메뉴 건너뛰기




Volumn 16, Issue 1, 2016, Pages

Comparison of predictive modeling approaches for 30-day all-cause non-elective readmission risk

Author keywords

Ada Boost; LASSO; Predictive Models; Readmission Risk; STEPWISE

Indexed keywords

AREA UNDER THE CURVE; COMPARATIVE STUDY; ELECTRONIC HEALTH RECORD; FEMALE; HOSPITAL ADMISSION; HOSPITAL READMISSION; HUMAN; ILLINOIS; INCIDENCE; LENGTH OF STAY; MALE; PREDICTIVE VALUE; REPRODUCIBILITY; RISK ASSESSMENT; SAMPLE SIZE; STATISTICAL MODEL; STATISTICS AND NUMERICAL DATA; TIME FACTOR; URBAN POPULATION;

EID: 84959335948     PISSN: None     EISSN: 14712288     Source Type: Journal    
DOI: 10.1186/s12874-016-0128-0     Document Type: Article
Times cited : (51)

References (29)
  • 1
    • 78049334037 scopus 로고    scopus 로고
    • An automated model to identify heart failure patients at risk for 30-Day readmission or death using electronic medical record data
    • 20940649
    • Amarasingham R, Moore BJ, Tabak YP, Drazner MH, Clark CA, Zhang S, et al. An automated model to identify heart failure patients at risk for 30-Day readmission or death using electronic medical record data. Med Care. 2010;48:981-8.
    • (2010) Med Care , vol.48 , pp. 981-988
    • Amarasingham, R.1    Moore, B.J.2    Tabak, Y.P.3    Drazner, M.H.4    Clark, C.A.5    Zhang, S.6
  • 2
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Mach Learn. 2001;45(1):5-32. doi: 10.1023/A:1010933404324.
    • (2001) Mach Learn , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 3
    • 0003010182 scopus 로고
    • Verification of forecasts expressed in terms of probability
    • Brier GW. Verification of forecasts expressed in terms of probability. Mon Weather Rev. 1950;78:1-3.
    • (1950) Mon. Weather Rev , vol.78 , pp. 1-3
    • Brier, G.W.1
  • 4
    • 0031334221 scopus 로고    scopus 로고
    • Selection of relevant features and examples in machine learning
    • Blum A, Langley P. Selection of relevant features and examples in machine learning. Artif Intell. 1997;97(1-2):245-71.
    • (1997) Artif Intell , vol.97 , Issue.1-2 , pp. 245-271
    • Blum, A.1    Langley, P.2
  • 5
    • 84894637209 scopus 로고    scopus 로고
    • A public-private partnership develops and externally validates a 30-day hospital readmission risk prediction model
    • 3812998 24224068
    • Choudhry SA, Li J, Davis D, Erdmann C, Sikka R, Sutariya B. A public-private partnership develops and externally validates a 30-day hospital readmission risk prediction model. Online J Public Health Inform. 2013;5(2):219.
    • (2013) Online J Public Health Inform , vol.5 , Issue.2 , pp. 219
    • Choudhry, S.A.1    Li, J.2    Davis, D.3    Erdmann, C.4    Sikka, R.5    Sutariya, B.6
  • 6
    • 4844220089 scopus 로고    scopus 로고
    • Posthospital care transitions: Patterns, complications, and risk identification
    • 1361078 15333117
    • Coleman EA, Min S, Chomiak A, Kramer AM. Posthospital care transitions: patterns, complications, and risk identification. Health Serv Res. 2004;39(5):1449-65.
    • (2004) Health Serv Res , vol.39 , Issue.5 , pp. 1449-1465
    • Coleman, E.A.1    Min, S.2    Chomiak, A.3    Kramer, A.M.4
  • 7
    • 33847109797 scopus 로고    scopus 로고
    • Use and misuse of the receiver operating characteristics curve in risk prediction
    • 17309939
    • Cook NR. Use and misuse of the receiver operating characteristics curve in risk prediction. Circulation. 2007;115(7):928-35.
    • (2007) Circulation , vol.115 , Issue.7 , pp. 928-935
    • Cook, N.R.1
  • 8
    • 84876785353 scopus 로고    scopus 로고
    • Potentially avoidable 30-Day hospital readmissions in medical patients: Derivation and validation of a prediction model
    • 23529115
