메뉴 건너뛰기




Volumn 110, Issue , 2019, Pages 12-22

A systematic review shows no performance benefit of machine learning over logistic regression for clinical prediction models

Author keywords

AUC; Calibration; Clinical prediction models; Logistic regression; Machine learning; Reporting

Indexed keywords

AREA UNDER THE CURVE; ARTIFICIAL NEURAL NETWORK; CALIBRATION; HUMAN; MEDLINE; OUTCOME ASSESSMENT; PREDICTION; RANDOM FOREST; RECEIVER OPERATING CHARACTERISTIC; REVIEW; SAMPLE SIZE; SUPPORT VECTOR MACHINE; SYSTEMATIC REVIEW; VALIDATION PROCESS; ALGORITHM; COMPARATIVE STUDY; META ANALYSIS; PREDICTIVE VALUE; SENSITIVITY AND SPECIFICITY; STATISTICAL MODEL; SUPERVISED MACHINE LEARNING; THEORETICAL MODEL;

EID: 85062005742     PISSN: 08954356     EISSN: 18785921     Source Type: Journal    
DOI: 10.1016/j.jclinepi.2019.02.004     Document Type: Review
Times cited : (1142)

References (113)
  • 1
    • 67651009834 scopus 로고    scopus 로고
    • Clinical prediction models
    • Springer New York, NY
    • Steyerberg, E.W., Clinical prediction models. 2009, Springer, New York, NY.
    • (2009)
    • Steyerberg, E.W.1
  • 2
    • 0003684449 scopus 로고    scopus 로고
    • The elements of statistical learning: data mining, inference, and prediction
    • 2nd ed. Springer New York, NY
    • Hastie, T., Tibshirani, R., Friedman, J., The elements of statistical learning: data mining, inference, and prediction. 2nd ed., 2009, Springer, New York, NY.
    • (2009)
    • Hastie, T.1    Tibshirani, R.2    Friedman, J.3
  • 3
    • 0034922742 scopus 로고    scopus 로고
    • Machine learning for medical diagnosis: history, state of the art and perspective
    • Kononenko, I., Machine learning for medical diagnosis: history, state of the art and perspective. Artif Intell Med 23 (2001), 89–109.
    • (2001) Artif Intell Med , vol.23 , pp. 89-109
    • Kononenko, I.1
  • 4
    • 33746901239 scopus 로고    scopus 로고
    • The use of artificial neural networks in decision support in cancer: a systematic review
    • Lisboa, P.J., Taktak, A.F.G., The use of artificial neural networks in decision support in cancer: a systematic review. Neural Netw 19 (2006), 408–415.
    • (2006) Neural Netw , vol.19 , pp. 408-415
    • Lisboa, P.J.1    Taktak, A.F.G.2
  • 5
    • 85044927780 scopus 로고    scopus 로고
    • Big data and machine learning in health care
    • Beam, A.L., Kohane, I.S., Big data and machine learning in health care. JAMA 319 (2018), 1317–1318.
    • (2018) JAMA , vol.319 , pp. 1317-1318
    • Beam, A.L.1    Kohane, I.S.2
  • 6
    • 85021635595 scopus 로고    scopus 로고
    • Machine learning and prediction in medicine — beyond the peak of inflated expectations
    • Chen, J.H., Asch, S.M., Machine learning and prediction in medicine — beyond the peak of inflated expectations. N Engl J Med 376 (2017), 2507–2509.
    • (2017) N Engl J Med , vol.376 , pp. 2507-2509
    • Chen, J.H.1    Asch, S.M.2
  • 7
    • 85021953748 scopus 로고    scopus 로고
    • Moving beyond regression techniques in cardiovascular risk prediction: applying machine learning to address analytic challenges
    • Goldstein, B.A., Navar, A.M., Carter, R.E., Moving beyond regression techniques in cardiovascular risk prediction: applying machine learning to address analytic challenges. Eur Heart J 38 (2017), 1805–1814.
    • (2017) Eur Heart J , vol.38 , pp. 1805-1814
    • Goldstein, B.A.1    Navar, A.M.2    Carter, R.E.3
  • 8
    • 0000245743 scopus 로고    scopus 로고
    • Statistical modeling: the two cultures (with comments and a rejoinder by the author)
    • Breiman, L., Statistical modeling: the two cultures (with comments and a rejoinder by the author). Stat Sci 16 (2001), 199–231.
    • (2001) Stat Sci , vol.16 , pp. 199-231
    • Breiman, L.1
  • 9
    • 84908330513 scopus 로고    scopus 로고
    • Critical appraisal and data extraction for systematic reviews of prediction modelling studies: the CHARMS checklist
    • Moons, K.G.M., de Groot, J.A.H., Bouwmeester, W., Vergouwe, Y., Mallett, S., Altman, D.G., et al. Critical appraisal and data extraction for systematic reviews of prediction modelling studies: the CHARMS checklist. PLoS Med, 11, 2014, e1001744.
    • (2014) PLoS Med , vol.11 , pp. e1001744
    • Moons, K.G.M.1    de Groot, J.A.H.2    Bouwmeester, W.3    Vergouwe, Y.4    Mallett, S.5    Altman, D.G.6
  • 10
    • 0004255908 scopus 로고    scopus 로고
    • Machine learning
    • McGraw Hill New York, NY
    • Mitchell, T.M., Machine learning. 1997, McGraw Hill, New York, NY.
    • (1997)
    • Mitchell, T.M.1
  • 11
    • 84903629415 scopus 로고    scopus 로고
    • Machine learning versus statistical modeling
    • Boulesteix, A.L., Schmid, M., Machine learning versus statistical modeling. Biom J 56 (2014), 588–593.
    • (2014) Biom J , vol.56 , pp. 588-593
    • Boulesteix, A.L.1    Schmid, M.2
  • 12
    • 84995917328 scopus 로고    scopus 로고
    • Learning about machine learning: the promise and pitfalls of big data and the electronic health record
    • Deo, R.C., Nallamothu, B.K., Learning about machine learning: the promise and pitfalls of big data and the electronic health record. Circ Cardiovasc Qual Outcomes 9 (2016), 618–620.
    • (2016) Circ Cardiovasc Qual Outcomes , vol.9 , pp. 618-620
    • Deo, R.C.1    Nallamothu, B.K.2
  • 13
    • 68549133155 scopus 로고    scopus 로고
    • Learning from imbalanced data
    • He, H., Garcia, E.A., Learning from imbalanced data. IEEE Trans Knowl Data Eng 21 (2008), 1263–1284.
    • (2008) IEEE Trans Knowl Data Eng , vol.21 , pp. 1263-1284
    • He, H.1    Garcia, E.A.2
  • 14
    • 33745644254 scopus 로고    scopus 로고
    • Support vector machines versus logistic regression: improving prospective performance in clinical decision-making
    • Pochet, N.L.M.M., Suykens, J.A.K., Support vector machines versus logistic regression: improving prospective performance in clinical decision-making. Ultrasound Obstet Gynecol 27 (2006), 607–608.
    • (2006) Ultrasound Obstet Gynecol , vol.27 , pp. 607-608
    • Pochet, N.L.M.M.1    Suykens, J.A.K.2
  • 15
    • 85127431078 scopus 로고    scopus 로고
    • Scalable and accurate deep learning for electronic health records
    • Rajkomar, A., Oren, E., Chen, K., Dai, A.M., Hajaj, N., Liu, P.J., et al. Scalable and accurate deep learning for electronic health records. NPJ Digit Med 1 (2018), 1–10.
