메뉴 건너뛰기




Volumn 12, Issue 1, 2017, Pages

A comparison of a machine learning model with EuroSCORE II in predicting mortality after elective cardiac surgery: A decision curve analysis

Author keywords

[No Author keywords available]

Indexed keywords

ADULT; CARDIOPULMONARY BYPASS; COHORT ANALYSIS; DATA BASE; EUROSCORE; HEART SURGERY; HUMAN; LOGISTIC REGRESSION ANALYSIS; MACHINE LEARNING; MAJOR CLINICAL STUDY; MIDDLE AGED; MORTALITY; PREDICTION; PROBABILITY; RECEIVER OPERATING CHARACTERISTIC; SURGERY; UNIVERSITY HOSPITAL; ADVERSE EFFECTS; AGED; COMORBIDITY; DECISION SUPPORT SYSTEM; FEMALE; HOSPITAL MORTALITY; MALE; PROCEDURES; REPRODUCIBILITY; STATISTICAL MODEL;

EID: 85009893949     PISSN: None     EISSN: 19326203     Source Type: Journal    
DOI: 10.1371/journal.pone.0169772     Document Type: Article
Times cited : (126)

References (28)
  • 1
    • 84913619061 scopus 로고    scopus 로고
    • 2014 ESC/EACTS Guidelines on myocardial revascularization: The Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS)Developed with the special contribution of the European Association of Percutaneous Cardiovascular Interventions (EAPCI)
    • Authors/Task Force members, PMID: 25173339
    • Authors/Task Force members, Windecker S, Kolh P, Alfonso F, Collet J-P, Cremer J, et al. 2014 ESC/EACTS Guidelines on myocardial revascularization: The Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS)Developed with the special contribution of the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur Heart J. 2014; 35: 2541-2619. doi: 10.1093/eurheartj/ehu278 PMID: 25173339
    • (2014) Eur Heart J , vol.35 , pp. 2541-2619
    • Windecker, S.1    Kolh, P.2    Alfonso, F.3    Collet, J.-P.4    Cremer, J.5
  • 3
    • 67649827173 scopus 로고    scopus 로고
    • The Society of Thoracic Surgeons 2008 cardiac surgery risk models: Part 1-coronary artery bypass grafting surgery
    • PMID: 19559822
    • Shahian DM, O'Brien SM, Filardo G, Ferraris VA, Haan CK, Rich JB, et al. The Society of Thoracic Surgeons 2008 cardiac surgery risk models: part 1-coronary artery bypass grafting surgery. Ann Thorac Surg. 2009; 88: S2-22. doi: 10.1016/j.athoracsur.2009.05.053 PMID: 19559822
    • (2009) Ann Thorac Surg , vol.88 , pp. S2-S22
    • Shahian, D.M.1    O'Brien, S.M.2    Filardo, G.3    Ferraris, V.A.4    Haan, C.K.5    Rich, J.B.6
  • 4
    • 67649816665 scopus 로고    scopus 로고
    • The Society of Thoracic Surgeons 2008 cardiac surgery risk models: Part 2 - Isolated valve surgery
    • PMID: 19559823
    • O'Brien SM, Shahian DM, Filardo G, Ferraris VA, Haan CK, Rich JB, et al. The Society of Thoracic Surgeons 2008 cardiac surgery risk models: part 2 - isolated valve surgery. Ann Thorac Surg. 2009; 88: S23-42. doi: 10.1016/j.athoracsur.2009.05.056 PMID: 19559823
    • (2009) Ann Thorac Surg , vol.88 , pp. S23-S42
    • O'Brien, S.M.1    Shahian, D.M.2    Filardo, G.3    Ferraris, V.A.4    Haan, C.K.5    Rich, J.B.6
  • 5
    • 67649786427 scopus 로고    scopus 로고
    • The Society of Thoracic Surgeons 2008 cardiac surgery risk models: Part 3 - Valve plus coronary artery bypass grafting surgery
    • PMID: 19559824
