-
1
-
-
0016888751
-
Biochemical adaptations to endurance exercise in muscle
-
Holloszy JO, Booth FW. Biochemical adaptations to endurance exercise in muscle. Annu Rev Physiol 1976; 38: 273-91
-
(1976)
Annu Rev Physiol
, vol.38
, pp. 273-291
-
-
Holloszy, J.O.1
Booth, F.W.2
-
2
-
-
0031717105
-
The AMP-activated/SNF1 protein kinase subfamily: Metabolic sensors of the eukaryotic cell?
-
Hardie DG, Carling D, Carlson M. The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Annu Rev Biochem 1998; 67: 821-55
-
(1998)
Annu Rev Biochem
, vol.67
, pp. 821-855
-
-
Hardie, D.G.1
Carling, D.2
Carlson, M.3
-
3
-
-
0031007065
-
The AMP-activated protein kinase: Fuel gauge of the mammalian cell?
-
Hardie DG, Carling D. The AMP-activated protein kinase: fuel gauge of the mammalian cell? Eur J Biochem 1997; 246 (2): 259-73
-
(1997)
Eur J Biochem
, vol.246
, Issue.2
, pp. 259-273
-
-
Hardie, D.G.1
Carling, D.2
-
4
-
-
0032792665
-
AMP-activated protein kinase, a metabolic master switch: Possible roles in type 2 diabetes
-
Winder WW, Hardie DG. AMP-activated protein kinase, a metabolic master switch: possible roles in type 2 diabetes. Am J Physiol 1999; 277 (1 Pt 1): E1-10
-
(1999)
Am J Physiol
, vol.277
, Issue.1 PART 1
-
-
Winder, W.W.1
Hardie, D.G.2
-
5
-
-
0034870748
-
Energy-sensing and signaling by AMP-activated protein kinase in skeletal muscle
-
Winder WW. Energy-sensing and signaling by AMP-activated protein kinase in skeletal muscle. J Appl Physiol 2001; 91 (3): 1017-28
-
(2001)
J Appl Physiol
, vol.91
, Issue.3
, pp. 1017-1028
-
-
Winder, W.W.1
-
6
-
-
0034219196
-
AMP-activated protein kinase: A critical signaling intermediary for exercise-stimulated glucose transport?
-
Goodyear LJ. AMP-activated protein kinase: a critical signaling intermediary for exercise-stimulated glucose transport? Exerc Sport Sci Rev 2000; 28 (3): 113-6
-
(2000)
Exerc Sport Sci Rev
, vol.28
, Issue.3
, pp. 113-116
-
-
Goodyear, L.J.1
-
7
-
-
0035986085
-
Invited review: Intracellular signaling in contracting skeletal muscle
-
Sakamoto K, Goodyear LJ. Invited review: intracellular signaling in contracting skeletal muscle. J Appl Physiol 2002; 93 (1): 369-83
-
(2002)
J Appl Physiol
, vol.93
, Issue.1
, pp. 369-383
-
-
Sakamoto, K.1
Goodyear, L.J.2
-
8
-
-
0036635769
-
Targeting the AMP-activated protein kinase for the treatment of type 2 diabetes
-
Musi N, Goodyear LJ. Targeting the AMP-activated protein kinase for the treatment of type 2 diabetes. Curr Drug Targets Immune Endocr Metabol Disord 2002; 2: 119-27
-
(2002)
Curr Drug Targets Immune Endocr Metabol Disord
, vol.2
, pp. 119-127
-
-
Musi, N.1
Goodyear, L.J.2
-
9
-
-
0029910018
-
Characterization of the AMP-activated protein kinase kinase from rat liver and identification of threonine 172 as the major site at which it phosphorylates AMP-activated protein kinase
-
Hawley SA, Davison M, Woods A, et al. Characterization of the AMP-activated protein kinase kinase from rat liver and identification of threonine 172 as the major site at which it phosphorylates AMP-activated protein kinase. J Biol Chem 1996; 271 (44): 27879-87
-
(1996)
J Biol Chem
, vol.271
, Issue.44
, pp. 27879-27887
-
-
Hawley, S.A.1
Davison, M.2
Woods, A.3
-
10
-
-
0032524622
-
Identification of a novel AMP-activated protein kinase β subunit isoform that is highly expressed in skeletal muscle
-
Thornton C, Snowden MA, Carling D. Identification of a novel AMP-activated protein kinase β subunit isoform that is highly expressed in skeletal muscle. J Biol Chem 1998; 273 (20): 12443-50
-
(1998)
J Biol Chem
, vol.273
, Issue.20
, pp. 12443-12450
-
-
Thornton, C.1
Snowden, M.A.2
Carling, D.3
-
11
-
-
13344285343
-
Mammalian AMP-activated protein kinase subfamily
-
Stapleton D, Mitchelhill KI, Gao G, et al. Mammalian AMP-activated protein kinase subfamily. J Biol Chem 1996; 271 (2): 611-4
-
(1996)
J Biol Chem
, vol.271
, Issue.2
, pp. 611-614
-
-
Stapleton, D.1
Mitchelhill, K.I.2
Gao, G.3
-
12
-
-
0000368683
-
Exercise induces isoform-specific increase in 5′ AMP-activated protein kinase activity in human skeletal muscle
-
Fujii N, Hayashi T, Hirshman MF, et al. Exercise induces isoform-specific increase in 5′ AMP-activated protein kinase activity in human skeletal muscle. Biochem Biophys Res Commun 2000; 273 (3): 1150-5
-
(2000)
Biochem Biophys Res Commun
, vol.273
, Issue.3
