) Exp Biol Med , vol.228 , pp. 706-709
    • Roth, S.M.1    Martel, G.F.2    Ferrell, R.E.3
  • 264
    • 33745813868 scopus 로고    scopus 로고
    • Myogenic gene expression at rest and after a bout of resistance exercise in young (18-30 yr) and old (80-89 yr) women
    • Raue U, Slivka D, Jemiolo B, et al. Myogenic gene expression at rest and after a bout of resistance exercise in young (18-30 yr) and old (80-89 yr) women. J Appl Physiol 2006; 101 (1): 53-9
    • (2006) J Appl Physiol , vol.101 , Issue.1 , pp. 53-59
    • Raue, U.1    Slivka, D.2    Jemiolo, B.3
  • 265
    • 1842610095 scopus 로고    scopus 로고
    • Effects of heavy resistance training on myostatin mRNA and protein expression
    • Willoughby DS. Effects of heavy resistance training on myostatin mRNA and protein expression. Med Sci Sports Exerc 2004; 36 (4): 574-82
    • (2004) Med Sci Sports Exerc , vol.36 , Issue.4 , pp. 574-582
    • Willoughby, D.S.1
  • 266
    • 14644418821 scopus 로고    scopus 로고
    • Short-term endurance training results in a muscle-specific decrease of myostatin mRNA content in the rat
    • Matsakas A, Friedel A, Hertrampf T, et al. Short-term endurance training results in a muscle-specific decrease of myostatin mRNA content in the rat. Acta Physiol Scand 2005; 183 (3): 299-307
    • (2005) Acta Physiol Scand , vol.183 , Issue.3 , pp. 299-307
    • Matsakas, A.1    Friedel, A.2    Hertrampf, T.3
  • 267
    • 0033377347 scopus 로고    scopus 로고
    • Concurrent strength and endurance training: A review
    • Leveritt MD, Abernethy PJ, Barry BK, et al. Concurrent strength and endurance training: a review. Sports Med 1999; 28 (6): 413-27
    • (1999) Sports Med , vol.28 , Issue.6 , pp. 413-427
    • Leveritt, M.D.1    Abernethy, P.J.2    Barry, B.K.3
  • 268
    • 0019186535 scopus 로고
    • Interference of strength development by simultaneously training for strength and endurance
    • Hickson RC. Interference of strength development by simultaneously training for strength and endurance. Eur J Appl Physiol Occup Physiol 1980; 45: 255-63
    • (1980) Eur J Appl Physiol Occup Physiol , vol.45 , pp. 255-263
    • Hickson, R.C.1
  • 269
    • 0035112481 scopus 로고    scopus 로고
    • Plasticity in skeletal, cardiac, and smooth muscle invited review: Contractile activity-induced mitochondrial biogenesis in skeletal muscle
    • Hood DA. Plasticity in skeletal, cardiac, and smooth muscle invited review: contractile activity-induced mitochondrial biogenesis in skeletal muscle. J Appl Physiol 2001; 90: 1137-57
    • (2001) J Appl Physiol , vol.90 , pp. 1137-1157
    • Hood, D.A.1
  • 270
    • 0022391995 scopus 로고
    • Adaptive response of hypertrophied skeletal muscle to endurance training
    • Riedy M, Moore RL, Gollnick PD. Adaptive response of hypertrophied skeletal muscle to endurance training. J Appl Physiol 1985; 59 (1): 127-31
    • (1985) J Appl Physiol , vol.59 , Issue.1 , pp. 127-131
    • Riedy, M.1    Moore, R.L.2    Gollnick, P.D.3
  • 271
    • 0029746680 scopus 로고    scopus 로고
    • Adaptive responses of hypertrophying skeletal muscle to endurance training
    • Stone J, Brannon T, Haddad F, et al. Adaptive responses of hypertrophying skeletal muscle to endurance training. J Appl Physiol 1996; 81 (2): 665-72
    • (1996) J Appl Physiol , vol.81 , Issue.2 , pp. 665-672
    • Stone, J.1    Brannon, T.2    Haddad, F.3
  • 272
    • 4544383993 scopus 로고    scopus 로고
    • Effects of strength, endurance and combined training on myosin heavy chain content and fibre-type distribution in humans
    • Putman C, Xu X, Gillies E, et al. Effects of strength, endurance and combined training on myosin heavy chain content and fibre-type distribution in humans. Eur J Appl Physiol 2004; 92 (4-5): 376-84
    • (2004) Eur J Appl Physiol , vol.92 , Issue.4-5 , pp. 376-384
