-
1
-
-
67651009834
-
Clinical prediction models
-
Springer New York, NY
-
Steyerberg, E.W., Clinical prediction models. 2009, Springer, New York, NY.
-
(2009)
-
-
Steyerberg, E.W.1
-
2
-
-
0003684449
-
The elements of statistical learning: data mining, inference, and prediction
-
2nd ed. Springer New York, NY
-
Hastie, T., Tibshirani, R., Friedman, J., The elements of statistical learning: data mining, inference, and prediction. 2nd ed., 2009, Springer, New York, NY.
-
(2009)
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
3
-
-
0034922742
-
Machine learning for medical diagnosis: history, state of the art and perspective
-
Kononenko, I., Machine learning for medical diagnosis: history, state of the art and perspective. Artif Intell Med 23 (2001), 89–109.
-
(2001)
Artif Intell Med
, vol.23
, pp. 89-109
-
-
Kononenko, I.1
-
4
-
-
33746901239
-
The use of artificial neural networks in decision support in cancer: a systematic review
-
Lisboa, P.J., Taktak, A.F.G., The use of artificial neural networks in decision support in cancer: a systematic review. Neural Netw 19 (2006), 408–415.
-
(2006)
Neural Netw
, vol.19
, pp. 408-415
-
-
Lisboa, P.J.1
Taktak, A.F.G.2
-
5
-
-
85044927780
-
Big data and machine learning in health care
-
Beam, A.L., Kohane, I.S., Big data and machine learning in health care. JAMA 319 (2018), 1317–1318.
-
(2018)
JAMA
, vol.319
, pp. 1317-1318
-
-
Beam, A.L.1
Kohane, I.S.2
-
6
-
-
85021635595
-
Machine learning and prediction in medicine — beyond the peak of inflated expectations
-
Chen, J.H., Asch, S.M., Machine learning and prediction in medicine — beyond the peak of inflated expectations. N Engl J Med 376 (2017), 2507–2509.
-
(2017)
N Engl J Med
, vol.376
, pp. 2507-2509
-
-
Chen, J.H.1
Asch, S.M.2
-
7
-
-
85021953748
-
Moving beyond regression techniques in cardiovascular risk prediction: applying machine learning to address analytic challenges
-
Goldstein, B.A., Navar, A.M., Carter, R.E., Moving beyond regression techniques in cardiovascular risk prediction: applying machine learning to address analytic challenges. Eur Heart J 38 (2017), 1805–1814.
-
(2017)
Eur Heart J
, vol.38
, pp. 1805-1814
-
-
Goldstein, B.A.1
Navar, A.M.2
Carter, R.E.3
-
8
-
-
0000245743
-
Statistical modeling: the two cultures (with comments and a rejoinder by the author)
-
Breiman, L., Statistical modeling: the two cultures (with comments and a rejoinder by the author). Stat Sci 16 (2001), 199–231.
-
(2001)
Stat Sci
, vol.16
, pp. 199-231
-
-
Breiman, L.1
-
9
-
-
84908330513
-
Critical appraisal and data extraction for systematic reviews of prediction modelling studies: the CHARMS checklist
-
Moons, K.G.M., de Groot, J.A.H., Bouwmeester, W., Vergouwe, Y., Mallett, S., Altman, D.G., et al. Critical appraisal and data extraction for systematic reviews of prediction modelling studies: the CHARMS checklist. PLoS Med, 11, 2014, e1001744.
-
(2014)
PLoS Med
, vol.11
, pp. e1001744
-
-
Moons, K.G.M.1
de Groot, J.A.H.2
Bouwmeester, W.3
Vergouwe, Y.4
Mallett, S.5
Altman, D.G.6
-
10
-
-
0004255908
-
Machine learning
-
McGraw Hill New York, NY
-
Mitchell, T.M., Machine learning. 1997, McGraw Hill, New York, NY.
-
(1997)
-
-
Mitchell, T.M.1
-
11
-
-
84903629415
-
Machine learning versus statistical modeling
-
Boulesteix, A.L., Schmid, M., Machine learning versus statistical modeling. Biom J 56 (2014), 588–593.
-
(2014)
Biom J
, vol.56
, pp. 588-593
-
-
Boulesteix, A.L.1
Schmid, M.2
-
12
-
-
84995917328
-
Learning about machine learning: the promise and pitfalls of big data and the electronic health record
-
Deo, R.C., Nallamothu, B.K., Learning about machine learning: the promise and pitfalls of big data and the electronic health record. Circ Cardiovasc Qual Outcomes 9 (2016), 618–620.
-
(2016)
Circ Cardiovasc Qual Outcomes
, vol.9
, pp. 618-620
-
-
Deo, R.C.1
Nallamothu, B.K.2
-
14
-
-
33745644254
-
Support vector machines versus logistic regression: improving prospective performance in clinical decision-making
-
Pochet, N.L.M.M., Suykens, J.A.K., Support vector machines versus logistic regression: improving prospective performance in clinical decision-making. Ultrasound Obstet Gynecol 27 (2006), 607–608.
-
(2006)
Ultrasound Obstet Gynecol
, vol.27
, pp. 607-608
-
-
Pochet, N.L.M.M.1
Suykens, J.A.K.2
-
15
-
-
85127431078
-
Scalable and accurate deep learning for electronic health records
-
Rajkomar, A., Oren, E., Chen, K., Dai, A.M., Hajaj, N., Liu, P.J., et al. Scalable and accurate deep learning for electronic health records. NPJ Digit Med 1 (2018), 1–10.
-
(2018)
NPJ Digit Med
, vol.1
, pp. 1-10
-
-
Rajkomar, A.1
Oren, E.2
Chen, K.3
Dai, A.M.4
Hajaj, N.5
Liu, P.J.6
-
16
-
-
85008451521
-
Guidelines for developing and reporting machine learning predictive models in biomedical research: a multidisciplinary view
-
Luo, W., Phung, D., Tran, T., Gupta, S., Rana, S., Karmakar, C., et al. Guidelines for developing and reporting machine learning predictive models in biomedical research: a multidisciplinary view. J Med Internet Res, 18, 2016, e323.
-
(2016)
J Med Internet Res
, vol.18
, pp. e323
-
-
Luo, W.1
Phung, D.2
Tran, T.3
Gupta, S.4
Rana, S.5
Karmakar, C.6
-
17
-
-
84923873960
-
Modern modelling techniques are data hungry: a simulation study for predicting dichotomous endpoints
-
van der Ploeg, T., Austin, P.C., Steyerberg, E.W., Modern modelling techniques are data hungry: a simulation study for predicting dichotomous endpoints. BMC Med Res Methodol, 14, 2014, 137.
-
(2014)
BMC Med Res Methodol
, vol.14
, pp. 137
-
-
van der Ploeg, T.1
Austin, P.C.2
Steyerberg, E.W.3
-
18
-
-
84957076656
-
A calibration hierarchy for risk models was defined: from utopia to empirical data
-
Van Calster, B., Nieboer, D., Vergouwe, Y., De Cock, B., Pencina, M.J., Steyerberg, E.W., A calibration hierarchy for risk models was defined: from utopia to empirical data. J Clin Epidemiol 74 (2016), 167–176.
-
(2016)
J Clin Epidemiol
, vol.74
, pp. 167-176
-
-
Van Calster, B.1
Nieboer, D.2
Vergouwe, Y.3
De Cock, B.4
Pencina, M.J.5
Steyerberg, E.W.6
-
19
-
-
84920579212
-
Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement
-
Collins, G.S., Reitsma, J.B., Altman, D.G., Moons, K.G.M., Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. J Clin Epidemiol 68 (2015), 134–143.