, pp. 1150-1155
-
-
Fujii, N.1
Hayashi, T.2
Hirshman, M.F.3
-
14
-
-
0036084141
-
Effect of fiber type and nutritional state on AICAR- and contraction-stimulated glucose transport in rat muscle
-
Ai H, Ihlemann J, Hellsten Y, et al. Effect of fiber type and nutritional state on AICAR- and contraction-stimulated glucose transport in rat muscle. Am J Physiol Endocrinol Metab 2002; 282 (6): E1291-300
-
(2002)
Am J Physiol Endocrinol Metab
, vol.282
, Issue.6
-
-
Ai, H.1
Ihlemann, J.2
Hellsten, Y.3
-
15
-
-
0035282062
-
Post-translational modifications of the β-1 subunit of AMP-activated protein kinase affect enzyme activity and cellular localization
-
Warden SM, Richardson C, O'Donnell JJ, et al. Post-translational modifications of the β-1 subunit of AMP-activated protein kinase affect enzyme activity and cellular localization. Biochem J 2001; 354 (Pt 2): 275-83
-
(2001)
Biochem J
, vol.354
, Issue.2 PART
, pp. 275-283
-
-
Warden, S.M.1
Richardson, C.2
O'Donnell, J.J.3
-
16
-
-
0032728266
-
Expression of the AMP-activated protein kinase β1 and β2 subunits in skeletal muscle
-
Chen Z, Heierhorst J, Mann RJ, et al. Expression of the AMP-activated protein kinase β1 and β2 subunits in skeletal muscle. FEBS Lett 1999; 460 (2): 343-8
-
(1999)
FEBS Lett
, vol.460
, Issue.2
, pp. 343-348
-
-
Chen, Z.1
Heierhorst, J.2
Mann, R.J.3
-
17
-
-
0034654362
-
Characterization of AMP-activated protein kinase γ-subunit isoforms and their role in AMP binding
-
Cheung PC, Salt IP, Davies SP, et al. Characterization of AMP-activated protein kinase γ-subunit isoforms and their role in AMP binding. Biochem J 2000; 346 (Pt 3): 659-69
-
(2000)
Biochem J
, vol.346
, Issue.3 PART
, pp. 659-669
-
-
Cheung, P.C.1
Salt, I.P.2
Davies, S.P.3
-
18
-
-
0036298152
-
Effects of endurance training on activity and expression of AMP-activated protein kinase isoforms in rat muscles
-
Durante PE, Mustard KJ, Park SH, et al. Effects of endurance training on activity and expression of AMP-activated protein kinase isoforms in rat muscles. Am J Physiol Endocrinol Metab 2002; 283 (1): E178-86
-
(2002)
Am J Physiol Endocrinol Metab
, vol.283
, Issue.1
-
-
Durante, P.E.1
Mustard, K.J.2
Park, S.H.3
-
19
-
-
0034070567
-
Metabolic stress and altered glucose transport: Activation of AMP-activated protein kinase as a unifying coupling mechanism
-
Hayashi T, Hirshman MF, Fujii N, et al. Metabolic stress and altered glucose transport: activation of AMP-activated protein kinase as a unifying coupling mechanism. Diabetes 2000; 49: 527-31
-
(2000)
Diabetes
, vol.49
, pp. 527-531
-
-
Hayashi, T.1
Hirshman, M.F.2
Fujii, N.3
-
20
-
-
0028845251
-
5′-AMP activates the AMP-activated protein kinase cascade, and Ca2+/ calmodulin activates the calmodulin-dependent protein kinase I cascade, via three independent mechanisms
-
Hawley SA, Selbert MA, Goldstein EG, et al. 5′-AMP activates the AMP-activated protein kinase cascade, and Ca2+/ calmodulin activates the calmodulin-dependent protein kinase I cascade, via three independent mechanisms. J Biol Chem 1995; 270 (45): 27186-91
-
(1995)
J Biol Chem
, vol.270
, Issue.45
, pp. 27186-27191
-
-
Hawley, S.A.1
Selbert, M.A.2
Goldstein, E.G.3
-
21
-
-
0029561919
-
5′-AMP inhibits dephosphorylation, as well as promoting phosphorylation, of the AMP-activated protein kinase: Studies using bacterially expressed human protein phosphatase-2Cα and native bovine protein phosphatase-2AC
-
Davies SP, Helps NR, Cohen PT, et al. 5′-AMP inhibits dephosphorylation, as well as promoting phosphorylation, of the AMP-activated protein kinase: studies using bacterially expressed human protein phosphatase-2Cα and native bovine protein phosphatase-2AC. FEBS Lett 1995; 377 (3): 421-5
-
(1995)
FEBS Lett
, vol.377
, Issue.3
, pp. 421-425
-
-
Davies, S.P.1
Helps, N.R.2
Cohen, P.T.3
-
22
-
-
0035542970
-
AMP-activated protein kinase: The energy charge hypothesis revisited
-
Hardie DG, Hawley SA. AMP-activated protein kinase: the energy charge hypothesis revisited. Bioessays 2001; 23 (12): 1112-9
-
(2001)
Bioessays
, vol.23
, Issue.12
, pp. 1112-1119
-
-
Hardie, D.G.1
Hawley, S.A.2
-
23
-
-
0033855903
-
Dissociation of AMP-activated protein kinase activation and glucose transport in contracting slow-twitch muscle
-
Derave W, Ai H, Ihlemann J, et al. Dissociation of AMP-activated protein kinase activation and glucose transport in contracting slow-twitch muscle. Diabetes 2000; 49 (8): 1281-7