    • (2018) NPJ Digit Med , vol.1 , pp. 1-10
    • Rajkomar, A.1    Oren, E.2    Chen, K.3    Dai, A.M.4    Hajaj, N.5    Liu, P.J.6
  • 16
    • 85008451521 scopus 로고    scopus 로고
    • Guidelines for developing and reporting machine learning predictive models in biomedical research: a multidisciplinary view
    • Luo, W., Phung, D., Tran, T., Gupta, S., Rana, S., Karmakar, C., et al. Guidelines for developing and reporting machine learning predictive models in biomedical research: a multidisciplinary view. J Med Internet Res, 18, 2016, e323.
    • (2016) J Med Internet Res , vol.18 , pp. e323
    • Luo, W.1    Phung, D.2    Tran, T.3    Gupta, S.4    Rana, S.5    Karmakar, C.6
  • 17
    • 84923873960 scopus 로고    scopus 로고
    • Modern modelling techniques are data hungry: a simulation study for predicting dichotomous endpoints
    • van der Ploeg, T., Austin, P.C., Steyerberg, E.W., Modern modelling techniques are data hungry: a simulation study for predicting dichotomous endpoints. BMC Med Res Methodol, 14, 2014, 137.
    • (2014) BMC Med Res Methodol , vol.14 , pp. 137
    • van der Ploeg, T.1    Austin, P.C.2    Steyerberg, E.W.3
  • 19
    • 84920579212 scopus 로고    scopus 로고
    • Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement
    • Collins, G.S., Reitsma, J.B., Altman, D.G., Moons, K.G.M., Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. J Clin Epidemiol 68 (2015), 134–143.
    • (2015) J Clin Epidemiol , vol.68 , pp. 134-143
    • Collins, G.S.1    Reitsma, J.B.2    Altman, D.G.3    Moons, K.G.M.4
  • 20
    • 84876567454 scopus 로고    scopus 로고
    • A plea for neutral comparison studies in computational sciences
    • Boulesteix, A.L., Lauer, S., Eugster, M.J.A., A plea for neutral comparison studies in computational sciences. PLoS One, 8, 2013, e61562.
    • (2013) PLoS One , vol.8 , pp. e61562
    • Boulesteix, A.L.1    Lauer, S.2    Eugster, M.J.A.3
  • 21
    • 33745886270 scopus 로고    scopus 로고
    • Classifier technology and the illusion of progress
    • Hand, D.J., Classifier technology and the illusion of progress. Stat Sci 1 (2006), 1–14.
    • (2006) Stat Sci , vol.1 , pp. 1-14
    • Hand, D.J.1
  • 23
    • 85050123651 scopus 로고    scopus 로고
    • Tunability: importance of hyperparameters of machine learning algorithms
    • ArXiv Prepr ArXiv180209596
    • Probst, P., Bischl, B., Boulesteix, A.-L., Tunability: importance of hyperparameters of machine learning algorithms. 2018 ArXiv Prepr ArXiv180209596.
    • (2018)
    • Probst, P.1    Bischl, B.2    Boulesteix, A.-L.3
  • 24
    • 84971247476 scopus 로고    scopus 로고
    • Quantifying the impact of different approaches for handling continuous predictors on the performance of a prognostic model
    • Collins, G.S., Ogundimu, E.O., Cook, J.A., Manach, Y.L., Altman, D.G., Quantifying the impact of different approaches for handling continuous predictors on the performance of a prognostic model. Stat Med 35 (2016), 4124–4135.
    • (2016) Stat Med , vol.35 , pp. 4124-4135
    • Collins, G.S.1    Ogundimu, E.O.2    Cook, J.A.3    Manach, Y.L.4    Altman, D.G.5
  • 26
    • 0042986859 scopus 로고    scopus 로고
    • The statistical evaluation of medical tests for classification and prediction
    • Oxford University Press New York
    • Pepe, M.S., The statistical evaluation of medical tests for classification and prediction. 2003, Oxford University Press, New York.
    • (2003)
    • Pepe, M.S.1
  • 27
    • 85041753735 scopus 로고    scopus 로고
    • Artificial neural networks versus bivariate logistic regression in prediction diagnosis of patients with hypertension and diabetes
    • Adavi, M., Salehi, M., Roudbari, M., Artificial neural networks versus bivariate logistic regression in prediction diagnosis of patients with hypertension and diabetes. Med J Islam Repub Iran 30 (2016), 2–6.
    • (2016) Med J Islam Repub Iran , vol.30 , pp. 2-6
    • Adavi, M.1    Salehi, M.2    Roudbari, M.3
  • 28
    • 84962869276 scopus 로고    scopus 로고
    • Electronic health record phenotyping improves detection and screening of type 2 diabetes in the general United States population: a cross-sectional, unselected, retrospective study
    • Anderson, A.E., Kerr, W.T., Thames, A., Li, T., Xiao, J., Cohen, M.S., Electronic health record phenotyping improves detection and screening of type 2 diabetes in the general United States population: a cross-sectional, unselected, retrospective study. J Biomed Inform 60 (2016), 162–168.
    • (2016) J Biomed Inform , vol.60 , pp. 162-168
    • Anderson, A.E.1    Kerr, W.T.2    Thames, A.3    Li, T.4    Xiao, J.5    Cohen, M.S.6
  • 29
    • 84987673594 scopus 로고    scopus 로고
    • Predicting ventriculoperitoneal shunt infection in children with hydrocephalus using artificial neural network
    • Habibi, Z., Ertiaei, A., Nikdad, M.S., Mirmohseni, A.S., Afarideh, M., Heidari, V., et al. Predicting ventriculoperitoneal shunt infection in children with hydrocephalus using artificial neural network. Childs Nerv Syst 32 (2016), 2143–2151.
    • (2016) Childs Nerv Syst , vol.32 , pp. 2143-2151
    • Habibi, Z.1    Ertiaei, A.2    Nikdad, M.S.3    Mirmohseni, A.S.4    Afarideh, M.5    Heidari, V.6
  • 30
    • 84989189598 scopus 로고    scopus 로고
    • How can machine-learning methods assist in virtual screening for hyperuricemia? A healthcare machine-learning approach
    • Ichikawa, D., Saito, T., Ujita, W., Oyama, H., How can machine-learning methods assist in virtual screening for hyperuricemia? A healthcare machine-learning approach. J Biomed Inform 64 (2016), 20–24.
    • (2016) J Biomed Inform , vol.64 , pp. 20-24
    • Ichikawa, D.1    Saito, T.2    Ujita, W.3    Oyama, H.4
  • 31
    • 84966330178 scopus 로고    scopus 로고
    • Comparison of predictive models for the early diagnosis of diabetes
    • Jahani, M., Mahdavi, M., Comparison of predictive models for the early diagnosis of diabetes. Healthc Inform Res 22 (2016), 95–100.
    • (2016) Healthc Inform Res , vol.22 , pp. 95-100
    • Jahani, M.1    Mahdavi, M.2
  • 32
    • 84953352011 scopus 로고    scopus 로고
    • Falling in the elderly: do statistical models matter for performance criteria of fall prediction? Results from two large population-based studies
    • Kabeshova, A., Launay, C.P., Gromov, V.A., Fantino, B., Levinoff, E.J., Allali, G., et al. Falling in the elderly: do statistical models matter for performance criteria of fall prediction? Results from two large population-based studies. Eur J Intern Med 27 (2016), 48–56.