-
(2015)
J Clin Epidemiol
, vol.68
, pp. 134-143
-
-
Collins, G.S.1
Reitsma, J.B.2
Altman, D.G.3
Moons, K.G.M.4
-
20
-
-
84876567454
-
A plea for neutral comparison studies in computational sciences
-
Boulesteix, A.L., Lauer, S., Eugster, M.J.A., A plea for neutral comparison studies in computational sciences. PLoS One, 8, 2013, e61562.
-
(2013)
PLoS One
, vol.8
, pp. e61562
-
-
Boulesteix, A.L.1
Lauer, S.2
Eugster, M.J.A.3
-
21
-
-
33745886270
-
Classifier technology and the illusion of progress
-
Hand, D.J., Classifier technology and the illusion of progress. Stat Sci 1 (2006), 1–14.
-
(2006)
Stat Sci
, vol.1
, pp. 1-14
-
-
Hand, D.J.1
-
22
-
-
80054740636
-
QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies
-
Whiting, P.F., Rutjes, A.W.S., Westwood, M.E., Mallett, S., Deeks, J.J., Reitsma, J.B., et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 155 (2011), 529–536.
-
(2011)
Ann Intern Med
, vol.155
, pp. 529-536
-
-
Whiting, P.F.1
Rutjes, A.W.S.2
Westwood, M.E.3
Mallett, S.4
Deeks, J.J.5
Reitsma, J.B.6
-
23
-
-
85050123651
-
Tunability: importance of hyperparameters of machine learning algorithms
-
ArXiv Prepr ArXiv180209596
-
Probst, P., Bischl, B., Boulesteix, A.-L., Tunability: importance of hyperparameters of machine learning algorithms. 2018 ArXiv Prepr ArXiv180209596.
-
(2018)
-
-
Probst, P.1
Bischl, B.2
Boulesteix, A.-L.3
-
24
-
-
84971247476
-
Quantifying the impact of different approaches for handling continuous predictors on the performance of a prognostic model
-
Collins, G.S., Ogundimu, E.O., Cook, J.A., Manach, Y.L., Altman, D.G., Quantifying the impact of different approaches for handling continuous predictors on the performance of a prognostic model. Stat Med 35 (2016), 4124–4135.
-
(2016)
Stat Med
, vol.35
, pp. 4124-4135
-
-
Collins, G.S.1
Ogundimu, E.O.2
Cook, J.A.3
Manach, Y.L.4
Altman, D.G.5
-
25
-
-
0034906866
-
Internal validation of predictive models: efficiency of some procedures for logistic regression analysis
-
Steyerberg, E.W., Harrell, F.E. Jr., Borsboom, G.J.J.M., Eijkemans, M.J.C., Vergouwe, Y., Habbema, J.D.F., Internal validation of predictive models: efficiency of some procedures for logistic regression analysis. J Clin Epidemiol 54 (2001), 774–781.
-
(2001)
J Clin Epidemiol
, vol.54
, pp. 774-781
-
-
Steyerberg, E.W.1
Harrell, F.E.2
Borsboom, G.J.J.M.3
Eijkemans, M.J.C.4
Vergouwe, Y.5
Habbema, J.D.F.6
-
26
-
-
0042986859
-
The statistical evaluation of medical tests for classification and prediction
-
Oxford University Press New York
-
Pepe, M.S., The statistical evaluation of medical tests for classification and prediction. 2003, Oxford University Press, New York.
-
(2003)
-
-
Pepe, M.S.1
-
27
-
-
85041753735
-
Artificial neural networks versus bivariate logistic regression in prediction diagnosis of patients with hypertension and diabetes
-
Adavi, M., Salehi, M., Roudbari, M., Artificial neural networks versus bivariate logistic regression in prediction diagnosis of patients with hypertension and diabetes. Med J Islam Repub Iran 30 (2016), 2–6.
-
(2016)
Med J Islam Repub Iran
, vol.30
, pp. 2-6
-
-
Adavi, M.1
Salehi, M.2
Roudbari, M.3
-
28
-
-
84962869276
-
Electronic health record phenotyping improves detection and screening of type 2 diabetes in the general United States population: a cross-sectional, unselected, retrospective study
-
Anderson, A.E., Kerr, W.T., Thames, A., Li, T., Xiao, J., Cohen, M.S., Electronic health record phenotyping improves detection and screening of type 2 diabetes in the general United States population: a cross-sectional, unselected, retrospective study. J Biomed Inform 60 (2016), 162–168.
-
(2016)
J Biomed Inform
, vol.60
, pp. 162-168
-
-
Anderson, A.E.1
Kerr, W.T.2
Thames, A.3
Li, T.4
Xiao, J.5
Cohen, M.S.6
-
29
-
-
84987673594
-
Predicting ventriculoperitoneal shunt infection in children with hydrocephalus using artificial neural network
-
Habibi, Z., Ertiaei, A., Nikdad, M.S., Mirmohseni, A.S., Afarideh, M., Heidari, V., et al. Predicting ventriculoperitoneal shunt infection in children with hydrocephalus using artificial neural network. Childs Nerv Syst 32 (2016), 2143–2151.
-
(2016)
Childs Nerv Syst
, vol.32
, pp. 2143-2151
-
-
Habibi, Z.1
Ertiaei, A.2
Nikdad, M.S.3
Mirmohseni, A.S.4
Afarideh, M.5
Heidari, V.6
-
30
-
-
84989189598
-
How can machine-learning methods assist in virtual screening for hyperuricemia? A healthcare machine-learning approach
-
Ichikawa, D., Saito, T., Ujita, W., Oyama, H., How can machine-learning methods assist in virtual screening for hyperuricemia? A healthcare machine-learning approach. J Biomed Inform 64 (2016), 20–24.
-
(2016)
J Biomed Inform
, vol.64
, pp. 20-24
-
-
Ichikawa, D.1
Saito, T.2
Ujita, W.3
Oyama, H.4
-
31
-
-
84966330178
-
Comparison of predictive models for the early diagnosis of diabetes
-
Jahani, M., Mahdavi, M., Comparison of predictive models for the early diagnosis of diabetes. Healthc Inform Res 22 (2016), 95–100.
-
(2016)
Healthc Inform Res
, vol.22
, pp. 95-100
-
-
Jahani, M.1
Mahdavi, M.2
-
32
-
-
84953352011
-
Falling in the elderly: do statistical models matter for performance criteria of fall prediction? Results from two large population-based studies
-
Kabeshova, A., Launay, C.P., Gromov, V.A., Fantino, B., Levinoff, E.J., Allali, G., et al. Falling in the elderly: do statistical models matter for performance criteria of fall prediction? Results from two large population-based studies. Eur J Intern Med 27 (2016), 48–56.
-
(2016)
Eur J Intern Med
, vol.27
, pp. 48-56
-
-
Kabeshova, A.1
Launay, C.P.2
Gromov, V.A.3
Fantino, B.4
Levinoff, E.J.5
Allali, G.6
-
33
-
-
85007609237
-
Prediction and detection models for acute kidney injury in hospitalized older adults
-
Kate, R.J., Perez, R.M., Mazumdar, D., Pasupathy, K.S., Nilakantan, V., Prediction and detection models for acute kidney injury in hospitalized older adults. BMC Med Inform Decis Mak, 16, 2016, 39.
-
(2016)
BMC Med Inform Decis Mak
, vol.16
, pp. 39
-
-
Kate, R.J.1
Perez, R.M.2
Mazumdar, D.3
Pasupathy, K.S.4
Nilakantan, V.5
-
34
-
-
84927945803
-
Assessing risk of hospital readmissions for improving medical practice
-
Kulkarni, P., Smith, L.D., Woeltje, K.F., Assessing risk of hospital readmissions for improving medical practice. Health Care Manag Sci 19 (2016), 291–299.