-
(2000)
Diabetes
, vol.49
, Issue.8
, pp. 1281-1287
-
-
Derave, W.1
Ai, H.2
Ihlemann, J.3
-
24
-
-
0036430469
-
Dissociation of AMPK activity and ACCβ phosphorylation in human muscle during prolonged exercise
-
Wojtaszewski JF, Mourtzakis M, Hillig T, et al. Dissociation of AMPK activity and ACCβ phosphorylation in human muscle during prolonged exercise. Biochem Biophys Res Commun 2002; 298 (3): 309-16
-
(2002)
Biochem Biophys Res Commun
, vol.298
, Issue.3
, pp. 309-316
-
-
Wojtaszewski, J.F.1
Mourtzakis, M.2
Hillig, T.3
-
25
-
-
0036064261
-
Glycogen-dependent effects of 5-aminoimidazole-4-carboxamide (AICA) riboside on AMP-activated protein kinase and glycogen synthase activities in rat skeletal muscle
-
Wojtaszewski JF, Jorgensen SB, Hellsten Y, et al. Glycogen-dependent effects of 5-aminoimidazole-4-carboxamide (AICA) riboside on AMP-activated protein kinase and glycogen synthase activities in rat skeletal muscle. Diabetes 2002; 51 (2): 284-92
-
(2002)
Diabetes
, vol.51
, Issue.2
, pp. 284-292
-
-
Wojtaszewski, J.F.1
Jorgensen, S.B.2
Hellsten, Y.3
-
26
-
-
0037375970
-
Regulation of 5′ AMP-activated protein kinase activity and substrate utilization in exercising human skeletal muscle
-
Wojtaszewski JF, MacDonald C, Nielsen JN, et al. Regulation of 5′ AMP-activated protein kinase activity and substrate utilization in exercising human skeletal muscle. Am J Physiol Endocrinol Metab 2003; 284 (4): E813-22
-
(2003)
Am J Physiol Endocrinol Metab
, vol.284
, Issue.4
-
-
Wojtaszewski, J.F.1
MacDonald, C.2
Nielsen, J.N.3
-
28
-
-
0037219253
-
Regulation of glycogen synthase by glucose and glycogen: A possible role for AMP-activated protein kinase
-
Halse R, Fryer LG, McCormack JG, et al. Regulation of glycogen synthase by glucose and glycogen: a possible role for AMP-activated protein kinase. Diabetes 2003; 52 (1): 9-15
-
(2003)
Diabetes
, vol.52
, Issue.1
, pp. 9-15
-
-
Halse, R.1
Fryer, L.G.2
McCormack, J.G.3
-
29
-
-
0029978799
-
Inactivation of acetyl-CoA carboxylase and activation of AMP-activated protein kinase in muscle during exercise
-
Winder WW, Hardie DG. Inactivation of acetyl-CoA carboxylase and activation of AMP-activated protein kinase in muscle during exercise. Am J Physiol 1996; 270 (2 Pt 1): E299-304
-
(1996)
Am J Physiol
, vol.270
, Issue.2 PART 1
-
-
Winder, W.W.1
Hardie, D.G.2
-
30
-
-
0030863587
-
Effect of exercise intensity on skeletal muscle malonyl-CoA and acetyl-CoA carboxylase
-
Rasmussen BB, Winder WW. Effect of exercise intensity on skeletal muscle malonyl-CoA and acetyl-CoA carboxylase. J Appl Physiol 1997; 83 (4): 1104-9
-
(1997)
J Appl Physiol
, vol.83
, Issue.4
, pp. 1104-1109
-
-
Rasmussen, B.B.1
Winder, W.W.2
-
31
-
-
0031769058
-
Postexercise recovery of skeletal muscle malonyl-CoA, acetyl-CoA carboxylase, and AMP-activated protein kinase
-
Rasmussen BB, Hancock CR, Winder WW. Postexercise recovery of skeletal muscle malonyl-CoA, acetyl-CoA carboxylase, and AMP-activated protein kinase. J Appl Physiol 1998; 85 (5): 1629-34
-
(1998)
J Appl Physiol
, vol.85
, Issue.5
, pp. 1629-1634
-
-
Rasmussen, B.B.1
Hancock, C.R.2
Winder, W.W.3
-
32
-
-
0030901556
-
Electrical stimulation inactivates muscle acetyl-CoA carboxylase and increases AMP-activated protein kinase
-
Hutber CA, Hardie DG, Winder WW. Electrical stimulation inactivates muscle acetyl-CoA carboxylase and increases AMP-activated protein kinase. Am J Physiol 1997; 272 (2 Pt 1): E262-6
-
(1997)
Am J Physiol
, vol.272
, Issue.2 PART 1
-
-
Hutber, C.A.1
Hardie, D.G.2
Winder, W.W.3
-
33
-
-
0031009673
-
Contraction-induced changes in acetyl-CoA carboxylase and 5′-AMP-activated kinase in skeletal muscle
-
Vavvas D, Apazidis A, Saha AK, et al. Contraction-induced changes in acetyl-CoA carboxylase and 5′-AMP-activated kinase in skeletal muscle. J Biol Chem 1997; 272 (20): 13255-61
-
(1997)
J Biol Chem
, vol.272
, Issue.20
, pp. 13255-13261
-
-
Vavvas, D.1
Apazidis, A.2
Saha, A.K.3
-
34
-
-
0031849916
-
Evidence for 5′ AMP-activated protein kinase mediation of the effect of muscle contraction on glucose transport
-
Hayashi T, Hirshman MF, Kurth EJ, et al. Evidence for 5′ AMP-activated protein kinase mediation of the effect of muscle contraction on glucose transport. Diabetes 1998; 47 (8): 1369-73
-
(1998)