    • (2016) Eur J Intern Med , vol.27 , pp. 48-56
    • Kabeshova, A.1    Launay, C.P.2    Gromov, V.A.3    Fantino, B.4    Levinoff, E.J.5    Allali, G.6
  • 34
    • 84927945803 scopus 로고    scopus 로고
    • Assessing risk of hospital readmissions for improving medical practice
    • Kulkarni, P., Smith, L.D., Woeltje, K.F., Assessing risk of hospital readmissions for improving medical practice. Health Care Manag Sci 19 (2016), 291–299.
    • (2016) Health Care Manag Sci , vol.19 , pp. 291-299
    • Kulkarni, P.1    Smith, L.D.2    Woeltje, K.F.3
  • 35
    • 84975801338 scopus 로고    scopus 로고
    • Applying machine learning techniques to the identification of late-onset hypogonadism in elderly men
    • Lu, T., Hu, Y.H., Tsai, C.F., Liu, S.P., Chen, P.L., Applying machine learning techniques to the identification of late-onset hypogonadism in elderly men. Springerplus, 5, 2016, 729.
    • (2016) Springerplus , vol.5 , pp. 729
    • Lu, T.1    Hu, Y.H.2    Tsai, C.F.3    Liu, S.P.4    Chen, P.L.5
  • 36
    • 84978639760 scopus 로고    scopus 로고
    • Analyzing 30-day readmission rate for heart failure using different predictive models
    • Mahajan, S., Burman, P., Hogarth, M., Analyzing 30-day readmission rate for heart failure using different predictive models. Stud Health Technol Inform 225 (2016), 143–147.
    • (2016) Stud Health Technol Inform , vol.225 , pp. 143-147
    • Mahajan, S.1    Burman, P.2    Hogarth, M.3
  • 37
    • 84975853324 scopus 로고    scopus 로고
    • Non-invasive detection of fasting blood glucose level via electrochemical measurement of saliva
    • Malik, S., Khadgawat, R., Anand, S., Gupta, S., Non-invasive detection of fasting blood glucose level via electrochemical measurement of saliva. Springerplus, 5, 2016, 701.
    • (2016) Springerplus , vol.5 , pp. 701
    • Malik, S.1    Khadgawat, R.2    Anand, S.3    Gupta, S.4
  • 38
    • 84964643061 scopus 로고    scopus 로고
    • Prediction of lumbar disc herniation patients’ satisfaction with the aid of an artificial neural network
    • Matis, G.K., Chrysou, O.I., Silva, D., Karanikas, M.A., Baltsavias, G., Lyratzopoulos, N., et al. Prediction of lumbar disc herniation patients’ satisfaction with the aid of an artificial neural network. Turk Neurosurg 26 (2016), 253–259.
    • (2016) Turk Neurosurg , vol.26 , pp. 253-259
    • Matis, G.K.1    Chrysou, O.I.2    Silva, D.3    Karanikas, M.A.4    Baltsavias, G.5    Lyratzopoulos, N.6
  • 39
    • 85002836371 scopus 로고    scopus 로고
    • Developing artificial neural network models to predict functioning one year after traumatic spinal cord injury
    • Belliveau, T., Jette, A.M., Seetharama, S., Axt, J., Rosenblum, D., Larose, D., et al. Developing artificial neural network models to predict functioning one year after traumatic spinal cord injury. Arch Phys Med Rehabil 97 (2016), 1663–1668.e3.
    • (2016) Arch Phys Med Rehabil , vol.97 , pp. 1663-1668.e3
    • Belliveau, T.1    Jette, A.M.2    Seetharama, S.3    Axt, J.4    Rosenblum, D.5    Larose, D.6
  • 41
    • 84978720926 scopus 로고    scopus 로고
    • Accuracy and calibration of computational approaches for inpatient mortality predictive modeling
    • Nakas, C.T., Schütz, N., Werners, M., Leichtle, A.B.L., Accuracy and calibration of computational approaches for inpatient mortality predictive modeling. PLoS One, 11, 2016, e0159046.
    • (2016) PLoS One , vol.11 , pp. e0159046
    • Nakas, C.T.1    Schütz, N.2    Werners, M.3    Leichtle, A.B.L.4
  • 42
    • 84978785873 scopus 로고    scopus 로고
    • Predicting occurrence of spine surgery complications using big data modeling of an administrative claims database
    • Ratliff, J.K., Balise, R., Veeravagu, A., Cole, T.S., Cheng, I., Olshen, R.A., et al. Predicting occurrence of spine surgery complications using big data modeling of an administrative claims database. J Bone Joint Surg Am 98 (2016), 824–834.
    • (2016) J Bone Joint Surg Am , vol.98 , pp. 824-834
    • Ratliff, J.K.1    Balise, R.2    Veeravagu, A.3    Cole, T.S.4    Cheng, I.5    Olshen, R.A.6
  • 43
    • 84958900180 scopus 로고    scopus 로고
    • Development of a web-based liver cancer prediction model for type II diabetes patients by using an artificial neural network
    • Rau, H.H., Hsu, C.Y., Lin, Y.A., Atique, S., Fuad, A., Wei, L.M., et al. Development of a web-based liver cancer prediction model for type II diabetes patients by using an artificial neural network. Comput Methods Programs Biomed 125 (2016), 58–65.
    • (2016) Comput Methods Programs Biomed , vol.125 , pp. 58-65
    • Rau, H.H.1    Hsu, C.Y.2    Lin, Y.A.3    Atique, S.4    Fuad, A.5    Wei, L.M.6
  • 44
    • 84971612092 scopus 로고    scopus 로고
    • The use of machine learning for the identification of peripheral artery disease and future mortality risk
    • Ross, E.G., Shah, N.H., Dalman, R.L., Nead, K.T., Cooke, J.P., Leeper, N.J., The use of machine learning for the identification of peripheral artery disease and future mortality risk. J Vasc Surg 64 (2016), 1515–1522.e3.
    • (2016) J Vasc Surg , vol.64 , pp. 1515-1522.e3
    • Ross, E.G.1    Shah, N.H.2    Dalman, R.L.3    Nead, K.T.4    Cooke, J.P.5    Leeper, N.J.6
  • 45
    • 84960335394 scopus 로고    scopus 로고
    • Prediction of in-hospital mortality in emergency department patients with sepsis: a local big data-driven, machine learning approach
    • Taylor, R.A., Pare, J.R., Venkatesh, A.K., Mowafi, H., Melnick, E.R., Fleischman, W., et al. Prediction of in-hospital mortality in emergency department patients with sepsis: a local big data-driven, machine learning approach. Acad Emerg Med 23 (2016), 269–278.
    • (2016) Acad Emerg Med , vol.23 , pp. 269-278
    • Taylor, R.A.1    Pare, J.R.2    Venkatesh, A.K.3    Mowafi, H.4    Melnick, E.R.5    Fleischman, W.6
  • 46
    • 84973111641 scopus 로고    scopus 로고
    • Application of machine learning techniques to high-dimensional clinical data to forecast postoperative complications
    • Thottakkara, P., Ozrazgat-Baslanti, T., Hupf, B.B., Rashidi, P., Pardalos, P., Momcilovic, P., et al. Application of machine learning techniques to high-dimensional clinical data to forecast postoperative complications. PLoS One, 11, 2016, e0155705.
    • (2016) PLoS One , vol.11 , pp. e0155705
    • Thottakkara, P.1    Ozrazgat-Baslanti, T.2    Hupf, B.B.3    Rashidi, P.4    Pardalos, P.5    Momcilovic, P.6
  • 47
    • 84959335948 scopus 로고    scopus 로고
    • Comparison of predictive modeling approaches for 30-day all-cause non-elective readmission risk
    • Tong, L., Erdmann, C., Daldalian, M., Li, J., Esposito, T., Comparison of predictive modeling approaches for 30-day all-cause non-elective readmission risk. BMC Med Res Methodol, 16, 2016, 26.