    • Shahian DM, O'Brien SM, Filardo G, Ferraris VA, Haan CK, Rich JB, et al. The Society of Thoracic Surgeons 2008 cardiac surgery risk models: part 3 - valve plus coronary artery bypass grafting surgery. Ann Thorac Surg. 2009; 88: S43-62. doi: 10.1016/j.athoracsur.2009.05.055 PMID: 19559824
    • (2009) Ann Thorac Surg , vol.88 , pp. S43-S62
    • Shahian, D.M.1    O'Brien, S.M.2    Filardo, G.3    Ferraris, V.A.4    Haan, C.K.5    Rich, J.B.6
  • 6
    • 84867283287 scopus 로고    scopus 로고
    • Guidelines on the management of valvular heart disease
    • European Association for Cardio-Thoracic Surgery (EACTS), (version 2012). PMID: 22922415
    • Joint Task Force on the Management of Valvular Heart Disease of the European Society of Cardiology (ESC), European Association for Cardio-Thoracic Surgery (EACTS), Vahanian A, Alfieri O, Andreotti F, Antunes MJ, et al. Guidelines on the management of valvular heart disease (version 2012). Eur Heart J. 2012; 33: 2451-2496. doi: 10.1093/eurheartj/ehs109 PMID: 22922415
    • (2012) Eur Heart J , vol.33 , pp. 2451-2496
    • Vahanian, A.1    Alfieri, O.2    Andreotti, F.3    Antunes, M.J.4
  • 7
    • 77956868904 scopus 로고    scopus 로고
    • Poor performances of EuroSCORE and CARE score for prediction of perioperative mortality in octogenarians undergoing aortic valve replacement for aortic stenosis
    • PMID: 20520558
    • Chhor V, Merceron S, Ricome S, Baron G, Daoud O, Dilly M-P, et al. Poor performances of EuroSCORE and CARE score for prediction of perioperative mortality in octogenarians undergoing aortic valve replacement for aortic stenosis. Eur J Anaesthesiol. 2010; 27: 702-707. doi: 10.1097/EJA.0b013e32833a45de PMID: 20520558
    • (2010) Eur J Anaesthesiol , vol.27 , pp. 702-707
    • Chhor, V.1    Merceron, S.2    Ricome, S.3    Baron, G.4    Daoud, O.5    Dilly, M.-P.6
  • 8
    • 84938912619 scopus 로고    scopus 로고
    • Performance of the EuroSCORE II and the Society of Thoracic Surgeons Score in patients undergoing aortic valve replacement for aortic stenosis
    • Torino
    • Kuwaki K, Inaba H, Yamamoto T, Dohi S, Matsumura T, Morita T, et al. Performance of the EuroSCORE II and the Society of Thoracic Surgeons Score in patients undergoing aortic valve replacement for aortic stenosis. J Cardiovasc Surg (Torino). 2015; 56: 455-462.
    • (2015) J Cardiovasc Surg , vol.56 , pp. 455-462
    • Kuwaki, K.1    Inaba, H.2    Yamamoto, T.3    Dohi, S.4    Matsumura, T.5    Morita, T.6
  • 9
    • 84954349720 scopus 로고    scopus 로고
    • Multicenter Comparison of Machine Learning Methods and Conventional Regression for Predicting Clinical Deterioration on the Wards
    • PMID: 26771782
    • Churpek MM, Yuen TC, Winslow C, Meltzer DO, Kattan MW, Edelson DP. Multicenter Comparison of Machine Learning Methods and Conventional Regression for Predicting Clinical Deterioration on the Wards. Crit Care Med. 2016; 44: 368-374. doi: 10.1097/CCM.0000000000001571 PMID: 26771782
    • (2016) Crit Care Med , vol.44 , pp. 368-374
    • Churpek, M.M.1    Yuen, T.C.2    Winslow, C.3    Meltzer, D.O.4    Kattan, M.W.5    Edelson, D.P.6
  • 10
    • 85032070787 scopus 로고    scopus 로고
    • Testing a machine-learning algorithm to predict the persistence and severity of major depressive disorder from baseline self-reports