-
(2016)
Health Care Manag Sci
, vol.19
, pp. 291-299
-
-
Kulkarni, P.1
Smith, L.D.2
Woeltje, K.F.3
-
35
-
-
84975801338
-
Applying machine learning techniques to the identification of late-onset hypogonadism in elderly men
-
Lu, T., Hu, Y.H., Tsai, C.F., Liu, S.P., Chen, P.L., Applying machine learning techniques to the identification of late-onset hypogonadism in elderly men. Springerplus, 5, 2016, 729.
-
(2016)
Springerplus
, vol.5
, pp. 729
-
-
Lu, T.1
Hu, Y.H.2
Tsai, C.F.3
Liu, S.P.4
Chen, P.L.5
-
36
-
-
84978639760
-
Analyzing 30-day readmission rate for heart failure using different predictive models
-
Mahajan, S., Burman, P., Hogarth, M., Analyzing 30-day readmission rate for heart failure using different predictive models. Stud Health Technol Inform 225 (2016), 143–147.
-
(2016)
Stud Health Technol Inform
, vol.225
, pp. 143-147
-
-
Mahajan, S.1
Burman, P.2
Hogarth, M.3
-
37
-
-
84975853324
-
Non-invasive detection of fasting blood glucose level via electrochemical measurement of saliva
-
Malik, S., Khadgawat, R., Anand, S., Gupta, S., Non-invasive detection of fasting blood glucose level via electrochemical measurement of saliva. Springerplus, 5, 2016, 701.
-
(2016)
Springerplus
, vol.5
, pp. 701
-
-
Malik, S.1
Khadgawat, R.2
Anand, S.3
Gupta, S.4
-
38
-
-
84964643061
-
Prediction of lumbar disc herniation patients’ satisfaction with the aid of an artificial neural network
-
Matis, G.K., Chrysou, O.I., Silva, D., Karanikas, M.A., Baltsavias, G., Lyratzopoulos, N., et al. Prediction of lumbar disc herniation patients’ satisfaction with the aid of an artificial neural network. Turk Neurosurg 26 (2016), 253–259.
-
(2016)
Turk Neurosurg
, vol.26
, pp. 253-259
-
-
Matis, G.K.1
Chrysou, O.I.2
Silva, D.3
Karanikas, M.A.4
Baltsavias, G.5
Lyratzopoulos, N.6
-
39
-
-
85002836371
-
Developing artificial neural network models to predict functioning one year after traumatic spinal cord injury
-
Belliveau, T., Jette, A.M., Seetharama, S., Axt, J., Rosenblum, D., Larose, D., et al. Developing artificial neural network models to predict functioning one year after traumatic spinal cord injury. Arch Phys Med Rehabil 97 (2016), 1663–1668.e3.
-
(2016)
Arch Phys Med Rehabil
, vol.97
, pp. 1663-1668.e3
-
-
Belliveau, T.1
Jette, A.M.2
Seetharama, S.3
Axt, J.4
Rosenblum, D.5
Larose, D.6
-
40
-
-
84995938203
-
Analysis of machine learning techniques for heart failure readmissions
-
Mortazavi, B.J., Downing, N.S., Bucholz, E.M., Dharmarajan, K., Manhapra, A., Li, S.X., et al. Analysis of machine learning techniques for heart failure readmissions. Circ Cardiovasc Qual Outcomes 9 (2016), 629–640.
-
(2016)
Circ Cardiovasc Qual Outcomes
, vol.9
, pp. 629-640
-
-
Mortazavi, B.J.1
Downing, N.S.2
Bucholz, E.M.3
Dharmarajan, K.4
Manhapra, A.5
Li, S.X.6
-
41
-
-
84978720926
-
Accuracy and calibration of computational approaches for inpatient mortality predictive modeling
-
Nakas, C.T., Schütz, N., Werners, M., Leichtle, A.B.L., Accuracy and calibration of computational approaches for inpatient mortality predictive modeling. PLoS One, 11, 2016, e0159046.
-
(2016)
PLoS One
, vol.11
, pp. e0159046
-
-
Nakas, C.T.1
Schütz, N.2
Werners, M.3
Leichtle, A.B.L.4
-
42
-
-
84978785873
-
Predicting occurrence of spine surgery complications using big data modeling of an administrative claims database
-
Ratliff, J.K., Balise, R., Veeravagu, A., Cole, T.S., Cheng, I., Olshen, R.A., et al. Predicting occurrence of spine surgery complications using big data modeling of an administrative claims database. J Bone Joint Surg Am 98 (2016), 824–834.
-
(2016)
J Bone Joint Surg Am
, vol.98
, pp. 824-834
-
-
Ratliff, J.K.1
Balise, R.2
Veeravagu, A.3
Cole, T.S.4
Cheng, I.5
Olshen, R.A.6
-
43
-
-
84958900180
-
Development of a web-based liver cancer prediction model for type II diabetes patients by using an artificial neural network
-
Rau, H.H., Hsu, C.Y., Lin, Y.A., Atique, S., Fuad, A., Wei, L.M., et al. Development of a web-based liver cancer prediction model for type II diabetes patients by using an artificial neural network. Comput Methods Programs Biomed 125 (2016), 58–65.
-
(2016)
Comput Methods Programs Biomed
, vol.125
, pp. 58-65
-
-
Rau, H.H.1
Hsu, C.Y.2
Lin, Y.A.3
Atique, S.4
Fuad, A.5
Wei, L.M.6
-
44
-
-
84971612092
-
The use of machine learning for the identification of peripheral artery disease and future mortality risk
-
Ross, E.G., Shah, N.H., Dalman, R.L., Nead, K.T., Cooke, J.P., Leeper, N.J., The use of machine learning for the identification of peripheral artery disease and future mortality risk. J Vasc Surg 64 (2016), 1515–1522.e3.
-
(2016)
J Vasc Surg
, vol.64
, pp. 1515-1522.e3
-
-
Ross, E.G.1
Shah, N.H.2
Dalman, R.L.3
Nead, K.T.4
Cooke, J.P.5
Leeper, N.J.6
-
45
-
-
84960335394
-
Prediction of in-hospital mortality in emergency department patients with sepsis: a local big data-driven, machine learning approach
-
Taylor, R.A., Pare, J.R., Venkatesh, A.K., Mowafi, H., Melnick, E.R., Fleischman, W., et al. Prediction of in-hospital mortality in emergency department patients with sepsis: a local big data-driven, machine learning approach. Acad Emerg Med 23 (2016), 269–278.
-
(2016)
Acad Emerg Med
, vol.23
, pp. 269-278
-
-
Taylor, R.A.1
Pare, J.R.2
Venkatesh, A.K.3
Mowafi, H.4
Melnick, E.R.5
Fleischman, W.6
-
46
-
-
84973111641
-
Application of machine learning techniques to high-dimensional clinical data to forecast postoperative complications
-
Thottakkara, P., Ozrazgat-Baslanti, T., Hupf, B.B., Rashidi, P., Pardalos, P., Momcilovic, P., et al. Application of machine learning techniques to high-dimensional clinical data to forecast postoperative complications. PLoS One, 11, 2016, e0155705.
-
(2016)
PLoS One
, vol.11
, pp. e0155705
-
-
Thottakkara, P.1
Ozrazgat-Baslanti, T.2
Hupf, B.B.3
Rashidi, P.4
Pardalos, P.5
Momcilovic, P.6
-
47
-
-
84959335948
-
Comparison of predictive modeling approaches for 30-day all-cause non-elective readmission risk
-
Tong, L., Erdmann, C., Daldalian, M., Li, J., Esposito, T., Comparison of predictive modeling approaches for 30-day all-cause non-elective readmission risk. BMC Med Res Methodol, 16, 2016, 26.