    • (2016) BMC Med Res Methodol , vol.16 , pp. 26
    • Tong, L.1    Erdmann, C.2    Daldalian, M.3    Li, J.4    Esposito, T.5
  • 48
    • 84963545841 scopus 로고    scopus 로고
    • Modern modeling techniques had limited external validity in predicting mortality from traumatic brain injury
    • van der Ploeg, T., Nieboer, D., Steyerberg, E.W., Modern modeling techniques had limited external validity in predicting mortality from traumatic brain injury. J Clin Epidemiol 78 (2016), 83–89.
    • (2016) J Clin Epidemiol , vol.78 , pp. 83-89
    • van der Ploeg, T.1    Nieboer, D.2    Steyerberg, E.W.3
  • 49
    • 84977658343 scopus 로고    scopus 로고
    • Cancers screening in an asymptomatic population by using multiple tumour markers
    • Wang, H.Y., Hsieh, C.H., Wen, C.N., Wen, Y.H., Chen, C.H., Lu, J.J., Cancers screening in an asymptomatic population by using multiple tumour markers. PLoS One, 11, 2016, e0158285.
    • (2016) PLoS One , vol.11 , pp. e0158285
    • Wang, H.Y.1    Hsieh, C.H.2    Wen, C.N.3    Wen, Y.H.4    Chen, C.H.5    Lu, J.J.6
  • 50
    • 84983783245 scopus 로고    scopus 로고
    • Comparing models for quantitative risk assessment: an application to the European Registry of foreign body injuries in children
    • Berchialla, P., Scarinzi, C., Snidero, S., Gregori, D., Lawson, A.B., Lee, D., et al. Comparing models for quantitative risk assessment: an application to the European Registry of foreign body injuries in children. Stat Methods Med Res 25 (2016), 1244–1259.
    • (2016) Stat Methods Med Res , vol.25 , pp. 1244-1259
    • Berchialla, P.1    Scarinzi, C.2    Snidero, S.3    Gregori, D.4    Lawson, A.B.5    Lee, D.6
  • 51
    • 84962920890 scopus 로고    scopus 로고
    • Exploiting machine learning for predicting skeletal-related events in cancer patients with bone metastases
    • Wang, Z., Wen, X., Lu, Y., Yao, Y., Zhao, H., Exploiting machine learning for predicting skeletal-related events in cancer patients with bone metastases. Oncotarget 7 (2016), 12612–12622.
    • (2016) Oncotarget , vol.7 , pp. 12612-12622
    • Wang, Z.1    Wen, X.2    Lu, Y.3    Yao, Y.4    Zhao, H.5
  • 52
    • 84973390708 scopus 로고    scopus 로고
    • Predicting postoperative vomiting among orthopedic patients receiving patient-controlled epidural analgesia using SVM and LR
    • Wu, H.Y., Gong, C.S.A., Lin, S.P., Chang, K.Y., Tsou, M.Y., Ting, C.K., Predicting postoperative vomiting among orthopedic patients receiving patient-controlled epidural analgesia using SVM and LR. Sci Rep 6 (2016), 1–7.
    • (2016) Sci Rep , vol.6 , pp. 1-7
    • Wu, H.Y.1    Gong, C.S.A.2    Lin, S.P.3    Chang, K.Y.4    Tsou, M.Y.5    Ting, C.K.6
  • 53
    • 84964329141 scopus 로고    scopus 로고
    • Statistical-learning strategies generate only modestly performing predictive models for urinary symptoms following external beam radiotherapy of the prostate: a comparison of conventional and machine-learning methods
    • Yahya, N., Ebert, M.A., Bulsara, M., House, M.J., Kennedy, A., Joseph, D.J., et al. Statistical-learning strategies generate only modestly performing predictive models for urinary symptoms following external beam radiotherapy of the prostate: a comparison of conventional and machine-learning methods. Med Phys, 43, 2016, 2040.
    • (2016) Med Phys , vol.43 , pp. 2040
    • Yahya, N.1    Ebert, M.A.2    Bulsara, M.3    House, M.J.4    Kennedy, A.5    Joseph, D.J.6
  • 54
    • 84999041068 scopus 로고    scopus 로고
    • An imaging-based approach predicts clinical outcomes in prostate cancer through a novel support vector machine classification
    • Zhang, Y.-D., Wang, J., Wu, C.-J., Bao, M.-L., Li, H., Wang, X.-N., et al. An imaging-based approach predicts clinical outcomes in prostate cancer through a novel support vector machine classification. Oncotarget, 7, 2016, 78140.
    • (2016) Oncotarget , vol.7 , pp. 78140
    • Zhang, Y.-D.1    Wang, J.2    Wu, C.-J.3    Bao, M.-L.4    Li, H.5    Wang, X.-N.6
  • 55
    • 84965017496 scopus 로고    scopus 로고
    • Predicting distant failure in early stage NSCLC treated with SBRT using clinical parameters Predicting distant failure in lung SBRT
    • Zhou, Z., Folkert, M., Cannon, N., Iyengar, P., Westover, K., Zhang, Y., et al. Predicting distant failure in early stage NSCLC treated with SBRT using clinical parameters Predicting distant failure in lung SBRT. Radiother Oncol 119 (2016), 501–504.
    • (2016) Radiother Oncol , vol.119 , pp. 501-504
    • Zhou, Z.1    Folkert, M.2    Cannon, N.3    Iyengar, P.4    Westover, K.5    Zhang, Y.6
  • 56
    • 85017207083 scopus 로고    scopus 로고
    • Use of a machine learning framework to predict substance use disorder treatment success
    • Acion, L., Kelmansky, D., Van der Laan, M., Sahker, E., Jones, D.S., Arndt, S., Use of a machine learning framework to predict substance use disorder treatment success. PLoS One, 12, 2017, e0175383.
    • (2017) PLoS One , vol.12 , pp. e0175383
    • Acion, L.1    Kelmansky, D.2    Van der Laan, M.3    Sahker, E.4    Jones, D.S.5    Arndt, S.6
  • 57
    • 85025430136 scopus 로고    scopus 로고
    • Predicting diabetes mellitus using SMOTE and ensemble machine learning approach: the Henry Ford ExercIse Testing (FIT) project
    • Alghamdi, M., Al-Mallah, M., Keteyian, S., Brawner, C., Ehrman, J., Sakr, S., Predicting diabetes mellitus using SMOTE and ensemble machine learning approach: the Henry Ford ExercIse Testing (FIT) project. PLoS One, 12, 2017, e0179805.
    • (2017) PLoS One , vol.12 , pp. e0179805
    • Alghamdi, M.1    Al-Mallah, M.2    Keteyian, S.3    Brawner, C.4    Ehrman, J.5    Sakr, S.6
  • 58
    • 85009893949 scopus 로고    scopus 로고
    • A comparison of a machine learning model with EuroSCORE II in predicting mortality after elective cardiac surgery: a decision curve analysis
    • Allyn, J., Allou, N., Augustin, P., Philip, I., Martinet, O., Belghiti, M., et al. A comparison of a machine learning model with EuroSCORE II in predicting mortality after elective cardiac surgery: a decision curve analysis. PLoS One, 12, 2017, e0169772.