    • Kessler RC, van Loo HM, Wardenaar KJ, Bossarte RM, Brenner LA, Cai T, et al. Testing a machine-learning algorithm to predict the persistence and severity of major depressive disorder from baseline self-reports. Mol Psychiatry. 2016
    • (2016) Mol Psychiatry
    • Kessler, R.C.1    Van Loo, H.M.2    Wardenaar, K.J.3    Bossarte, R.M.4    Brenner, L.A.5    Cai, T.6
  • 11
    • 84951084893 scopus 로고    scopus 로고
    • A land use regression model for ambient ultrafine particles in Montreal, Canada: A comparison of linear regression and a machine learning approach
    • PMID: 26720396
    • Weichenthal S, Ryswyk KV, Goldstein A, Bagg S, Shekkarizfard M, Hatzopoulou M. A land use regression model for ambient ultrafine particles in Montreal, Canada: A comparison of linear regression and a machine learning approach. Environ Res. 2016; 146: 65-72. doi: 10.1016/j.envres.2015.12.016 PMID: 26720396
    • (2016) Environ Res , vol.146 , pp. 65-72
    • Weichenthal, S.1    Ryswyk, K.V.2    Goldstein, A.3    Bagg, S.4    Shekkarizfard, M.5    Hatzopoulou, M.6
  • 12
  • 13
    • 84904643706 scopus 로고    scopus 로고
    • Utility of vital signs, heart rate variability and complexity, and machine learning for identifying the need for lifesaving interventions in trauma patients
    • Liu NT, Holcomb JB, Wade CE, Darrah MI, Salinas J. Utility of vital signs, heart rate variability and complexity, and machine learning for identifying the need for lifesaving interventions in trauma patients. Shock Augusta Ga. 2014; 42: 108-114.
    • (2014) Shock Augusta Ga , vol.42 , pp. 108-114
    • Liu, N.T.1    Holcomb, J.B.2    Wade, C.E.3    Darrah, M.I.4    Salinas, J.5
  • 14
    • 33750905259 scopus 로고    scopus 로고
    • Decision curve analysis: A novel method for evaluating prediction models
    • Vickers AJ, Elkin EB. Decision curve analysis: a novel method for evaluating prediction models. Med Decis Mak Int J Soc Med Decis Mak. 2006; 26: 565-574.
    • (2006) Med Decis Mak Int J Soc Med Decis Mak , vol.26 , pp. 565-574
    • Vickers, A.J.1    Elkin, E.B.2
  • 15
    • 84921060287 scopus 로고    scopus 로고
    • Evaluation of 5-fluorouracil metabolic enzymes as predictors of response to adjuvant chemotherapy outcomes in patients with stage II/III colorectal cancer: A decision-curve analysis
    • PMID: 25167895
    • Shigeta K, Ishii Y, Hasegawa H, Okabayashi K, Kitagawa Y. Evaluation of 5-fluorouracil metabolic enzymes as predictors of response to adjuvant chemotherapy outcomes in patients with stage II/III colorectal cancer: a decision-curve analysis. World J Surg. 2014; 38: 3248-3256. doi: 10.1007/s00268-014-2738-1 PMID: 25167895
    • (2014) World J Surg , vol.38 , pp. 3248-3256
    • Shigeta, K.1    Ishii, Y.2    Hasegawa, H.3    Okabayashi, K.4    Kitagawa, Y.5
  • 16
    • 84931839180 scopus 로고    scopus 로고
    • Decision curve analysis and external validation of the postoperative Karakiewicz nomogram for renal cell carcinoma based on a large single-center study cohort
    • PMID: 24850226
    • Zastrow S, Brookman-May S, Cong TAP, Jurk S, von Bar I, Novotny V, et al. Decision curve analysis and external validation of the postoperative Karakiewicz nomogram for renal cell carcinoma based on a large single-center study cohort. World J Urol. 2015; 33: 381-388. doi: 10.1007/s00345-014-1321-6 PMID: 24850226