Diabetes
, vol.47
, Issue.8
, pp. 1369-1373
-
-
Hayashi, T.1
Hirshman, M.F.2
Kurth, E.J.3
-
35
-
-
0032865578
-
Effect of tension on contraction-induced glucose transport in rat skeletal muscle
-
Ihlemann J, Ploug T, Hellsten Y, et al. Effect of tension on contraction-induced glucose transport in rat skeletal muscle. Am J Physiol 1999; 277 (2 Pt 1): E208-14
-
(1999)
Am J Physiol
, vol.277
, Issue.2 PART 1
-
-
Ihlemann, J.1
Ploug, T.2
Hellsten, Y.3
-
36
-
-
0035039274
-
AMP-activated protein kinase (AMPK) is activated in muscle of subjects with type 2 diabetes during exercise
-
Musi N, Fujii N, Hirshman MF, et al. AMP-activated protein kinase (AMPK) is activated in muscle of subjects with type 2 diabetes during exercise. Diabetes 2001; 50 (5): 921-7
-
(2001)
Diabetes
, vol.50
, Issue.5
, pp. 921-927
-
-
Musi, N.1
Fujii, N.2
Hirshman, M.F.3
-
37
-
-
0034306362
-
Isoform-specific and exercise intensity-dependent activation of 5′-AMP-activated protein kinase in human skeletal muscle
-
Wojtaszewski JF, Nielsen P, Hansen BF, et al. Isoform-specific and exercise intensity-dependent activation of 5′-AMP-activated protein kinase in human skeletal muscle. J Physiol 2000; 528 Pt 1: 221-6
-
(2000)
J Physiol
, vol.528
, Issue.1 PART
, pp. 221-226
-
-
Wojtaszewski, J.F.1
Nielsen, P.2
Hansen, B.F.3
-
38
-
-
0036088360
-
Progressive increase in human skeletal muscle AMPKα2 activity and ACC phosphorylation during exercise
-
Stephens TJ, Chen ZP, Canny BJ, et al. Progressive increase in human skeletal muscle AMPKα2 activity and ACC phosphorylation during exercise. Am J Physiol Endocrinol Metab 2002; 282 (3): E688-94
-
(2002)
Am J Physiol Endocrinol Metab
, vol.282
, Issue.3
-
-
Stephens, T.J.1
Chen, Z.P.2
Canny, B.J.3
-
39
-
-
0033667964
-
AMPK signaling in contracting human skeletal muscle: Acetyl-CoA carboxylase and NO synthase phosphorylation
-
Chen ZP, McConell GK, Michell BJ, et al. AMPK signaling in contracting human skeletal muscle: acetyl-CoA carboxylase and NO synthase phosphorylation. Am J Physiol Endocrinol Metab 2000; 279 (5): E1202-6
-
(2000)
Am J Physiol Endocrinol Metab
, vol.279
, Issue.5
-
-
Chen, Z.P.1
McConell, G.K.2
Michell, B.J.3
-
40
-
-
0034999425
-
AMP-activated protein kinase activity and glucose uptake in rat skeletal muscle
-
Musi N, Hayashi T, Fujii N, et al. AMP-activated protein kinase activity and glucose uptake in rat skeletal muscle. Am J Physiol 2001; 280 (5): E677-84
-
(2001)
Am J Physiol
, vol.280
, Issue.5
-
-
Musi, N.1
Hayashi, T.2
Fujii, N.3
-
41
-
-
0003601788
-
-
Mountain View (CA): Mayfield
-
Brooks G, Fahey T, White T. Neurons, motor unit recruitment, and intergrative control of movement Exercise physiology: human bioenergetics and its applications. Mountain View (CA): Mayfield, 2000
-
(2000)
Neurons, Motor Unit Recruitment, and Intergrative Control of Movement Exercise Physiology: Human Bioenergetics and Its Applications
-
-
Brooks, G.1
Fahey, T.2
White, T.3
-
42
-
-
0037369214
-
A forty-year memoir of research on the regulation of glucose transport into muscle
-
Holloszy JO. A forty-year memoir of research on the regulation of glucose transport into muscle. Am J Physiol Endocrinol Metab 2003; 284 (3): E453-67
-
(2003)
Am J Physiol Endocrinol Metab
, vol.284
, Issue.3
-
-
Holloszy, J.O.1
-
43
-
-
0031978984
-
Exercise, glucose transport, and insulin sensitivity
-
Goodyear LJ, Kahn BB. Exercise, glucose transport, and insulin sensitivity. Annu Rev Med 1998; 49: 235-61
-
(1998)
Annu Rev Med
, vol.49
, pp. 235-261
-
-
Goodyear, L.J.1
Kahn, B.B.2
-
44
-
-
1442340975
-
Effects of exercise on glucose transport in skeletal muscle: Glucose transporters and intracellular signaling mechanisms
-
Nose H, Nadel ER, Morimoto T, editors. Carmel (IL): Cooper
-
Goodyear LJ, Hayashi T. Effects of exercise on glucose transport in skeletal muscle: glucose transporters and intracellular signaling mechanisms. In: Nose H, Nadel ER, Morimoto T, editors. The 1997 Nagano Symposium on sports sciences. Carmel (IL): Cooper, 2001: 83-93
-
(2001)
The 1997 Nagano Symposium on Sports Sciences
, pp. 83-93
-
-
Goodyear, L.J.1
Hayashi, T.2
-
45
-
-
0031425839
-
AICA riboside increases AMP-activated protein kinase, fatty acid oxidation, and glucose uptake in rat muscle
-
Merrill GF, Kurth EJ, Hardie DG, et al. AICA riboside increases AMP-activated protein kinase, fatty acid oxidation, and glucose uptake in rat muscle. Am J Physiol 1997; 273 (36): E1107-12