    • (2017) PLoS One , vol.12 , pp. e0169772
    • Allyn, J.1    Allou, N.2    Augustin, P.3    Philip, I.4    Martinet, O.5    Belghiti, M.6
  • 59
    • 85021342247 scopus 로고    scopus 로고
    • Prevalence and determinants of preterm birth in Tehran, Iran: a comparison between logistic regression and decision tree methods
    • Amini, P., Maroufizadeh, S., Samani, R.O., Hamidi, O., Sepidarkish, M., Prevalence and determinants of preterm birth in Tehran, Iran: a comparison between logistic regression and decision tree methods. Osong Public Health Res Perspect 8 (2017), 195–200.
    • (2017) Osong Public Health Res Perspect , vol.8 , pp. 195-200
    • Amini, P.1    Maroufizadeh, S.2    Samani, R.O.3    Hamidi, O.4    Sepidarkish, M.5
  • 60
    • 85002156915 scopus 로고    scopus 로고
    • Validating the usefulness of the “random forests” classifier to diagnose early glaucoma with optical coherence tomography
    • Asaoka, R., Hirasawa, K., Iwase, A., Fujino, Y., Murata, H., Shoji, N., et al. Validating the usefulness of the “random forests” classifier to diagnose early glaucoma with optical coherence tomography. Am J Ophthalmol 174 (2017), 95–103.
    • (2017) Am J Ophthalmol , vol.174 , pp. 95-103
    • Asaoka, R.1    Hirasawa, K.2    Iwase, A.3    Fujino, Y.4    Murata, H.5    Shoji, N.6
  • 61
    • 84956503197 scopus 로고    scopus 로고
    • Diagnosis of acute coronary syndrome with a support vector machine
    • Berikol, G.B., Yildiz, O., Özcan, T., Diagnosis of acute coronary syndrome with a support vector machine. J Med Syst, 40, 2016, 84.
    • (2016) J Med Syst , vol.40 , pp. 84
    • Berikol, G.B.1    Yildiz, O.2    Özcan, T.3
  • 62
    • 85010977146 scopus 로고    scopus 로고
    • Data mining: potential applications in research on nutrition and health
    • Batterham, M., Neale, E., Martin, A., Tapsell, L., Data mining: potential applications in research on nutrition and health. Nutr Diet 74 (2017), 3–10.
    • (2017) Nutr Diet , vol.74 , pp. 3-10
    • Batterham, M.1    Neale, E.2    Martin, A.3    Tapsell, L.4
  • 64
    • 85019711032 scopus 로고    scopus 로고
    • Obesity as a risk factor for developing functional limitation among older adults: a conditional inference tree analysis
    • Cheng, F.W., Gao, X., Bao, L., Mitchell, D.C., Wood, C., Sliwinski, M.J., et al. Obesity as a risk factor for developing functional limitation among older adults: a conditional inference tree analysis. Obesity 25 (2017), 1263–1269.
    • (2017) Obesity , vol.25 , pp. 1263-1269
    • Cheng, F.W.1    Gao, X.2    Bao, L.3    Mitchell, D.C.4    Wood, C.5    Sliwinski, M.J.6
  • 65
    • 85025142784 scopus 로고    scopus 로고
    • Designing predictive models for beta-lactam allergy using the drug allergy and hypersensitivity database
    • Chiriac, A.M., Wang, Y., Schrijvers, R., Bousquet, P.J., Mura, T., Molinari, N., et al. Designing predictive models for beta-lactam allergy using the drug allergy and hypersensitivity database. J Allergy Clin Immunol Pract 6 (2018), 139–148.e2.
    • (2018) J Allergy Clin Immunol Pract , vol.6 , pp. 139-148.e2
    • Chiriac, A.M.1    Wang, Y.2    Schrijvers, R.3    Bousquet, P.J.4    Mura, T.5    Molinari, N.6
  • 66
    • 85008689607 scopus 로고    scopus 로고
    • Normal tissue complication probability (NTCP) modelling of severe acute mucositis using a novel oral mucosal surface organ at risk
    • Dean, J.A., Welsh, L.C., Wong, K.H., Aleksic, A., Dunne, E., Islam, M.R., et al. Normal tissue complication probability (NTCP) modelling of severe acute mucositis using a novel oral mucosal surface organ at risk. Clin Oncol 29 (2017), 263–273.
    • (2017) Clin Oncol , vol.29 , pp. 263-273
    • Dean, J.A.1    Welsh, L.C.2    Wong, K.H.3    Aleksic, A.4    Dunne, E.5    Islam, M.R.6
  • 67
    • 85029593295 scopus 로고    scopus 로고
    • Predicting the risk for hospital-acquired pressure ulcers in critical care patients
    • Deng, X., Predicting the risk for hospital-acquired pressure ulcers in critical care patients. Crit Care Nurse 37 (2017), e1–e11.
    • (2017) Crit Care Nurse , vol.37 , pp. e1-e11
    • Deng, X.1
  • 68
    • 85023610184 scopus 로고    scopus 로고
    • Proposed clinical decision rules to diagnose acute rhinosinusitis among adults in primary care
    • Ebell, M.H., Hansen, J.G., Proposed clinical decision rules to diagnose acute rhinosinusitis among adults in primary care. Ann Fam Med 15 (2017), 347–354.
    • (2017) Ann Fam Med , vol.15 , pp. 347-354
    • Ebell, M.H.1    Hansen, J.G.2
  • 69
    • 85017614364 scopus 로고    scopus 로고
    • Predicting risk for portal vein thrombosis in acute pancreatitis patients: a comparison of radical basis function artificial neural network and logistic regression models
    • Fei, Y., Hu, J., Gao, K., Tu, J., qin, Li W., Wang, W., Predicting risk for portal vein thrombosis in acute pancreatitis patients: a comparison of radical basis function artificial neural network and logistic regression models. J Crit Care 39 (2017), 115–123.
    • (2017) J Crit Care , vol.39 , pp. 115-123
    • Fei, Y.1    Hu, J.2    Gao, K.3    Tu, J.4    qin, L.W.5    Wang, W.6
  • 70
    • 85012981813 scopus 로고    scopus 로고
    • Artificial neural networks predict the incidence of portosplenomesenteric venous thrombosis in patients with acute pancreatitis
    • Fei, Y., Hu, J., Li, W.Q., Wang, W., Zong, G.Q., Artificial neural networks predict the incidence of portosplenomesenteric venous thrombosis in patients with acute pancreatitis. J Thromb Haemost 15 (2017), 439–445.
    • (2017) J Thromb Haemost , vol.15 , pp. 439-445
    • Fei, Y.1    Hu, J.2    Li, W.Q.3    Wang, W.4    Zong, G.Q.5
  • 71
    • 85017639971 scopus 로고    scopus 로고
    • Predicting the incidence of portosplenomesenteric vein thrombosis in patients with acute pancreatitis using classification and regression tree algorithm
    • Fei, Y., Gao, K., Hu, J., Tu, J., qin, Li W., Wang, W., et al. Predicting the incidence of portosplenomesenteric vein thrombosis in patients with acute pancreatitis using classification and regression tree algorithm. J Crit Care 39 (2017), 124–130.
    • (2017) J Crit Care , vol.39 , pp. 124-130
    • Fei, Y.1    Gao, K.2    Hu, J.3    Tu, J.4    qin, L.W.5    Wang, W.6
  • 72
    • 84991511077 scopus 로고    scopus 로고
    • Prediction of incident diabetes in the jackson heart study using high-dimensional machine learning
    • Casanova, R., Saldana, S., Simpson, S.L., Lacy, M.E., Subauste, A.R., Blackshear, C., et al. Prediction of incident diabetes in the jackson heart study using high-dimensional machine learning. PLoS One, 11, 2016, e0163942.