-
(2016)
BMC Med Res Methodol
, vol.16
, pp. 26
-
-
Tong, L.1
Erdmann, C.2
Daldalian, M.3
Li, J.4
Esposito, T.5
-
48
-
-
84963545841
-
Modern modeling techniques had limited external validity in predicting mortality from traumatic brain injury
-
van der Ploeg, T., Nieboer, D., Steyerberg, E.W., Modern modeling techniques had limited external validity in predicting mortality from traumatic brain injury. J Clin Epidemiol 78 (2016), 83–89.
-
(2016)
J Clin Epidemiol
, vol.78
, pp. 83-89
-
-
van der Ploeg, T.1
Nieboer, D.2
Steyerberg, E.W.3
-
49
-
-
84977658343
-
Cancers screening in an asymptomatic population by using multiple tumour markers
-
Wang, H.Y., Hsieh, C.H., Wen, C.N., Wen, Y.H., Chen, C.H., Lu, J.J., Cancers screening in an asymptomatic population by using multiple tumour markers. PLoS One, 11, 2016, e0158285.
-
(2016)
PLoS One
, vol.11
, pp. e0158285
-
-
Wang, H.Y.1
Hsieh, C.H.2
Wen, C.N.3
Wen, Y.H.4
Chen, C.H.5
Lu, J.J.6
-
50
-
-
84983783245
-
Comparing models for quantitative risk assessment: an application to the European Registry of foreign body injuries in children
-
Berchialla, P., Scarinzi, C., Snidero, S., Gregori, D., Lawson, A.B., Lee, D., et al. Comparing models for quantitative risk assessment: an application to the European Registry of foreign body injuries in children. Stat Methods Med Res 25 (2016), 1244–1259.
-
(2016)
Stat Methods Med Res
, vol.25
, pp. 1244-1259
-
-
Berchialla, P.1
Scarinzi, C.2
Snidero, S.3
Gregori, D.4
Lawson, A.B.5
Lee, D.6
-
51
-
-
84962920890
-
Exploiting machine learning for predicting skeletal-related events in cancer patients with bone metastases
-
Wang, Z., Wen, X., Lu, Y., Yao, Y., Zhao, H., Exploiting machine learning for predicting skeletal-related events in cancer patients with bone metastases. Oncotarget 7 (2016), 12612–12622.
-
(2016)
Oncotarget
, vol.7
, pp. 12612-12622
-
-
Wang, Z.1
Wen, X.2
Lu, Y.3
Yao, Y.4
Zhao, H.5
-
52
-
-
84973390708
-
Predicting postoperative vomiting among orthopedic patients receiving patient-controlled epidural analgesia using SVM and LR
-
Wu, H.Y., Gong, C.S.A., Lin, S.P., Chang, K.Y., Tsou, M.Y., Ting, C.K., Predicting postoperative vomiting among orthopedic patients receiving patient-controlled epidural analgesia using SVM and LR. Sci Rep 6 (2016), 1–7.
-
(2016)
Sci Rep
, vol.6
, pp. 1-7
-
-
Wu, H.Y.1
Gong, C.S.A.2
Lin, S.P.3
Chang, K.Y.4
Tsou, M.Y.5
Ting, C.K.6
-
53
-
-
84964329141
-
Statistical-learning strategies generate only modestly performing predictive models for urinary symptoms following external beam radiotherapy of the prostate: a comparison of conventional and machine-learning methods
-
Yahya, N., Ebert, M.A., Bulsara, M., House, M.J., Kennedy, A., Joseph, D.J., et al. Statistical-learning strategies generate only modestly performing predictive models for urinary symptoms following external beam radiotherapy of the prostate: a comparison of conventional and machine-learning methods. Med Phys, 43, 2016, 2040.
-
(2016)
Med Phys
, vol.43
, pp. 2040
-
-
Yahya, N.1
Ebert, M.A.2
Bulsara, M.3
House, M.J.4
Kennedy, A.5
Joseph, D.J.6
-
54
-
-
84999041068
-
An imaging-based approach predicts clinical outcomes in prostate cancer through a novel support vector machine classification
-
Zhang, Y.-D., Wang, J., Wu, C.-J., Bao, M.-L., Li, H., Wang, X.-N., et al. An imaging-based approach predicts clinical outcomes in prostate cancer through a novel support vector machine classification. Oncotarget, 7, 2016, 78140.
-
(2016)
Oncotarget
, vol.7
, pp. 78140
-
-
Zhang, Y.-D.1
Wang, J.2
Wu, C.-J.3
Bao, M.-L.4
Li, H.5
Wang, X.-N.6
-
55
-
-
84965017496
-
Predicting distant failure in early stage NSCLC treated with SBRT using clinical parameters Predicting distant failure in lung SBRT
-
Zhou, Z., Folkert, M., Cannon, N., Iyengar, P., Westover, K., Zhang, Y., et al. Predicting distant failure in early stage NSCLC treated with SBRT using clinical parameters Predicting distant failure in lung SBRT. Radiother Oncol 119 (2016), 501–504.
-
(2016)
Radiother Oncol
, vol.119
, pp. 501-504
-
-
Zhou, Z.1
Folkert, M.2
Cannon, N.3
Iyengar, P.4
Westover, K.5
Zhang, Y.6
-
56
-
-
85017207083
-
Use of a machine learning framework to predict substance use disorder treatment success
-
Acion, L., Kelmansky, D., Van der Laan, M., Sahker, E., Jones, D.S., Arndt, S., Use of a machine learning framework to predict substance use disorder treatment success. PLoS One, 12, 2017, e0175383.
-
(2017)
PLoS One
, vol.12
, pp. e0175383
-
-
Acion, L.1
Kelmansky, D.2
Van der Laan, M.3
Sahker, E.4
Jones, D.S.5
Arndt, S.6
-
57
-
-
85025430136
-
Predicting diabetes mellitus using SMOTE and ensemble machine learning approach: the Henry Ford ExercIse Testing (FIT) project
-
Alghamdi, M., Al-Mallah, M., Keteyian, S., Brawner, C., Ehrman, J., Sakr, S., Predicting diabetes mellitus using SMOTE and ensemble machine learning approach: the Henry Ford ExercIse Testing (FIT) project. PLoS One, 12, 2017, e0179805.
-
(2017)
PLoS One
, vol.12
, pp. e0179805
-
-
Alghamdi, M.1
Al-Mallah, M.2
Keteyian, S.3
Brawner, C.4
Ehrman, J.5
Sakr, S.6
-
58
-
-
85009893949
-
A comparison of a machine learning model with EuroSCORE II in predicting mortality after elective cardiac surgery: a decision curve analysis
-
Allyn, J., Allou, N., Augustin, P., Philip, I., Martinet, O., Belghiti, M., et al. A comparison of a machine learning model with EuroSCORE II in predicting mortality after elective cardiac surgery: a decision curve analysis. PLoS One, 12, 2017, e0169772.
-
(2017)
PLoS One
, vol.12
, pp. e0169772
-
-
Allyn, J.1
Allou, N.2
Augustin, P.3
Philip, I.4
Martinet, O.5
Belghiti, M.6
-
59
-
-
85021342247
-
Prevalence and determinants of preterm birth in Tehran, Iran: a comparison between logistic regression and decision tree methods
-
Amini, P., Maroufizadeh, S., Samani, R.O., Hamidi, O., Sepidarkish, M., Prevalence and determinants of preterm birth in Tehran, Iran: a comparison between logistic regression and decision tree methods. Osong Public Health Res Perspect 8 (2017), 195–200.