-
(1997)
Am J Physiol
, vol.273
, Issue.36
-
-
Merrill, G.F.1
Kurth, E.J.2
Hardie, D.G.3
-
46
-
-
0026063181
-
Inhibition by AICA riboside of gluconeogenesis in isolated rat hepatocytes
-
Vincent MF, Marangos PJ, Gruber HE, et al. Inhibition by AICA riboside of gluconeogenesis in isolated rat hepatocytes. Diabetes 1991; 40 (10): 1259-66
-
(1991)
Diabetes
, vol.40
, Issue.10
, pp. 1259-1266
-
-
Vincent, M.F.1
Marangos, P.J.2
Gruber, H.E.3
-
47
-
-
0032966874
-
Effect of AMPK activation on muscle glucose metabolism in conscious rats
-
Bergeron R, Russell III RR, Young LH, et al. Effect of AMPK activation on muscle glucose metabolism in conscious rats. Am J Physiol 1999; 276 (5 Pt 1): E938-44
-
(1999)
Am J Physiol
, vol.276
, Issue.5 PART 1
-
-
Bergeron, R.1
Russell III, R.R.2
Young, L.H.3
-
48
-
-
0032765396
-
5′ AMP-activated protein kinase activation causes GLUT4 translocation in skeletal muscle
-
Kurth-Kraczek EJ, Hirshman MF, Goodyear LJ, et al. 5′ AMP-activated protein kinase activation causes GLUT4 translocation in skeletal muscle. Diabetes 1999; 48 (8): 1667-71
-
(1999)
Diabetes
, vol.48
, Issue.8
, pp. 1667-1671
-
-
Kurth-Kraczek, E.J.1
Hirshman, M.F.2
Goodyear, L.J.3
-
49
-
-
0024454449
-
Increased adenosine concentration in blood from ischemic myocardium by AICA riboside: Effects on flow, granulocytes, and injury
-
Gruber HE, Hoffer ME, McAllister DR, et al. Increased adenosine concentration in blood from ischemic myocardium by AICA riboside: effects on flow, granulocytes, and injury. Circulation 1989; 80 (5): 1400-11
-
(1989)
Circulation
, vol.80
, Issue.5
, pp. 1400-1411
-
-
Gruber, H.E.1
Hoffer, M.E.2
McAllister, D.R.3
-
50
-
-
0029885660
-
Activation of glycogen phosphorylase and glycogenolysis in rat skeletal muscle by AICAR: An activator of AMP-activated protein kinase
-
Young ME, Radda GK, Leighton B. Activation of glycogen phosphorylase and glycogenolysis in rat skeletal muscle by AICAR: an activator of AMP-activated protein kinase. FEBS Lett 1996; 382: 43-7
-
(1996)
FEBS Lett
, vol.382
, pp. 43-47
-
-
Young, M.E.1
Radda, G.K.2
Leighton, B.3
-
51
-
-
0035947235
-
A role for AMP-activated protein kinase in contraction-and hypoxia-regulated glucose transport in skeletal muscle
-
Mu J, Brozinick Jr JT, Valladares O, et al. A role for AMP-activated protein kinase in contraction-and hypoxia-regulated glucose transport in skeletal muscle. Mol Cell 2001; 7 (5): 1085-94
-
(2001)
Mol Cell
, vol.7
, Issue.5
, pp. 1085-1094
-
-
Mu, J.1
Brozinick Jr., J.T.2
Valladares, O.3
-
52
-
-
0036317870
-
Effect of AICAR treatment on glycogen metabolism in skeletal muscle
-
Aschenbach WG, Hirshman MF, Fujii N, et al. Effect of AICAR treatment on glycogen metabolism in skeletal muscle. Diabetes 2002; 51 (3): 567-73
-
(2002)
Diabetes
, vol.51
, Issue.3
, pp. 567-573
-
-
Aschenbach, W.G.1
Hirshman, M.F.2
Fujii, N.3
-
53
-
-
0035029874
-
Effect of 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside infusion on in vivo glucose and lipid metabolism in lean and obese Zucker rats
-
Bergeron R, Previs SF, Cline GW, et al. Effect of 5-aminoimidazole-4- carboxamide- 1-beta-D-ribofuranoside infusion on in vivo glucose and lipid metabolism in lean and obese Zucker rats. Diabetes 2001; 50 (5): 1076-82
-
(2001)
Diabetes
, vol.50
, Issue.5
, pp. 1076-1082
-
-
Bergeron, R.1
Previs, S.F.2
Cline, G.W.3
-
54
-
-
0024335432
-
The substrate and sequence specificity of the AMP-activated protein kinase. Phosphorylation of glycogen synthase and phosphorylase kinase
-
Carling D, Hardie DG. The substrate and sequence specificity of the AMP-activated protein kinase. Phosphorylation of glycogen synthase and phosphorylase kinase. Biochim Biophys Acta 1989; 1012 (1): 81-6
-
(1989)
Biochim Biophys Acta
, vol.1012
, Issue.1
, pp. 81-86
-
-
Carling, D.1
Hardie, D.G.2
-
55
-
-
0033948787
-
Muscle phosphorylase kinase is not a substrate of AMP-activated protein kinase
-
Beyer A, Kitzerow A, Crute B, et al. Muscle phosphorylase kinase is not a substrate of AMP-activated protein kinase. Biol Chem 2000; 381 (5-6): 457-61
-
(2000)
Biol Chem
, vol.381
, Issue.5-6
, pp. 457-461
-
-
Beyer, A.1
Kitzerow, A.2
Crute, B.3
-
56
-
-
0029946455
-
Isoform-specific purification and substrate specificity of the 5′ AMP-activated protein kinase