    • (2016) PLoS One , vol.11 , pp. e0163942
    • Casanova, R.1    Saldana, S.2    Simpson, S.L.3    Lacy, M.E.4    Subauste, A.R.5    Blackshear, C.6
  • 73
    • 85017203403 scopus 로고    scopus 로고
    • Prediction of 30-day all-cause readmissions in patients hospitalized for heart failure: comparison of machine learning and other statistical approaches
    • Frizzell, J.D., Liang, L., Schulte, P.J., Yancy, C.W., Heidenreich, P.A., Hernandez, A.F., et al. Prediction of 30-day all-cause readmissions in patients hospitalized for heart failure: comparison of machine learning and other statistical approaches. JAMA Cardiol 2 (2017), 204–209.
    • (2017) JAMA Cardiol , vol.2 , pp. 204-209
    • Frizzell, J.D.1    Liang, L.2    Schulte, P.J.3    Yancy, C.W.4    Heidenreich, P.A.5    Hernandez, A.F.6
  • 74
    • 85018877440 scopus 로고    scopus 로고
    • Classification of suicide attempters in schizophrenia using sociocultural and clinical features: a machine learning approach
    • Hettige, N.C., Nguyen, T.B., Yuan, C., Rajakulendran, T., Baddour, J., Bhagwat, N., et al. Classification of suicide attempters in schizophrenia using sociocultural and clinical features: a machine learning approach. Gen Hosp Psychiatry 47 (2017), 20–28.
    • (2017) Gen Hosp Psychiatry , vol.47 , pp. 20-28
    • Hettige, N.C.1    Nguyen, T.B.2    Yuan, C.3    Rajakulendran, T.4    Baddour, J.5    Bhagwat, N.6
  • 75
    • 85016319299 scopus 로고    scopus 로고
    • Predicting return visits to the emergency department for pediatric patients: applying supervised learning techniques to the Taiwan National Health Insurance Research Database
    • Hu, Y.H., Tai, C.T., Chen, S.C.C., Lee, H.W., Sung, S.F., Predicting return visits to the emergency department for pediatric patients: applying supervised learning techniques to the Taiwan National Health Insurance Research Database. Comput Methods Programs Biomed 144 (2017), 105–112.
    • (2017) Comput Methods Programs Biomed , vol.144 , pp. 105-112
    • Hu, Y.H.1    Tai, C.T.2    Chen, S.C.C.3    Lee, H.W.4    Sung, S.F.5
  • 76
    • 85018469577 scopus 로고    scopus 로고
    • Predictive model for 5-year mortality after breast cancer surgery in Taiwan residents
    • Huang, S.H., Loh, J.K., Tsai, J.T., Houg, M.F., Shi, H.Y., Predictive model for 5-year mortality after breast cancer surgery in Taiwan residents. Chin J Cancer, 36, 2017, 23.
    • (2017) Chin J Cancer , vol.36 , pp. 23
    • Huang, S.H.1    Loh, J.K.2    Tsai, J.T.3    Houg, M.F.4    Shi, H.Y.5
  • 77
    • 85038876307 scopus 로고    scopus 로고
    • Usefulness of a decision tree model for the analysis of adverse drug reactions: evaluation of a risk prediction model of vancomycin-associated nephrotoxicity constructed using a data mining procedure
    • Imai, S., Yamada, T., Kasashi, K., Kobayashi, M., Iseki, K., Usefulness of a decision tree model for the analysis of adverse drug reactions: evaluation of a risk prediction model of vancomycin-associated nephrotoxicity constructed using a data mining procedure. J Eval Clin Pract 23 (2017), 1240–1246.
    • (2017) J Eval Clin Pract , vol.23 , pp. 1240-1246
    • Imai, S.1    Yamada, T.2    Kasashi, K.3    Kobayashi, M.4    Iseki, K.5
  • 78
    • 85021820792 scopus 로고    scopus 로고
    • Developing a practical suicide risk prediction model for targeting high-risk patients in the Veterans health Administration
    • Kessler, R.C., Hwang, I., Hoffmire, C.A., McCarthy, J.F., Petukhova, M.V., Rosellini, A.J., et al. Developing a practical suicide risk prediction model for targeting high-risk patients in the Veterans health Administration. Int J Methods Psychiatr Res, 26, 2017, e1575.
    • (2017) Int J Methods Psychiatr Res , vol.26 , pp. e1575
    • Kessler, R.C.1    Hwang, I.2    Hoffmire, C.A.3    McCarthy, J.F.4    Petukhova, M.V.5    Rosellini, A.J.6
  • 79
    • 85046455671 scopus 로고    scopus 로고
    • Logistic LASSO regression for the diagnosis of breast cancer using clinical demographic data and the BI-RADS lexicon for ultrasonography
    • Kim, S.M., Kim, Y., Jeong, K., Jeong, H., Kim, J., Logistic LASSO regression for the diagnosis of breast cancer using clinical demographic data and the BI-RADS lexicon for ultrasonography. Ultrasonography 37 (2018), 36–42.
    • (2018) Ultrasonography , vol.37 , pp. 36-42
    • Kim, S.M.1    Kim, Y.2    Jeong, K.3    Jeong, H.4    Kim, J.5
  • 80
    • 85019714517 scopus 로고    scopus 로고
    • Predicting congenital heart defects: a comparison of three data mining methods
    • Luo, Y., Li, Z., Guo, H., Cao, H., Song, C., Guo, X., et al. Predicting congenital heart defects: a comparison of three data mining methods. PLoS One, 12, 2017, e0177811.
    • (2017) PLoS One , vol.12 , pp. e0177811
    • Luo, Y.1    Li, Z.2    Guo, H.3    Cao, H.4    Song, C.5    Guo, X.6
  • 81
    • 85018514182 scopus 로고    scopus 로고
    • Development and validation of classifiers and variable subsets for predicting nursing home admission
    • Nuutinen, M., Leskelä R.L., Suojalehto, E., Tirronen, A., Komssi, V., Development and validation of classifiers and variable subsets for predicting nursing home admission. BMC Med Inform Decis Mak, 17, 2017, e0177811.
    • (2017) BMC Med Inform Decis Mak , vol.17 , pp. e0177811
    • Nuutinen, M.1    Leskelä, R.L.2    Suojalehto, E.3    Tirronen, A.4    Komssi, V.5
  • 82
    • 84990030146 scopus 로고    scopus 로고
    • Classification and regression tree analysis of acute-on-chronic hepatitis B liver failure: seeing the forest for the trees
    • Shi, K.Q., Zhou, Y.Y., Yan, H.D., Li, H., Wu, F.L., Xie, Y.Y., et al. Classification and regression tree analysis of acute-on-chronic hepatitis B liver failure: seeing the forest for the trees. J Viral Hepat 24 (2017), 132–140.
    • (2017) J Viral Hepat , vol.24 , pp. 132-140
    • Shi, K.Q.1    Zhou, Y.Y.2    Yan, H.D.3    Li, H.4    Wu, F.L.5    Xie, Y.Y.6
  • 83
    • 84954349720 scopus 로고    scopus 로고
    • Multicenter comparison of machine learning methods and conventional regression for predicting clinical deterioration on the wards
    • Churpek, M.M., Yuen, T.C., Winslow, C., Meltzer, D.O., Kattan, M.W., Edelson, D.P., Multicenter comparison of machine learning methods and conventional regression for predicting clinical deterioration on the wards. Crit Care Med 44 (2016), 368–374.