-
(2017)
Osong Public Health Res Perspect
, vol.8
, pp. 195-200
-
-
Amini, P.1
Maroufizadeh, S.2
Samani, R.O.3
Hamidi, O.4
Sepidarkish, M.5
-
60
-
-
85002156915
-
Validating the usefulness of the “random forests” classifier to diagnose early glaucoma with optical coherence tomography
-
Asaoka, R., Hirasawa, K., Iwase, A., Fujino, Y., Murata, H., Shoji, N., et al. Validating the usefulness of the “random forests” classifier to diagnose early glaucoma with optical coherence tomography. Am J Ophthalmol 174 (2017), 95–103.
-
(2017)
Am J Ophthalmol
, vol.174
, pp. 95-103
-
-
Asaoka, R.1
Hirasawa, K.2
Iwase, A.3
Fujino, Y.4
Murata, H.5
Shoji, N.6
-
61
-
-
84956503197
-
Diagnosis of acute coronary syndrome with a support vector machine
-
Berikol, G.B., Yildiz, O., Özcan, T., Diagnosis of acute coronary syndrome with a support vector machine. J Med Syst, 40, 2016, 84.
-
(2016)
J Med Syst
, vol.40
, pp. 84
-
-
Berikol, G.B.1
Yildiz, O.2
Özcan, T.3
-
62
-
-
85010977146
-
Data mining: potential applications in research on nutrition and health
-
Batterham, M., Neale, E., Martin, A., Tapsell, L., Data mining: potential applications in research on nutrition and health. Nutr Diet 74 (2017), 3–10.
-
(2017)
Nutr Diet
, vol.74
, pp. 3-10
-
-
Batterham, M.1
Neale, E.2
Martin, A.3
Tapsell, L.4
-
63
-
-
85012294483
-
Using data mining to predict success in a weight loss trial
-
Batterham, M., Tapsell, L., Charlton, K., O'Shea, J., Thorne, R., Using data mining to predict success in a weight loss trial. J Hum Nutr Diet 30 (2017), 471–478.
-
(2017)
J Hum Nutr Diet
, vol.30
, pp. 471-478
-
-
Batterham, M.1
Tapsell, L.2
Charlton, K.3
O'Shea, J.4
Thorne, R.5
-
64
-
-
85019711032
-
Obesity as a risk factor for developing functional limitation among older adults: a conditional inference tree analysis
-
Cheng, F.W., Gao, X., Bao, L., Mitchell, D.C., Wood, C., Sliwinski, M.J., et al. Obesity as a risk factor for developing functional limitation among older adults: a conditional inference tree analysis. Obesity 25 (2017), 1263–1269.
-
(2017)
Obesity
, vol.25
, pp. 1263-1269
-
-
Cheng, F.W.1
Gao, X.2
Bao, L.3
Mitchell, D.C.4
Wood, C.5
Sliwinski, M.J.6
-
65
-
-
85025142784
-
Designing predictive models for beta-lactam allergy using the drug allergy and hypersensitivity database
-
Chiriac, A.M., Wang, Y., Schrijvers, R., Bousquet, P.J., Mura, T., Molinari, N., et al. Designing predictive models for beta-lactam allergy using the drug allergy and hypersensitivity database. J Allergy Clin Immunol Pract 6 (2018), 139–148.e2.
-
(2018)
J Allergy Clin Immunol Pract
, vol.6
, pp. 139-148.e2
-
-
Chiriac, A.M.1
Wang, Y.2
Schrijvers, R.3
Bousquet, P.J.4
Mura, T.5
Molinari, N.6
-
66
-
-
85008689607
-
Normal tissue complication probability (NTCP) modelling of severe acute mucositis using a novel oral mucosal surface organ at risk
-
Dean, J.A., Welsh, L.C., Wong, K.H., Aleksic, A., Dunne, E., Islam, M.R., et al. Normal tissue complication probability (NTCP) modelling of severe acute mucositis using a novel oral mucosal surface organ at risk. Clin Oncol 29 (2017), 263–273.
-
(2017)
Clin Oncol
, vol.29
, pp. 263-273
-
-
Dean, J.A.1
Welsh, L.C.2
Wong, K.H.3
Aleksic, A.4
Dunne, E.5
Islam, M.R.6
-
67
-
-
85029593295
-
Predicting the risk for hospital-acquired pressure ulcers in critical care patients
-
Deng, X., Predicting the risk for hospital-acquired pressure ulcers in critical care patients. Crit Care Nurse 37 (2017), e1–e11.
-
(2017)
Crit Care Nurse
, vol.37
, pp. e1-e11
-
-
Deng, X.1
-
68
-
-
85023610184
-
Proposed clinical decision rules to diagnose acute rhinosinusitis among adults in primary care
-
Ebell, M.H., Hansen, J.G., Proposed clinical decision rules to diagnose acute rhinosinusitis among adults in primary care. Ann Fam Med 15 (2017), 347–354.
-
(2017)
Ann Fam Med
, vol.15
, pp. 347-354
-
-
Ebell, M.H.1
Hansen, J.G.2
-
69
-
-
85017614364
-
Predicting risk for portal vein thrombosis in acute pancreatitis patients: a comparison of radical basis function artificial neural network and logistic regression models
-
Fei, Y., Hu, J., Gao, K., Tu, J., qin, Li W., Wang, W., Predicting risk for portal vein thrombosis in acute pancreatitis patients: a comparison of radical basis function artificial neural network and logistic regression models. J Crit Care 39 (2017), 115–123.
-
(2017)
J Crit Care
, vol.39
, pp. 115-123
-
-
Fei, Y.1
Hu, J.2
Gao, K.3
Tu, J.4
qin, L.W.5
Wang, W.6
-
70
-
-
85012981813
-
Artificial neural networks predict the incidence of portosplenomesenteric venous thrombosis in patients with acute pancreatitis
-
Fei, Y., Hu, J., Li, W.Q., Wang, W., Zong, G.Q., Artificial neural networks predict the incidence of portosplenomesenteric venous thrombosis in patients with acute pancreatitis. J Thromb Haemost 15 (2017), 439–445.
-
(2017)
J Thromb Haemost
, vol.15
, pp. 439-445
-
-
Fei, Y.1
Hu, J.2
Li, W.Q.3
Wang, W.4
Zong, G.Q.5
-
71
-
-
85017639971
-
Predicting the incidence of portosplenomesenteric vein thrombosis in patients with acute pancreatitis using classification and regression tree algorithm
-
Fei, Y., Gao, K., Hu, J., Tu, J., qin, Li W., Wang, W., et al. Predicting the incidence of portosplenomesenteric vein thrombosis in patients with acute pancreatitis using classification and regression tree algorithm. J Crit Care 39 (2017), 124–130.
-
(2017)
J Crit Care
, vol.39
, pp. 124-130
-
-
Fei, Y.1
Gao, K.2
Hu, J.3
Tu, J.4
qin, L.W.5
Wang, W.6
-
72
-
-
84991511077
-
Prediction of incident diabetes in the jackson heart study using high-dimensional machine learning
-
Casanova, R., Saldana, S., Simpson, S.L., Lacy, M.E., Subauste, A.R., Blackshear, C., et al. Prediction of incident diabetes in the jackson heart study using high-dimensional machine learning. PLoS One, 11, 2016, e0163942.
-
(2016)
PLoS One
, vol.11
, pp. e0163942
-
-
Casanova, R.1
Saldana, S.2
Simpson, S.L.3
Lacy, M.E.4
Subauste, A.R.5
Blackshear, C.6
-
73
-
-
85017203403
-
Prediction of 30-day all-cause readmissions in patients hospitalized for heart failure: comparison of machine learning and other statistical approaches
-
Frizzell, J.D., Liang, L., Schulte, P.J., Yancy, C.W., Heidenreich, P.A., Hernandez, A.F., et al. Prediction of 30-day all-cause readmissions in patients hospitalized for heart failure: comparison of machine learning and other statistical approaches. JAMA Cardiol 2 (2017), 204–209.