    • Donze J, Aujesky D, Williams D, Schnipper JL. Potentially avoidable 30-Day hospital readmissions in medical patients: derivation and validation of a prediction model. JAMA Intern Med. 2013;173(8):632-8.
    • (2013) JAMA Intern Med , vol.173 , Issue.8 , pp. 632-638
    • Donze, J.1    Aujesky, D.2    Williams, D.3    Schnipper, J.L.4
  • 9
    • 84888059665 scopus 로고    scopus 로고
    • Stopping stepwise: Why stepwise and similar selection methods are bad, andwhat you should use
    • 11-14th November 2007;Baltimore, Maryland
    • Flom PL, Cassell DL. Stopping stepwise: Why stepwise and similar selection methods are bad, andwhat you should use. NorthEast SAS Users Group Inc 20th Annual Conference: 11-14th November 2007;Baltimore, Maryland. 2007.
    • (2007) NorthEast SAS Users Group Inc 20th Annual Conference
    • Flom, P.L.1    Cassell, D.L.2
  • 10
    • 58149321460 scopus 로고
    • Boosting a weak learning algorithm by majority
    • Freund Y. Boosting a weak learning algorithm by majority. Inform Comput. 1995;121:256-85.
    • (1995) Inform Comput , vol.121 , pp. 256-285
    • Freund, Y.1
  • 11
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of online learning and an application to boosting
    • Freund Y, Schapire RE. A decision-theoretic generalization of online learning and an application to boosting. J Comput System Sci. 1997;55:119-39.
    • (1997) J Comput System Sci , vol.55 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 12
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: A gradient boosting machine
    • Friedman JH. Greedy function approximation: a gradient boosting machine. Ann Stat. 2001;29:1189-232.
    • (2001) Ann Stat , vol.29 , pp. 1189-1232
    • Friedman, J.H.1
  • 13
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting (with discussion)
    • Friedman JH, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion). Ann Stat. 2000;28:337-407.
    • (2000) Ann Stat , vol.28 , pp. 337-407
    • Friedman, J.H.1    Hastie, T.2    Tibshirani, R.3
  • 14
    • 77950537175 scopus 로고    scopus 로고
    • Regularization paths for generalized linear models via coordinate descent
    • 2929880 20808728
    • Friedman JH, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate descent. J Stat Softw. 2010;33(1):1-22.
    • (2010) J Stat Softw , vol.33 , Issue.1 , pp. 1-22
    • Friedman, J.H.1    Hastie, T.2    Tibshirani, R.3
  • 15
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Guyon I, Elisseeff A. An introduction to variable and feature selection. J Mach Learn Res. 2003;3:1157-82.
    • (2003) J Mach Learn Res , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 16
    • 0030069896 scopus 로고    scopus 로고
    • Multivariable prognostic models: Issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors
    • 8668867
    • Harrell Jr FE, Lee KL, Mark DB. Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med. 1996;15(4):361-87.
    • (1996) Stat Med , vol.15 , Issue.4 , pp. 361-387
    • Harrell, F.E.1    Lee, K.L.2    Mark, D.B.3
  • 18
    • 84941908301 scopus 로고    scopus 로고
    • Conditions with the Largest Number of Adult Hospital Readmissions by Payer, 2011: Statistical Brief #172
    • Agency for Health Care Policy and Research (US) Rockville
    • Hines AL, Barrett ML, Jiang HJ, Steiner CA. Conditions with the Largest Number of Adult Hospital Readmissions by Payer, 2011: Statistical Brief #172. In: Healthcare Cost and Utilization Project (HCUP) Statistical Briefs [Internet]. Rockville: Agency for Health Care Policy and Research (US); 2014. Available from: http://www.ncbi.nlm.nih.gov/books/NBK206781/.
    • (2014) Healthcare Cost and Utilization Project (HCUP) Statistical Briefs [Internet]
    • Hines, A.L.1    Barrett, M.L.2    Jiang, H.J.3    Steiner, C.A.4
  • 19
    • 84893967115 scopus 로고    scopus 로고
    • Model-based boosting in R - A hands-on tutorial using the R package mboost