    • (2016) Crit Care Med , vol.44 , pp. 368-374
    • Churpek, M.M.1    Yuen, T.C.2    Winslow, C.3    Meltzer, D.O.4    Kattan, M.W.5    Edelson, D.P.6
  • 84
    • 85018873789 scopus 로고    scopus 로고
    • Initial assessment of the infant with neonatal cholestasis-Is this biliary atresia?
    • Shneider, B.L., Moore, J., Kerkar, N., Magee, J.C., Ye, W., Karpen, S.J., et al. Initial assessment of the infant with neonatal cholestasis-Is this biliary atresia?. PLoS One, 12, 2017, e0176275.
    • (2017) PLoS One , vol.12 , pp. e0176275
    • Shneider, B.L.1    Moore, J.2    Kerkar, N.3    Magee, J.C.4    Ye, W.5    Karpen, S.J.6
  • 85
    • 85016614806 scopus 로고    scopus 로고
    • Developing a risk stratification tool for audit of outcome after surgery for head and neck squamous cell carcinoma
    • Tighe, D.F., Thomas, A.J., Sassoon, I., Kinsman, R., McGurk, M., Developing a risk stratification tool for audit of outcome after surgery for head and neck squamous cell carcinoma. Head Neck 39 (2017), 1357–1363.
    • (2017) Head Neck , vol.39 , pp. 1357-1363
    • Tighe, D.F.1    Thomas, A.J.2    Sassoon, I.3    Kinsman, R.4    McGurk, M.5
  • 86
    • 85021694998 scopus 로고    scopus 로고
    • Predicting two-year survival versus non-survival after first myocardial infarction using machine learning and Swedish national register data
    • Wallert, J., Tomasoni, M., Madison, G., Held, C., Predicting two-year survival versus non-survival after first myocardial infarction using machine learning and Swedish national register data. BMC Med Inform Decis Mak, 17, 2017, 99.
    • (2017) BMC Med Inform Decis Mak , vol.17 , pp. 99
    • Wallert, J.1    Tomasoni, M.2    Madison, G.3    Held, C.4
  • 87
    • 85016944795 scopus 로고    scopus 로고
    • Can machine-learning improve cardiovascular risk prediction using routine clinical data?
    • Weng, S.F., Reps, J., Kai, J., Garibaldi, J.M., Qureshi, N., Can machine-learning improve cardiovascular risk prediction using routine clinical data?. PLoS One, 12, 2017, e0174944.
    • (2017) PLoS One , vol.12 , pp. e0174944
    • Weng, S.F.1    Reps, J.2    Kai, J.3    Garibaldi, J.M.4    Qureshi, N.5
  • 88
    • 85020190573 scopus 로고    scopus 로고
    • Laboratory parameter-based machine learning model for excluding non-alcoholic fatty liver disease (NAFLD) in the general population
    • Yip, T.C.F., Ma, A.J., Wong, V.W.S., Tse, Y.K., Chan, H.L.Y., Yuen, P.C., et al. Laboratory parameter-based machine learning model for excluding non-alcoholic fatty liver disease (NAFLD) in the general population. Aliment Pharmacol Ther 46 (2017), 447–456.
    • (2017) Aliment Pharmacol Ther , vol.46 , pp. 447-456
    • Yip, T.C.F.1    Ma, A.J.2    Wong, V.W.S.3    Tse, Y.K.4    Chan, H.L.Y.5    Yuen, P.C.6
  • 89
    • 85008482414 scopus 로고    scopus 로고
    • Subgroup identification of early preterm birth (ePTB): informing a future prospective enrichment clinical trial design
    • Zhang, C., Garrard, L., Keighley, J., Carlson, S., Gajewski, B., Subgroup identification of early preterm birth (ePTB): informing a future prospective enrichment clinical trial design. BMC Pregnancy Childbirth, 17, 2017, 18.
    • (2017) BMC Pregnancy Childbirth , vol.17 , pp. 18
    • Zhang, C.1    Garrard, L.2    Keighley, J.3    Carlson, S.4    Gajewski, B.5
  • 90
    • 85016992939 scopus 로고    scopus 로고
    • Exploration of machine learning techniques in predicting multiple sclerosis disease course
    • Zhao, Y., Healy, B.C., Rotstein, D., Guttmann, C.R.G., Bakshi, R., Weiner, H.L., et al. Exploration of machine learning techniques in predicting multiple sclerosis disease course. PLoS One, 12, 2017, e0174866.
    • (2017) PLoS One , vol.12 , pp. e0174866
    • Zhao, Y.1    Healy, B.C.2    Rotstein, D.3    Guttmann, C.R.G.4    Bakshi, R.5    Weiner, H.L.6
  • 91
    • 85015734396 scopus 로고    scopus 로고
    • Comparison of breast cancer risk predictive models and screening strategies for Chinese women
    • Zhao, Y., Xiong, P., McCullough, L.E., Miller, E.E., Li, H., Huang, Y., et al. Comparison of breast cancer risk predictive models and screening strategies for Chinese women. J Womens Health (Larchmt) 26 (2017), 294–302.
    • (2017) J Womens Health (Larchmt) , vol.26 , pp. 294-302
    • Zhao, Y.1    Xiong, P.2    McCullough, L.E.3    Miller, E.E.4    Li, H.5    Huang, Y.6
  • 92
    • 84962288912 scopus 로고    scopus 로고
    • Different medical data mining approaches based prediction of ischemic stroke
    • Arslan, A.K., Colak, C., Sarihan, M.E., Different medical data mining approaches based prediction of ischemic stroke. Comput Methods Programs Biomed 130 (2016), 87–92.
    • (2016) Comput Methods Programs Biomed , vol.130 , pp. 87-92
    • Arslan, A.K.1    Colak, C.2    Sarihan, M.E.3
  • 93
    • 85049587097 scopus 로고    scopus 로고
    • Establishing decision trees for predicting successful postpyloric nasoenteric tube placement in critically ill patients
    • Chen, W., Sun, C., Wei, R., Zhang, Y., Ye, H., Chi, R., et al. Establishing decision trees for predicting successful postpyloric nasoenteric tube placement in critically ill patients. JPEN J Parenter Enteral Nutr 42 (2018), 132–138.
    • (2018) JPEN J Parenter Enteral Nutr , vol.42 , pp. 132-138
    • Chen, W.1    Sun, C.2    Wei, R.3    Zhang, Y.4    Ye, H.5    Chi, R.6
  • 95
    • 85026398611 scopus 로고    scopus 로고
    • Comparison of machine-learning algorithms to build a predictive model for detecting undiagnosed diabetes – ELSA-Brasil: accuracy study
    • Olivera, A.R., Roesler, V., Iochpe, C., Schmidt, M.I., Vigo, A., Barreto, S.M., et al. Comparison of machine-learning algorithms to build a predictive model for detecting undiagnosed diabetes – ELSA-Brasil: accuracy study. Sao Paulo Med J 135 (2017), 234–246.
    • (2017) Sao Paulo Med J , vol.135 , pp. 234-246
    • Olivera, A.R.1    Roesler, V.2    Iochpe, C.3    Schmidt, M.I.4    Vigo, A.5    Barreto, S.M.6
  • 96
    • 84969941031 scopus 로고    scopus 로고
    • Normal tissue complication probability (NTCP) modelling using spatial dose metrics and machine learning methods for severe acute oral mucositis resulting from head and neck radiotherapy
    • Dean, J.A., Wong, K.H., Welsh, L.C., Jones, A.B., Schick, U., Newbold, K.L., et al. Normal tissue complication probability (NTCP) modelling using spatial dose metrics and machine learning methods for severe acute oral mucositis resulting from head and neck radiotherapy. Radiother Oncol 120 (2016), 21–27.