-
(2017)
JAMA Cardiol
, vol.2
, pp. 204-209
-
-
Frizzell, J.D.1
Liang, L.2
Schulte, P.J.3
Yancy, C.W.4
Heidenreich, P.A.5
Hernandez, A.F.6
-
74
-
-
85018877440
-
Classification of suicide attempters in schizophrenia using sociocultural and clinical features: a machine learning approach
-
Hettige, N.C., Nguyen, T.B., Yuan, C., Rajakulendran, T., Baddour, J., Bhagwat, N., et al. Classification of suicide attempters in schizophrenia using sociocultural and clinical features: a machine learning approach. Gen Hosp Psychiatry 47 (2017), 20–28.
-
(2017)
Gen Hosp Psychiatry
, vol.47
, pp. 20-28
-
-
Hettige, N.C.1
Nguyen, T.B.2
Yuan, C.3
Rajakulendran, T.4
Baddour, J.5
Bhagwat, N.6
-
75
-
-
85016319299
-
Predicting return visits to the emergency department for pediatric patients: applying supervised learning techniques to the Taiwan National Health Insurance Research Database
-
Hu, Y.H., Tai, C.T., Chen, S.C.C., Lee, H.W., Sung, S.F., Predicting return visits to the emergency department for pediatric patients: applying supervised learning techniques to the Taiwan National Health Insurance Research Database. Comput Methods Programs Biomed 144 (2017), 105–112.
-
(2017)
Comput Methods Programs Biomed
, vol.144
, pp. 105-112
-
-
Hu, Y.H.1
Tai, C.T.2
Chen, S.C.C.3
Lee, H.W.4
Sung, S.F.5
-
76
-
-
85018469577
-
Predictive model for 5-year mortality after breast cancer surgery in Taiwan residents
-
Huang, S.H., Loh, J.K., Tsai, J.T., Houg, M.F., Shi, H.Y., Predictive model for 5-year mortality after breast cancer surgery in Taiwan residents. Chin J Cancer, 36, 2017, 23.
-
(2017)
Chin J Cancer
, vol.36
, pp. 23
-
-
Huang, S.H.1
Loh, J.K.2
Tsai, J.T.3
Houg, M.F.4
Shi, H.Y.5
-
77
-
-
85038876307
-
Usefulness of a decision tree model for the analysis of adverse drug reactions: evaluation of a risk prediction model of vancomycin-associated nephrotoxicity constructed using a data mining procedure
-
Imai, S., Yamada, T., Kasashi, K., Kobayashi, M., Iseki, K., Usefulness of a decision tree model for the analysis of adverse drug reactions: evaluation of a risk prediction model of vancomycin-associated nephrotoxicity constructed using a data mining procedure. J Eval Clin Pract 23 (2017), 1240–1246.
-
(2017)
J Eval Clin Pract
, vol.23
, pp. 1240-1246
-
-
Imai, S.1
Yamada, T.2
Kasashi, K.3
Kobayashi, M.4
Iseki, K.5
-
78
-
-
85021820792
-
Developing a practical suicide risk prediction model for targeting high-risk patients in the Veterans health Administration
-
Kessler, R.C., Hwang, I., Hoffmire, C.A., McCarthy, J.F., Petukhova, M.V., Rosellini, A.J., et al. Developing a practical suicide risk prediction model for targeting high-risk patients in the Veterans health Administration. Int J Methods Psychiatr Res, 26, 2017, e1575.
-
(2017)
Int J Methods Psychiatr Res
, vol.26
, pp. e1575
-
-
Kessler, R.C.1
Hwang, I.2
Hoffmire, C.A.3
McCarthy, J.F.4
Petukhova, M.V.5
Rosellini, A.J.6
-
79
-
-
85046455671
-
Logistic LASSO regression for the diagnosis of breast cancer using clinical demographic data and the BI-RADS lexicon for ultrasonography
-
Kim, S.M., Kim, Y., Jeong, K., Jeong, H., Kim, J., Logistic LASSO regression for the diagnosis of breast cancer using clinical demographic data and the BI-RADS lexicon for ultrasonography. Ultrasonography 37 (2018), 36–42.
-
(2018)
Ultrasonography
, vol.37
, pp. 36-42
-
-
Kim, S.M.1
Kim, Y.2
Jeong, K.3
Jeong, H.4
Kim, J.5
-
80
-
-
85019714517
-
Predicting congenital heart defects: a comparison of three data mining methods
-
Luo, Y., Li, Z., Guo, H., Cao, H., Song, C., Guo, X., et al. Predicting congenital heart defects: a comparison of three data mining methods. PLoS One, 12, 2017, e0177811.
-
(2017)
PLoS One
, vol.12
, pp. e0177811
-
-
Luo, Y.1
Li, Z.2
Guo, H.3
Cao, H.4
Song, C.5
Guo, X.6
-
81
-
-
85018514182
-
Development and validation of classifiers and variable subsets for predicting nursing home admission
-
Nuutinen, M., Leskelä R.L., Suojalehto, E., Tirronen, A., Komssi, V., Development and validation of classifiers and variable subsets for predicting nursing home admission. BMC Med Inform Decis Mak, 17, 2017, e0177811.
-
(2017)
BMC Med Inform Decis Mak
, vol.17
, pp. e0177811
-
-
Nuutinen, M.1
Leskelä, R.L.2
Suojalehto, E.3
Tirronen, A.4
Komssi, V.5
-
82
-
-
84990030146
-
Classification and regression tree analysis of acute-on-chronic hepatitis B liver failure: seeing the forest for the trees
-
Shi, K.Q., Zhou, Y.Y., Yan, H.D., Li, H., Wu, F.L., Xie, Y.Y., et al. Classification and regression tree analysis of acute-on-chronic hepatitis B liver failure: seeing the forest for the trees. J Viral Hepat 24 (2017), 132–140.
-
(2017)
J Viral Hepat
, vol.24
, pp. 132-140
-
-
Shi, K.Q.1
Zhou, Y.Y.2
Yan, H.D.3
Li, H.4
Wu, F.L.5
Xie, Y.Y.6
-
83
-
-
84954349720
-
Multicenter comparison of machine learning methods and conventional regression for predicting clinical deterioration on the wards
-
Churpek, M.M., Yuen, T.C., Winslow, C., Meltzer, D.O., Kattan, M.W., Edelson, D.P., Multicenter comparison of machine learning methods and conventional regression for predicting clinical deterioration on the wards. Crit Care Med 44 (2016), 368–374.
-
(2016)
Crit Care Med
, vol.44
, pp. 368-374
-
-
Churpek, M.M.1
Yuen, T.C.2
Winslow, C.3
Meltzer, D.O.4
Kattan, M.W.5
Edelson, D.P.6
-
84
-
-
85018873789
-
Initial assessment of the infant with neonatal cholestasis-Is this biliary atresia?
-
Shneider, B.L., Moore, J., Kerkar, N., Magee, J.C., Ye, W., Karpen, S.J., et al. Initial assessment of the infant with neonatal cholestasis-Is this biliary atresia?. PLoS One, 12, 2017, e0176275.
-
(2017)
PLoS One
, vol.12
, pp. e0176275
-
-
Shneider, B.L.1
Moore, J.2
Kerkar, N.3
Magee, J.C.4
Ye, W.5
Karpen, S.J.6
-
85
-
-
85016614806
-
Developing a risk stratification tool for audit of outcome after surgery for head and neck squamous cell carcinoma
-
Tighe, D.F., Thomas, A.J., Sassoon, I., Kinsman, R., McGurk, M., Developing a risk stratification tool for audit of outcome after surgery for head and neck squamous cell carcinoma. Head Neck 39 (2017), 1357–1363.