-
Michell BJ, Stapleton D, Mitchelhill KI, et al. Isoform-specific purification and substrate specificity of the 5′ AMP-activated protein kinase. J Biol Chem 1996; 271 (45): 28445-50
-
(1996)
J Biol Chem
, vol.271
, Issue.45
, pp. 28445-28450
-
-
Michell, B.J.1
Stapleton, D.2
Mitchelhill, K.I.3
-
57
-
-
0032704115
-
Chronic activation of 5′-AMP-activated protein kinase increases GLUT-4, hexokinase, and glycogen in muscle
-
Holmes BF, Kurth-Kraczek EJ, Winder WW. Chronic activation of 5′-AMP-activated protein kinase increases GLUT-4, hexokinase, and glycogen in muscle. J Appl Physiol 1999; 87 (5): 1990-5
-
(1999)
J Appl Physiol
, vol.87
, Issue.5
, pp. 1990-1995
-
-
Holmes, B.F.1
Kurth-Kraczek, E.J.2
Winder, W.W.3
-
58
-
-
0028967272
-
Cell-type specificity of inhibition of glycolysis by 5-amino-4- imidazolecarboxamide riboside: Lack of effect in rabbit cardiomyocytes and human erythrocytes, and inhibition in FTO-2B rat hepatoma cells
-
Javaux F, Vincent MF, Wagner DR, et al. Cell-type specificity of inhibition of glycolysis by 5-amino-4-imidazolecarboxamide riboside: lack of effect in rabbit cardiomyocytes and human erythrocytes, and inhibition in FTO-2B rat hepatoma cells. Biochem J 1995; 305 (Pt 3): 913-9
-
(1995)
Biochem J
, vol.305
, Issue.3 PART
, pp. 913-919
-
-
Javaux, F.1
Vincent, M.F.2
Wagner, D.R.3
-
59
-
-
0036751393
-
Insulin and ischemia stimulate glycolysis by acting on the same targets through different and opposing signaling pathways
-
Hue L, Beauloye C, Marsin AS, et al. Insulin and ischemia stimulate glycolysis by acting on the same targets through different and opposing signaling pathways. J Mol Cell Cardiol 2002; 34 (9): 1091-7
-
(2002)
J Mol Cell Cardiol
, vol.34
, Issue.9
, pp. 1091-1097
-
-
Hue, L.1
Beauloye, C.2
Marsin, A.S.3
-
60
-
-
0034687210
-
Phosphorylation and activation of heart PFK-2 by AMPK has a role in the stimulation of glycolysis during ischaemia
-
Marsin AS, Bertrand L, Rider MH, et al. Phosphorylation and activation of heart PFK-2 by AMPK has a role in the stimulation of glycolysis during ischaemia. Curr Biol 2000; 10 (20): 1247-55
-
(2000)
Curr Biol
, vol.10
, Issue.20
, pp. 1247-1255
-
-
Marsin, A.S.1
Bertrand, L.2
Rider, M.H.3
-
61
-
-
0033527643
-
Contractile activity modifies Fru-2,6-P2 metabolism in rabbit fast twitch skeletal muscle
-
Cadefau JA, Parra J, Tauler A, et al. Contractile activity modifies Fru-2,6-P2 metabolism in rabbit fast twitch skeletal muscle. J Biol Chem 1999; 274 (45): 31961-6
-
(1999)
J Biol Chem
, vol.274
, Issue.45
, pp. 31961-31966
-
-
Cadefau, J.A.1
Parra, J.2
Tauler, A.3
-
62
-
-
0034880181
-
Regulation of fatty acid oxidation and glucose metabolism in rat soleus muscle: Effects of AICAR
-
Kaushik VK, Young ME, Dean DJ, et al. Regulation of fatty acid oxidation and glucose metabolism in rat soleus muscle: effects of AICAR. Am J Physiol Endocrinol Metab 2001; 281 (2): E335-40
-
(2001)
Am J Physiol Endocrinol Metab
, vol.281
, Issue.2
-
-
Kaushik, V.K.1
Young, M.E.2
Dean, D.J.3
-
63
-
-
0031888070
-
Regulation of GLUT4 protein and glycogen synthase during muscle glycogen synthesis after exercise
-
Ivy JL, Kuo CH. Regulation of GLUT4 protein and glycogen synthase during muscle glycogen synthesis after exercise. Acta Physiol Scand 1998; 162 (3): 295-304
-
(1998)
Acta Physiol Scand
, vol.162
, Issue.3
, pp. 295-304
-
-
Ivy, J.L.1
Kuo, C.H.2
-
64
-
-
0035155821
-
Chronic treatment with 5-aminoimidazole-4-carboxamide-1-beta-D- ribofuranoside increases insulin-stimulated glucose uptake and GLUT4 translocation in rat skeletal muscles in a fiber type-specific manner
-
Buhl ES, Jessen N, Schmitz O, et al. Chronic treatment with 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside increases insulin-stimulated glucose uptake and GLUT4 translocation in rat skeletal muscles in a fiber type-specific manner. Diabetes 2001; 50 (1): 12-7
-
(2001)
Diabetes
, vol.50
, Issue.1
, pp. 12-17
-
-
Buhl, E.S.1
Jessen, N.2
Schmitz, O.3
-
65
-
-
0033949848
-
Activation of AMP-activated protein kinase increases mitochondrial enzymes in skeletal muscle
-
Winder WW, Holmes BF, Rubink DS, et al. Activation of AMP-activated protein kinase increases mitochondrial enzymes in skeletal muscle. J Appl Physiol 2000; 88 (6): 2219-26
-
(2000)
J Appl Physiol
, vol.88
, Issue.6
, pp. 2219-2226
-
-
Winder, W.W.1