    • Hofner B, Mayr A, Robinzonov N, Schmid M. Model-based boosting in R - A hands-on tutorial using the R package mboost. Comput Stat. 2014;29:3-35.
    • (2014) Comput Stat , vol.29 , pp. 3-35
    • Hofner, B.1    Mayr, A.2    Robinzonov, N.3    Schmid, M.4
  • 20
    • 84872170445 scopus 로고
    • A goodness-of-fit test for the multiple logistic regression model
    • Hosmer DW, Lemeshow S. A goodness-of-fit test for the multiple logistic regression model. Comm Stat. 1980;A10:1043-69.
    • (1980) Comm Stat , vol.10 , pp. 1043-1069
    • Hosmer, D.W.1    Lemeshow, S.2
  • 21
    • 80054764509 scopus 로고    scopus 로고
    • Risk prediction models for hospital readmission: A systematic review
    • 3603349 1:CAS:528:DC%2BC3MXhtlKgs73J 22009101
    • Kansagara D, Englander H, Salanitro A, Kagen D, Theobald C, Freeman M, et al. Risk prediction models for hospital readmission: a systematic review. JAMA. 2011;306(15):1688-98.
    • (2011) JAMA , vol.306 , Issue.15 , pp. 1688-1698
    • Kansagara, D.1    Englander, H.2    Salanitro, A.3    Kagen, D.4    Theobald, C.5    Freeman, M.6
  • 22
    • 84919470597 scopus 로고    scopus 로고
    • Neighborhood socioeconomic disadvantage and 30-Day rehospitalization: A retrospective cohort study
    • 10.7326/M13-2946 4251560 25437404
    • Kind AJH, Jencks S, Brock J, Yu M, Bartels C, Ehlenbach W, et al. Neighborhood socioeconomic disadvantage and 30-Day rehospitalization: a retrospective cohort study. Ann Intern Med. 2014;161:765-74. doi: 10.7326/M13-2946.
    • (2014) Ann Intern Med , vol.161 , pp. 765-774
    • Kind, A.J.H.1    Jencks, S.2    Brock, J.3    Yu, M.4    Bartels, C.5    Ehlenbach, W.6
  • 23
    • 84959329031 scopus 로고    scopus 로고
    • Patient Factors Predictive of Hospital Readmissions within 30 Days
    • [Epub ahead of print]
    • Kroch E, Duan M, Martin J, Bankowitz RA. Patient Factors Predictive of Hospital Readmissions within 30 Days. J Healthc Qual. 2015; 1-10. [Epub ahead of print].
    • (2015) J Healthc Qual , pp. 1-10
    • Kroch, E.1    Duan, M.2    Martin, J.3    Bankowitz, R.A.4
  • 25
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • Schapire RE. The strength of weak learnability. Mach Learn. 1990;5:197-227.
    • (1990) Mach Learn , vol.5 , pp. 197-227
    • Schapire, R.E.1
  • 26
    • 84945451773 scopus 로고    scopus 로고
    • Functional status outperforms comorbidities in predicting acute care readmissions in medically complex patients
    • Shih SL, Gerrard P, Goldstein R, Mix J, Ryan CM, Niewczyk P, et al. Functional status outperforms comorbidities in predicting acute care readmissions in medically complex patients. J Gen Intern Med. 2015. doi: 10.1007/s11606-015-3350-2.
    • (2015) J Gen Intern Med
    • Shih, S.L.1    Gerrard, P.2    Goldstein, R.3    Mix, J.4    Ryan, C.M.5    Niewczyk, P.6
  • 28
    • 77951240308 scopus 로고    scopus 로고
    • Derivation and validation of an index to predict early death or unplanned readmission after discharge from hospital to the community
    • 2845681 20194559
    • Walraven CV, Dhalla IA, Bell C, Etchells E, Stiell IG, Zarnke K, et al. Derivation and validation of an index to predict early death or unplanned readmission after discharge from hospital to the community. CMAJ. 2010;182(6):551-7.
    • (2010) CMAJ , vol.182 , Issue.6 , pp. 551-557
    • Walraven, C.V.1    Dhalla, I.A.2    Bell, C.3    Etchells, E.4    Stiell, I.G.5    Zarnke, K.6
  • 29
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the elastic Net
    • Zou H, Hastie T. Regularization and variable selection via the elastic Net. J R Stat Soc B. 2005;67(2):301-20.
    • (2005) J R Stat Soc B , vol.67 , Issue.2 , pp. 301-320
    • Zou, H.1    Hastie, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.