-
(2017)
Head Neck
, vol.39
, pp. 1357-1363
-
-
Tighe, D.F.1
Thomas, A.J.2
Sassoon, I.3
Kinsman, R.4
McGurk, M.5
-
86
-
-
85021694998
-
Predicting two-year survival versus non-survival after first myocardial infarction using machine learning and Swedish national register data
-
Wallert, J., Tomasoni, M., Madison, G., Held, C., Predicting two-year survival versus non-survival after first myocardial infarction using machine learning and Swedish national register data. BMC Med Inform Decis Mak, 17, 2017, 99.
-
(2017)
BMC Med Inform Decis Mak
, vol.17
, pp. 99
-
-
Wallert, J.1
Tomasoni, M.2
Madison, G.3
Held, C.4
-
87
-
-
85016944795
-
Can machine-learning improve cardiovascular risk prediction using routine clinical data?
-
Weng, S.F., Reps, J., Kai, J., Garibaldi, J.M., Qureshi, N., Can machine-learning improve cardiovascular risk prediction using routine clinical data?. PLoS One, 12, 2017, e0174944.
-
(2017)
PLoS One
, vol.12
, pp. e0174944
-
-
Weng, S.F.1
Reps, J.2
Kai, J.3
Garibaldi, J.M.4
Qureshi, N.5
-
88
-
-
85020190573
-
Laboratory parameter-based machine learning model for excluding non-alcoholic fatty liver disease (NAFLD) in the general population
-
Yip, T.C.F., Ma, A.J., Wong, V.W.S., Tse, Y.K., Chan, H.L.Y., Yuen, P.C., et al. Laboratory parameter-based machine learning model for excluding non-alcoholic fatty liver disease (NAFLD) in the general population. Aliment Pharmacol Ther 46 (2017), 447–456.
-
(2017)
Aliment Pharmacol Ther
, vol.46
, pp. 447-456
-
-
Yip, T.C.F.1
Ma, A.J.2
Wong, V.W.S.3
Tse, Y.K.4
Chan, H.L.Y.5
Yuen, P.C.6
-
89
-
-
85008482414
-
Subgroup identification of early preterm birth (ePTB): informing a future prospective enrichment clinical trial design
-
Zhang, C., Garrard, L., Keighley, J., Carlson, S., Gajewski, B., Subgroup identification of early preterm birth (ePTB): informing a future prospective enrichment clinical trial design. BMC Pregnancy Childbirth, 17, 2017, 18.
-
(2017)
BMC Pregnancy Childbirth
, vol.17
, pp. 18
-
-
Zhang, C.1
Garrard, L.2
Keighley, J.3
Carlson, S.4
Gajewski, B.5
-
90
-
-
85016992939
-
Exploration of machine learning techniques in predicting multiple sclerosis disease course
-
Zhao, Y., Healy, B.C., Rotstein, D., Guttmann, C.R.G., Bakshi, R., Weiner, H.L., et al. Exploration of machine learning techniques in predicting multiple sclerosis disease course. PLoS One, 12, 2017, e0174866.
-
(2017)
PLoS One
, vol.12
, pp. e0174866
-
-
Zhao, Y.1
Healy, B.C.2
Rotstein, D.3
Guttmann, C.R.G.4
Bakshi, R.5
Weiner, H.L.6
-
91
-
-
85015734396
-
Comparison of breast cancer risk predictive models and screening strategies for Chinese women
-
Zhao, Y., Xiong, P., McCullough, L.E., Miller, E.E., Li, H., Huang, Y., et al. Comparison of breast cancer risk predictive models and screening strategies for Chinese women. J Womens Health (Larchmt) 26 (2017), 294–302.
-
(2017)
J Womens Health (Larchmt)
, vol.26
, pp. 294-302
-
-
Zhao, Y.1
Xiong, P.2
McCullough, L.E.3
Miller, E.E.4
Li, H.5
Huang, Y.6
-
92
-
-
84962288912
-
Different medical data mining approaches based prediction of ischemic stroke
-
Arslan, A.K., Colak, C., Sarihan, M.E., Different medical data mining approaches based prediction of ischemic stroke. Comput Methods Programs Biomed 130 (2016), 87–92.
-
(2016)
Comput Methods Programs Biomed
, vol.130
, pp. 87-92
-
-
Arslan, A.K.1
Colak, C.2
Sarihan, M.E.3
-
93
-
-
85049587097
-
Establishing decision trees for predicting successful postpyloric nasoenteric tube placement in critically ill patients
-
Chen, W., Sun, C., Wei, R., Zhang, Y., Ye, H., Chi, R., et al. Establishing decision trees for predicting successful postpyloric nasoenteric tube placement in critically ill patients. JPEN J Parenter Enteral Nutr 42 (2018), 132–138.
-
(2018)
JPEN J Parenter Enteral Nutr
, vol.42
, pp. 132-138
-
-
Chen, W.1
Sun, C.2
Wei, R.3
Zhang, Y.4
Ye, H.5
Chi, R.6
-
94
-
-
84975138057
-
A screening system for smear-negative pulmonary tuberculosis using artificial neural networks
-
Souza Filho JB, de O., de Seixas, J.M., Galliez, R., de Bragança Pereira, B., de Q Mello, F.C., dos Santos, A.M., et al. A screening system for smear-negative pulmonary tuberculosis using artificial neural networks. Int J Infect Dis 49 (2016), 33–39.
-
(2016)
Int J Infect Dis
, vol.49
, pp. 33-39
-
-
Souza Filho JB, D.O.1
de Seixas, J.M.2
Galliez, R.3
de Bragança Pereira, B.4
de Q Mello, F.C.5
dos Santos, A.M.6
-
95
-
-
85026398611
-
Comparison of machine-learning algorithms to build a predictive model for detecting undiagnosed diabetes – ELSA-Brasil: accuracy study
-
Olivera, A.R., Roesler, V., Iochpe, C., Schmidt, M.I., Vigo, A., Barreto, S.M., et al. Comparison of machine-learning algorithms to build a predictive model for detecting undiagnosed diabetes – ELSA-Brasil: accuracy study. Sao Paulo Med J 135 (2017), 234–246.
-
(2017)
Sao Paulo Med J
, vol.135
, pp. 234-246
-
-
Olivera, A.R.1
Roesler, V.2
Iochpe, C.3
Schmidt, M.I.4
Vigo, A.5
Barreto, S.M.6
-
96
-
-
84969941031
-
Normal tissue complication probability (NTCP) modelling using spatial dose metrics and machine learning methods for severe acute oral mucositis resulting from head and neck radiotherapy
-
Dean, J.A., Wong, K.H., Welsh, L.C., Jones, A.B., Schick, U., Newbold, K.L., et al. Normal tissue complication probability (NTCP) modelling using spatial dose metrics and machine learning methods for severe acute oral mucositis resulting from head and neck radiotherapy. Radiother Oncol 120 (2016), 21–27.
-
(2016)
Radiother Oncol
, vol.120
, pp. 21-27
-
-
Dean, J.A.1
Wong, K.H.2
Welsh, L.C.3
Jones, A.B.4
Schick, U.5
Newbold, K.L.6
-
97
-
-
84978077059
-
Which melanoma patient carries a BRAF-mutation? A comparison of predictive models
-
Eigentler, T., Assi, Z., Hassel, J.C., Heinzerling, L., Starz, H., Berneburg, M., et al. Which melanoma patient carries a BRAF-mutation? A comparison of predictive models. Oncotarget, 7, 2016, 36130.