    • Putman, C.1    Xu, X.2    Gillies, E.3
  • 273
    • 0036438894 scopus 로고    scopus 로고
    • Regulation of peptide-chain elongation in mammalian cells
    • Browne GJ, Proud CG. Regulation of peptide-chain elongation in mammalian cells. Eur J Biochem 2002; 269 (22): 5360-8
    • (2002) Eur J Biochem , vol.269 , Issue.22 , pp. 5360-5368
    • Browne, G.J.1    Proud, C.G.2
  • 274
    • 0023161505 scopus 로고    scopus 로고
    • Ryazanov AG. Ca2+/calmodulin-dependent phosphorylation of elongation factor 2. FEBS Lett 1987; 214 (2): 331-4
    • Ryazanov AG. Ca2+/calmodulin-dependent phosphorylation of elongation factor 2. FEBS Lett 1987; 214 (2): 331-4
  • 275
    • 0037143449 scopus 로고    scopus 로고
    • Activation of AMP-activated protein kinase leads to the phosphorylation of elongation factor 2 and an inhibition of protein synthesis
    • Horman S, Browne GJ, Krause U, et al. Activation of AMP-activated protein kinase leads to the phosphorylation of elongation factor 2 and an inhibition of protein synthesis. Curr Biol 2002; 12 (16): 1419-23
    • (2002) Curr Biol , vol.12 , Issue.16 , pp. 1419-1423
    • Horman, S.1    Browne, G.J.2    Krause, U.3
  • 276
    • 28244435131 scopus 로고    scopus 로고
    • Exercise rapidly increases eukaryotic elongation factor 2 phosphorylation in skeletal muscle of men
    • Rose AJ, Broholm C, Kiillerich K, et al. Exercise rapidly increases eukaryotic elongation factor 2 phosphorylation in skeletal muscle of men. J Physiol (Lond) 2005; 569 (1): 223-8
    • (2005) J Physiol (Lond) , vol.569 , Issue.1 , pp. 223-228
    • Rose, A.J.1    Broholm, C.2    Kiillerich, K.3
  • 277
    • 1642355123 scopus 로고    scopus 로고
    • A novel mTOR-regulated phosphorylation site in elongation factor 2 kinase modulates the activity of the kinase and its binding to calmodulin
    • Browne GJ, Proud CG. A novel mTOR-regulated phosphorylation site in elongation factor 2 kinase modulates the activity of the kinase and its binding to calmodulin. Mol Cell Biol 2004; 24 (7): 2986-97
    • (2004) Mol Cell Biol , vol.24 , Issue.7 , pp. 2986-2997
    • Browne, G.J.1    Proud, C.G.2
  • 278
    • 0037342151 scopus 로고    scopus 로고
    • Regulation of PGC-1 promoter activity by protein kinase B and the forkhead transcription factor FKHR
    • Daitoku H, Yamagata K, Matsuzaki H, et al. Regulation of PGC-1 promoter activity by protein kinase B and the forkhead transcription factor FKHR. Diabetes 2003; 52 (3): 642-9
    • (2003) Diabetes , vol.52 , Issue.3 , pp. 642-649
    • Daitoku, H.1    Yamagata, K.2    Matsuzaki, H.3
  • 279
    • 0141706357 scopus 로고    scopus 로고
    • Insulin-induced phosphorylation of FKHR (Foxo1) targets to proteasomal degradation
    • Matsuzaki H, Daitoku H, Hatta M, et al. Insulin-induced phosphorylation of FKHR (Foxo1) targets to proteasomal degradation. PNAS 2003; 100 (20): 11285-90
    • (2003) PNAS , vol.100 , Issue.20 , pp. 11285-11290
    • Matsuzaki, H.1    Daitoku, H.2    Hatta, M.3
  • 280
    • 28744459153 scopus 로고    scopus 로고
    • PGC-1α gene expression is down-regulated by Akt-mediated phosphorylation and nuclear exclusion of FoxO1 in insulin-stimulated skeletal muscle
    • Southgate RJ, Bruce CR, Carey AL, et al. PGC-1α gene expression is down-regulated by Akt-mediated phosphorylation and nuclear exclusion of FoxO1 in insulin-stimulated skeletal muscle. FASEB J 2005; 19 (14): 2072-4
    • (2005) FASEB J , vol.19 , Issue.14 , pp. 2072-2074
    • Southgate, R.J.1    Bruce, C.R.2    Carey, A.L.3
  • 281
    • 2942733223 scopus 로고    scopus 로고
    • Balancing muscle hypertrophy and atrophy
    • Hoffman EP, Nader GA. Balancing muscle hypertrophy and atrophy. Nat Med 2004; 10 (6): 584-5
    • (2004) Nat Med , vol.10 , Issue.6 , pp. 584-585
    • Hoffman, E.P.1    Nader, G.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.