Holmes, B.F.2
Rubink, D.S.3
-
66
-
-
0034685949
-
A mutation in PRKAG3 associated with excess glycogen content in pig skeletal muscle
-
Milan D, Jeon JT, Looft C, et al. A mutation in PRKAG3 associated with excess glycogen content in pig skeletal muscle. Science 2000; 288 (5469): 1248-51
-
(2000)
Science
, vol.288
, Issue.5469
, pp. 1248-1251
-
-
Milan, D.1
Jeon, J.T.2
Looft, C.3
-
67
-
-
0029130484
-
Malonyl-CoA and carnitine palmitoyltransferase I: An expanding partnership
-
McGarry JD. Malonyl-CoA and carnitine palmitoyltransferase I: an expanding partnership. Biochem Soc Trans 1995; 23 (3): 481-5
-
(1995)
Biochem Soc Trans
, vol.23
, Issue.3
, pp. 481-485
-
-
McGarry, J.D.1
-
68
-
-
0032946302
-
Malonyl-CoA, fuel sensing, and insulin resistance
-
Ruderman NB, Saha AK, Vavvas D, et aL Malonyl-CoA, fuel sensing, and insulin resistance. Am J Physiol 1999; 276 (1 Pt 1): E1-E18
-
(1999)
Am J Physiol
, vol.276
, Issue.1 PART 1
-
-
Ruderman, N.B.1
Saha, A.K.2
Vavvas, D.3
-
69
-
-
0033855904
-
Exercise diminishes the activity of acetyl-CoA carboxylase in human muscle
-
Dean D, Daugaard JR, Young ME, et al. Exercise diminishes the activity of acetyl-CoA carboxylase in human muscle. Diabetes 2000; 49 (8): 1295-300
-
(2000)
Diabetes
, vol.49
, Issue.8
, pp. 1295-1300
-
-
Dean, D.1
Daugaard, J.R.2
Young, M.E.3
-
70
-
-
0036087776
-
Phosphorylation-activity relationships of AMPK and acetyl-CoA carboxylase in muscle
-
Park SH, Gammon SR, Knippers JD, et al. Phosphorylation-activity relationships of AMPK and acetyl-CoA carboxylase in muscle. J Appl Physiol 2002; 92 (6): 2475-82
-
(2002)
J Appl Physiol
, vol.92
, Issue.6
, pp. 2475-2482
-
-
Park, S.H.1
Gammon, S.R.2
Knippers, J.D.3
-
71
-
-
0034637538
-
Activation of malonyl-CoA decarboxylase in rat skeletal muscle by contraction and the AMP-activated protein kinase activator 5-aminoimidazole-4- carboxamide-1-beta-D-ribofuranoside
-
Saha AK, Schwarsin AJ, Roduit R, et al. Activation of malonyl-CoA decarboxylase in rat skeletal muscle by contraction and the AMP-activated protein kinase activator 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside. J Biol Chem 2000; 275 (32): 24279-83
-
(2000)
J Biol Chem
, vol.275
, Issue.32
, pp. 24279-24283
-
-
Saha, A.K.1
Schwarsin, A.J.2
Roduit, R.3
-
72
-
-
0037031840
-
Coordinate regulation of malonyl-CoA decarboxylase, sn-glycerol-3- phosphate acyltransferase, and acetyl-CoA carboxylase by AMP-activated protein kinase in rat tissues in response to exercise
-
Park H, Kaushik VK, Constant S, et al. Coordinate regulation of malonyl-CoA decarboxylase, sn-glycerol-3-phosphate acyltransferase, and acetyl-CoA carboxylase by AMP-activated protein kinase in rat tissues in response to exercise. J Biol Chem 2002; 277 (36): 32571-7
-
(2002)
J Biol Chem
, vol.277
, Issue.36
, pp. 32571-32577
-
-
Park, H.1
Kaushik, V.K.2
Constant, S.3
-
73
-
-
12244267094
-
Metabolic and mitogenic signal transduction in human skeletal muscle after intense cycling exercise
-
Yu M, Stepto NK, Chibalin AV, et al. Metabolic and mitogenic signal transduction in human skeletal muscle after intense cycling exercise. J Physiol 2003; 546 (Pt 2): 327-35
-
(2003)
J Physiol
, vol.546
, Issue.2 PART
, pp. 327-335
-
-
Yu, M.1
Stepto, N.K.2
Chibalin, A.V.3
-
74
-
-
15444339308
-
Phosphorylation of rat muscle acetyl-CoA carboxylase by AMP-activated protein kinase and protein kinase A
-
Winder WW, Wilson HA, Hardie DG, et al. Phosphorylation of rat muscle acetyl-CoA carboxylase by AMP-activated protein kinase and protein kinase A. J Appl Physiol 1997; 82 (1): 219-25
-
(1997)
J Appl Physiol
, vol.82
, Issue.1
, pp. 219-225
-
-
Winder, W.W.1
Wilson, H.A.2
Hardie, D.G.3
-
75
-
-
0035580981
-
Malonyl-CoA decarboxylase is not a substrate of AMP-activated protein kinase in rat fast-twitch skeletal muscle or an islet cell line
-
Habinowski SA, Hirshman M, Sakamoto K, et al. Malonyl-CoA decarboxylase is not a substrate of AMP-activated protein kinase in rat fast-twitch skeletal muscle or an islet cell line. Arch Biochem Biophys 2001; 396 (1): 71-9
-
(2001)
Arch Biochem Biophys
, vol.396
, Issue.1
, pp. 71-79
-
-
Habinowski, S.A.1
Hirshman, M.2
Sakamoto, K.3
-
76
-
-
0041883026
-
The glucose-fatty acid cycle in skeletal muscle at rest and during exercise
-
Maughan RJ, Shisheva A, editors. Aberdeen: Human Kinetics Publishers Inc.