-
(2016)
Oncotarget
, vol.7
, pp. 36130
-
-
Eigentler, T.1
Assi, Z.2
Hassel, J.C.3
Heinzerling, L.4
Starz, H.5
Berneburg, M.6
-
98
-
-
84891834902
-
Graphical assessment of internal and external calibration of logistic regression models by using loess smoothers
-
Austin, P.C., Steyerberg, E.W., Graphical assessment of internal and external calibration of logistic regression models by using loess smoothers. Stat Med 33 (2014), 517–535.
-
(2014)
Stat Med
, vol.33
, pp. 517-535
-
-
Austin, P.C.1
Steyerberg, E.W.2
-
99
-
-
0003732572
-
Regression modeling strategies
-
Springer New York, NY
-
Harrell, F.E. Jr., Regression modeling strategies. 2015, Springer, New York, NY.
-
(2015)
-
-
Harrell, F.E.1
-
100
-
-
85053685186
-
Reporting and interpreting decision curve analysis: a guide for investigators
-
Van Calster, B., Wynants, L., Verbeek, J.F.M., Verbakel, J.Y., Christodoulou, E., Vickers, A.J., et al. Reporting and interpreting decision curve analysis: a guide for investigators. Eur Urol 74 (2018), 796–804.
-
(2018)
Eur Urol
, vol.74
, pp. 796-804
-
-
Van Calster, B.1
Wynants, L.2
Verbeek, J.F.M.3
Verbakel, J.Y.4
Christodoulou, E.5
Vickers, A.J.6
-
101
-
-
85044352117
-
Calibration of medical diagnostic classifier scores to the probability of disease
-
Chen, W., Sahiner, B., Samuelson, F., Pezeshk, A., Petrick, N., Calibration of medical diagnostic classifier scores to the probability of disease. Stat Methods Med Res 27 (2016), 1394–1409.
-
(2016)
Stat Methods Med Res
, vol.27
, pp. 1394-1409
-
-
Chen, W.1
Sahiner, B.2
Samuelson, F.3
Pezeshk, A.4
Petrick, N.5
-
102
-
-
33748991193
-
Cost curves: an improved method for visualizing classifier performance
-
Drummond, C., Holte, R.C., Cost curves: an improved method for visualizing classifier performance. Mach Learn 65 (2006), 95–130.
-
(2006)
Mach Learn
, vol.65
, pp. 95-130
-
-
Drummond, C.1
Holte, R.C.2
-
103
-
-
85049920258
-
Sample size for binary logistic prediction models: beyond events per variable criteria
-
In press
-
van Smeden, M., Moons, K.G.M., de Groot, J.A.H., Collins, G.S., Altman, D.G., Eijkemans, M.J.C., et al. Sample size for binary logistic prediction models: beyond events per variable criteria. Stat Methods Med Res, 2018, 10.1177/0962280218784726 In press.
-
(2018)
Stat Methods Med Res
-
-
van Smeden, M.1
Moons, K.G.M.2
de Groot, J.A.H.3
Collins, G.S.4
Altman, D.G.5
Eijkemans, M.J.C.6
-
104
-
-
84947466043
-
Machine learning in medicine
-
Deo, R.C., Machine learning in medicine. Circulation 132 (2015), 1920–1930.
-
(2015)
Circulation
, vol.132
, pp. 1920-1930
-
-
Deo, R.C.1
-
105
-
-
84919773193
-
Do we need hundreds of classifiers to solve real world classification problems?
-
Fernández-Delgado, M., Cernadas, E., Barro, S., Amorim, D., Do we need hundreds of classifiers to solve real world classification problems?. J Mach Learn Res 15 (2014), 3133–3181.
-
(2014)
J Mach Learn Res
, vol.15
, pp. 3133-3181
-
-
Fernández-Delgado, M.1
Cernadas, E.2
Barro, S.3
Amorim, D.4
-
106
-
-
85050138829
-
Random forest versus logistic regression: a large-scale benchmark experiment
-
Couronné R., Probst, P., Boulesteix, A.L., Random forest versus logistic regression: a large-scale benchmark experiment. BMC Bioinformatics, 19, 2018, 270.
-
(2018)
BMC Bioinformatics
, vol.19
, pp. 270
-
-
Couronné, R.1
Probst, P.2
Boulesteix, A.L.3
-
107
-
-
0032533761
-
A comparison of statistical learning methods on the Gusto database
-
Ennis, M., Hinton, G., Naylor, D., Revow, M., Tibshirani, R., A comparison of statistical learning methods on the Gusto database. Stat Med 17 (1998), 2501–2508.
-
(1998)
Stat Med
, vol.17
, pp. 2501-2508
-
-
Ennis, M.1
Hinton, G.2
Naylor, D.3
Revow, M.4
Tibshirani, R.5
-
108
-
-
0031235612
-
Does machine learning really work?
-
Mitchell, T., Does machine learning really work?. AI Mag, 18, 1997, 11.
-
(1997)
AI Mag
, vol.18
, pp. 11
-
-
Mitchell, T.1
-
109
-
-
85039444017
-
Poor performance of clinical prediction models: the harm of commonly applied methods
-
Steyerberg, E.W., Uno, H., Ioannidis, J.P.A., Van Calster, B., Poor performance of clinical prediction models: the harm of commonly applied methods. J Clin Epidemiol 98 (2018), 133–143.
-
(2018)
J Clin Epidemiol
, vol.98
, pp. 133-143
-
-
Steyerberg, E.W.1
Uno, H.2
Ioannidis, J.P.A.3
Van Calster, B.4
-
110
-
-
84952630340
-
Quality of reporting of confounding remained suboptimal after the STROBE guideline
-
Pouwels, K.B., Widyakusuma, N.N., Groenwold, R.H.H., Hak, E., Quality of reporting of confounding remained suboptimal after the STROBE guideline. J Clin Epidemiol 69 (2016), 217–224.
-
(2016)
J Clin Epidemiol
, vol.69
, pp. 217-224
-
-
Pouwels, K.B.1
Widyakusuma, N.N.2
Groenwold, R.H.H.3
Hak, E.4
-
111
-
-
85039159313
-
Diagnostic accuracy research in glaucoma is still incompletely reported: an application of Standards for Reporting of Diagnostic Accuracy Studies (STARD) 2015
-
Michelessi, M., Lucenteforte, E., Miele, A., Oddone, F., Crescioli, G., Fameli, V., et al. Diagnostic accuracy research in glaucoma is still incompletely reported: an application of Standards for Reporting of Diagnostic Accuracy Studies (STARD) 2015. PLoS One, 12, 2017, e0189716.
-
(2017)
PLoS One
, vol.12
, pp. e0189716
-
-
Michelessi, M.1
Lucenteforte, E.2
Miele, A.3
Oddone, F.4
Crescioli, G.5
Fameli, V.6
-
112
-
-
85059060804
-
The quality of reporting randomized controlled trials in the dermatology literature in an era where the CONSORT statement is a standard
-
In press
-
Kim, D.Y., Park, H.S., Cho, S., Yoon, H.S., The quality of reporting randomized controlled trials in the dermatology literature in an era where the CONSORT statement is a standard. Br J Dermatol, 2018, 10.1111/bjd.17432 In press.
-
(2018)
Br J Dermatol
-
-
Kim, D.Y.1
Park, H.S.2
Cho, S.3
Yoon, H.S.4
-
113
-
-
84929465279
-
Ten simple rules for reducing overoptimistic reporting in methodological computational research
-
Boulesteix, A.L., Ten simple rules for reducing overoptimistic reporting in methodological computational research. PLoS Comput Biol, 11, 2015, e1004191.
-
(2015)
PLoS Comput Biol
, vol.11
, pp. e1004191
-
-
Boulesteix, A.L.1
|