    • (2016) Radiother Oncol , vol.120 , pp. 21-27
    • Dean, J.A.1    Wong, K.H.2    Welsh, L.C.3    Jones, A.B.4    Schick, U.5    Newbold, K.L.6
  • 97
    • 84978077059 scopus 로고    scopus 로고
    • Which melanoma patient carries a BRAF-mutation? A comparison of predictive models
    • Eigentler, T., Assi, Z., Hassel, J.C., Heinzerling, L., Starz, H., Berneburg, M., et al. Which melanoma patient carries a BRAF-mutation? A comparison of predictive models. Oncotarget, 7, 2016, 36130.
    • (2016) Oncotarget , vol.7 , pp. 36130
    • Eigentler, T.1    Assi, Z.2    Hassel, J.C.3    Heinzerling, L.4    Starz, H.5    Berneburg, M.6
  • 98
    • 84891834902 scopus 로고    scopus 로고
    • Graphical assessment of internal and external calibration of logistic regression models by using loess smoothers
    • Austin, P.C., Steyerberg, E.W., Graphical assessment of internal and external calibration of logistic regression models by using loess smoothers. Stat Med 33 (2014), 517–535.
    • (2014) Stat Med , vol.33 , pp. 517-535
    • Austin, P.C.1    Steyerberg, E.W.2
  • 99
    • 0003732572 scopus 로고    scopus 로고
    • Regression modeling strategies
    • Springer New York, NY
    • Harrell, F.E. Jr., Regression modeling strategies. 2015, Springer, New York, NY.
    • (2015)
    • Harrell, F.E.1
  • 101
    • 85044352117 scopus 로고    scopus 로고
    • Calibration of medical diagnostic classifier scores to the probability of disease
    • Chen, W., Sahiner, B., Samuelson, F., Pezeshk, A., Petrick, N., Calibration of medical diagnostic classifier scores to the probability of disease. Stat Methods Med Res 27 (2016), 1394–1409.
    • (2016) Stat Methods Med Res , vol.27 , pp. 1394-1409
    • Chen, W.1    Sahiner, B.2    Samuelson, F.3    Pezeshk, A.4    Petrick, N.5
  • 102
    • 33748991193 scopus 로고    scopus 로고
    • Cost curves: an improved method for visualizing classifier performance
    • Drummond, C., Holte, R.C., Cost curves: an improved method for visualizing classifier performance. Mach Learn 65 (2006), 95–130.
    • (2006) Mach Learn , vol.65 , pp. 95-130
    • Drummond, C.1    Holte, R.C.2
  • 104
    • 84947466043 scopus 로고    scopus 로고
    • Machine learning in medicine
    • Deo, R.C., Machine learning in medicine. Circulation 132 (2015), 1920–1930.
    • (2015) Circulation , vol.132 , pp. 1920-1930
    • Deo, R.C.1
  • 105
    • 84919773193 scopus 로고    scopus 로고
    • Do we need hundreds of classifiers to solve real world classification problems?
    • Fernández-Delgado, M., Cernadas, E., Barro, S., Amorim, D., Do we need hundreds of classifiers to solve real world classification problems?. J Mach Learn Res 15 (2014), 3133–3181.
    • (2014) J Mach Learn Res , vol.15 , pp. 3133-3181
    • Fernández-Delgado, M.1    Cernadas, E.2    Barro, S.3    Amorim, D.4
  • 106
    • 85050138829 scopus 로고    scopus 로고
    • Random forest versus logistic regression: a large-scale benchmark experiment
    • Couronné R., Probst, P., Boulesteix, A.L., Random forest versus logistic regression: a large-scale benchmark experiment. BMC Bioinformatics, 19, 2018, 270.
    • (2018) BMC Bioinformatics , vol.19 , pp. 270
    • Couronné, R.1    Probst, P.2    Boulesteix, A.L.3
  • 107
    • 0032533761 scopus 로고    scopus 로고
    • A comparison of statistical learning methods on the Gusto database
    • Ennis, M., Hinton, G., Naylor, D., Revow, M., Tibshirani, R., A comparison of statistical learning methods on the Gusto database. Stat Med 17 (1998), 2501–2508.
    • (1998) Stat Med , vol.17 , pp. 2501-2508
    • Ennis, M.1    Hinton, G.2    Naylor, D.3    Revow, M.4    Tibshirani, R.5
  • 108
    • 0031235612 scopus 로고    scopus 로고
    • Does machine learning really work?
    • Mitchell, T., Does machine learning really work?. AI Mag, 18, 1997, 11.
    • (1997) AI Mag , vol.18 , pp. 11
    • Mitchell, T.1
  • 109
    • 85039444017 scopus 로고    scopus 로고
    • Poor performance of clinical prediction models: the harm of commonly applied methods
    • Steyerberg, E.W., Uno, H., Ioannidis, J.P.A., Van Calster, B., Poor performance of clinical prediction models: the harm of commonly applied methods. J Clin Epidemiol 98 (2018), 133–143.
    • (2018) J Clin Epidemiol , vol.98 , pp. 133-143
    • Steyerberg, E.W.1    Uno, H.2    Ioannidis, J.P.A.3    Van Calster, B.4
  • 110
    • 84952630340 scopus 로고    scopus 로고
    • Quality of reporting of confounding remained suboptimal after the STROBE guideline
    • Pouwels, K.B., Widyakusuma, N.N., Groenwold, R.H.H., Hak, E., Quality of reporting of confounding remained suboptimal after the STROBE guideline. J Clin Epidemiol 69 (2016), 217–224.
    • (2016) J Clin Epidemiol , vol.69 , pp. 217-224
    • Pouwels, K.B.1    Widyakusuma, N.N.2    Groenwold, R.H.H.3    Hak, E.4
  • 111
    • 85039159313 scopus 로고    scopus 로고
    • Diagnostic accuracy research in glaucoma is still incompletely reported: an application of Standards for Reporting of Diagnostic Accuracy Studies (STARD) 2015
    • Michelessi, M., Lucenteforte, E., Miele, A., Oddone, F., Crescioli, G., Fameli, V., et al. Diagnostic accuracy research in glaucoma is still incompletely reported: an application of Standards for Reporting of Diagnostic Accuracy Studies (STARD) 2015. PLoS One, 12, 2017, e0189716.
    • (2017) PLoS One , vol.12 , pp. e0189716
    • Michelessi, M.1    Lucenteforte, E.2    Miele, A.3    Oddone, F.4    Crescioli, G.5    Fameli, V.6
  • 112
    • 85059060804 scopus 로고    scopus 로고
    • The quality of reporting randomized controlled trials in the dermatology literature in an era where the CONSORT statement is a standard
    • In press
    • Kim, D.Y., Park, H.S., Cho, S., Yoon, H.S., The quality of reporting randomized controlled trials in the dermatology literature in an era where the CONSORT statement is a standard. Br J Dermatol, 2018, 10.1111/bjd.17432 In press.
    • (2018) Br J Dermatol
    • Kim, D.Y.1    Park, H.S.2    Cho, S.3    Yoon, H.S.4
  • 113
    • 84929465279 scopus 로고    scopus 로고
    • Ten simple rules for reducing overoptimistic reporting in methodological computational research
    • Boulesteix, A.L., Ten simple rules for reducing overoptimistic reporting in methodological computational research. PLoS Comput Biol, 11, 2015, e1004191.
    • (2015) PLoS Comput Biol , vol.11 , pp. e1004191
    • Boulesteix, A.L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.