-
Spriet LL, Dyck DJ. The glucose-fatty acid cycle in skeletal muscle at rest and during exercise. In: Maughan RJ, Shisheva A, editors. Biochemistry of exercise. Aberdeen: Human Kinetics Publishers Inc., 2003: 127-56
-
(2003)
Biochemistry of Exercise
, pp. 127-156
-
-
Spriet, L.L.1
Dyck, D.J.2
-
77
-
-
0037025356
-
AMP-activated protein kinase suppresses protein synthesis in rat skeletal muscle through down-regulated mammalian target of rapamycin (mTOR) signaling
-
Bolster DR, Crozier SJ, Kimball SJ, et al. AMP-activated protein kinase suppresses protein synthesis in rat skeletal muscle through down-regulated mammalian target of rapamycin (mTOR) signaling. J Biol Chem 2002; 277 (27): 23977-80
-
(2002)
J Biol Chem
, vol.277
, Issue.27
, pp. 23977-23980
-
-
Bolster, D.R.1
Crozier, S.J.2
Kimball, S.J.3
-
78
-
-
0001171879
-
Regulation of gene expression in skeletal muscle by contractile activity
-
Williams RS, Neufer PD. Regulation of gene expression in skeletal muscle by contractile activity. Handbook Physiol 1999; 12: 1124-50
-
(1999)
Handbook Physiol
, vol.12
, pp. 1124-1150
-
-
Williams, R.S.1
Neufer, P.D.2
-
79
-
-
0034863102
-
Regulation of muscle GLUT-4 transcription by AMP-activated protein kinase
-
Zheng D, MacLean PS, Pohnert SC, et al. Regulation of muscle GLUT-4 transcription by AMP-activated protein kinase. J Appl Physiol 2001; 91 (3): 1073-83
-
(2001)
J Appl Physiol
, vol.91
, Issue.3
, pp. 1073-1083
-
-
Zheng, D.1
MacLean, P.S.2
Pohnert, S.C.3
-
80
-
-
0034014002
-
Increased expression of GLUT-4 and hexokinase in rat epitrochlearis muscles exposed to AICAR in vitro
-
Ojuka EO, Nolte LA, Holloszy JO. Increased expression of GLUT-4 and hexokinase in rat epitrochlearis muscles exposed to AICAR in vitro. J Appl Physiol 2000; 88 (3): 1072-5
-
(2000)
J Appl Physiol
, vol.88
, Issue.3
, pp. 1072-1075
-
-
Ojuka, E.O.1
Nolte, L.A.2
Holloszy, J.O.3
-
81
-
-
0036081167
-
Regulation of GLUT4 biogenesis in muscle; evidence for involvement of AMPK and Ca2+
-
Ojuka EO, Jones TE, Nolte LA, et al. Regulation of GLUT4 biogenesis in muscle; evidence for involvement of AMPK and Ca2+. Am J Physiol Endocrinol Metab 2002; 282 (5); E1008-13
-
(2002)
Am J Physiol Endocrinol Metab
, vol.282
, Issue.5
-
-
Ojuka, E.O.1
Jones, T.E.2
Nolte, L.A.3
-
82
-
-
0033830770
-
UCP-3 expression in skeletal muscle: Effects of exercise, hypoxia, and AMP-activated protein kinase
-
Zhou M, Lin BZ, Coughlin S, et al. UCP-3 expression in skeletal muscle: effects of exercise, hypoxia, and AMP-activated protein kinase. Am J Physiol Endocrinol Metab 2000; 279 (3): E622-9
-
(2000)
Am J Physiol Endocrinol Metab
, vol.279
, Issue.3
-
-
Zhou, M.1
Lin, B.Z.2
Coughlin, S.3
-
83
-
-
0036889017
-
AMP-activated protein kinase activates transcription of the UCP3 and HKII genes in rat skeletal muscle
-
Stoppani J, Hildebrandt AL, Sakamoto K, et al. AMP-activated protein kinase activates transcription of the UCP3 and HKII genes in rat skeletal muscle. Am J Physiol Endocrinol Metab 2002; 283 (6): E1239-48
-
(2002)
Am J Physiol Endocrinol Metab
, vol.283
, Issue.6
-
-
Stoppani, J.1
Hildebrandt, A.L.2
Sakamoto, K.3
-
84
-
-
0035665594
-
Chronic activation of AMP kinase resulls in NRF-1 activation and mitochondrial biogenesis
-
Bergeron R, Ren JM, Cadman KS, et al. Chronic activation of AMP kinase resulls in NRF-1 activation and mitochondrial biogenesis. Am J Physiol Endocrinol Metab 2001; 281 (6): E1340-6
-
(2001)
Am J Physiol Endocrinol Metab
, vol.281
, Issue.6
-
-
Bergeron, R.1
Ren, J.M.2
Cadman, K.S.3
-
85
-
-
0037058977
-
AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation
-
Zong H, Ren JM, Young LH, et al. AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation. Proc Natl Acad Sci U S A 2002; 99 (25): 15983-7
-
(2002)
Proc Natl Acad Sci U S A
, vol.99
, Issue.25
, pp. 15983-15987
-
-
Zong, H.1
Ren, J.M.2
Young, L.H.3
-
86
-
-
0037066459
-
Regulation of mitochondrial biogenesis in skeletal muscle by CaMK
-
Wu H, Kanatous SB, Thurmond FA, et al. Regulation of mitochondrial biogenesis in skeletal muscle by CaMK. Science 2002; 296 (5566): 349-52
-
(2002)
Science
, vol.296
, Issue.5566
, pp. 349-352
-
-
Wu, H.1
Kanatous, S.B.2
Thurmond, F.A.3
-
87
-
-
0037185021
-
2 subunit of AMP-activated protein kinase associated with cardiac hypertrophy and Wolff-Parkinson-White syndrome
-
2 subunit of AMP-activated protein kinase associated with cardiac hypertrophy and Wolff-Parkinson-White syndrome. J Biol Chem 2002; 277 (52): 51017-24
-
(2002)
J Biol Chem
, vol.277
, Issue.52
, pp. 51017-51024
-
-
Daniel, T.1
Carling, D.2
-
88
-
-
0035872209
-
2 subunit of AMP-activated protein kinase cause familial hypertrophic cardiomyopathy: Evidence for the central role of energy compromise in disease pathogenesis
-
2 subunit of AMP-activated protein kinase cause familial hypertrophic cardiomyopathy: evidence for the central role of energy compromise in disease pathogenesis. Hum Mol Genet 2001; 10 (11): 1215-20
-
(2001)
Hum Mol Genet
, vol.10
, Issue.11
, pp. 1215-1220
-
-
Blair, E.1
Redwood, C.2
Ashrafian, H.3
-
89
-
-
0035797839
-
Increased adenosine monophosphate-activated protein kinase activity in rat hearts with pressure-overload hypertrophy
-
Tian R, Musi N, D'Agostino J, et al. Increased adenosine monophosphate-activated protein kinase activity in rat hearts with pressure-overload hyper[trophy. Circulation 2001; 104 (14): 1664-9
-
(2001)
Circulation
, vol.104
, Issue.14
, pp. 1664-1669
-
-
Tian, R.1
Musi, N.2
D'Agostino, J.3
|