    • (2015) World J Urol , vol.33 , pp. 381-388
    • Zastrow, S.1    Brookman-May, S.2    Cong, T.A.P.3    Jurk, S.4    Von Bar, I.5    Novotny, V.6
  • 17
    • 84900837922 scopus 로고    scopus 로고
    • Defining optimum treatment of patients with pancreatic adenocarcinoma using regret-based decision curve analysis
    • PMID: 24169177
    • Hernandez JM, Tsalatsanis A, Humphries LA, Miladinovic B, Djulbegovic B, Velanovich V. Defining optimum treatment of patients with pancreatic adenocarcinoma using regret-based decision curve analysis. Ann Surg. 2014; 259: 1208-1214. doi: 10.1097/SLA.0000000000000310 PMID: 24169177
    • (2014) Ann Surg , vol.259 , pp. 1208-1214
    • Hernandez, J.M.1    Tsalatsanis, A.2    Humphries, L.A.3    Miladinovic, B.4    Djulbegovic, B.5    Velanovich, V.6
  • 18
    • 79959611299 scopus 로고    scopus 로고
    • Assessing the clinical benefit of nuclear matrix protein 22 in the surveillance of patients with nonmuscle-invasive bladder cancer and negative cytology: A decision-curve analysis
    • PMID: 21692050
    • Shariat SF, Savage C, Chromecki TF, Sun M, Scherr DS, Lee RK, et al. Assessing the clinical benefit of nuclear matrix protein 22 in the surveillance of patients with nonmuscle-invasive bladder cancer and negative cytology: a decision-curve analysis. Cancer. 2011; 117: 2892-2897. doi: 10.1002/cncr.25903 PMID: 21692050
    • (2011) Cancer , vol.117 , pp. 2892-2897
    • Shariat, S.F.1    Savage, C.2    Chromecki, T.F.3    Sun, M.4    Scherr, D.S.5    Lee, R.K.6
  • 22
    • 0023710206 scopus 로고
    • Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach
    • PMID: 3203132
    • DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988; 44: 837-845. PMID: 3203132
    • (1988) Biometrics , vol.44 , pp. 837-845
    • DeLong, E.R.1    DeLong, D.M.2    Clarke-Pearson, D.L.3
  • 23
    • 55049116162 scopus 로고    scopus 로고
    • Decision analysis for the evaluation of diagnostic tests, prediction models and molecular markers
    • PMID: 19132141
    • Vickers AJ. Decision analysis for the evaluation of diagnostic tests, prediction models and molecular markers. Am Stat. 2008; 62: 314-320. doi: 10.1198/000313008X370302 PMID: 19132141
    • (2008) Am Stat , vol.62 , pp. 314-320
    • Vickers, A.J.1
  • 24
    • 58149269742 scopus 로고    scopus 로고
    • Extensions to decision curve analysis, a novel method for evaluating diagnostic tests, prediction models and molecular markers
    • PMID: 19036144
    • Vickers AJ, Cronin AM, Elkin EB, Gonen M. Extensions to decision curve analysis, a novel method for evaluating diagnostic tests, prediction models and molecular markers. BMC Med Inform Decis Mak. 2008; 8: 53. doi: 10.1186/1472-6947-8-53 PMID: 19036144
    • (2008) BMC Med Inform Decis Mak , vol.8 , pp. 53
    • Vickers, A.J.1    Cronin, A.M.2    Elkin, E.B.3    Gonen, M.4
  • 28
    • 84921754275 scopus 로고    scopus 로고
    • Decision curve analysis
    • PMID: 25626037
    • Fitzgerald M, Saville BR, Lewis RJ. Decision curve analysis. JAMA. 2015; 313: 409-410. doi: 10.1001/jama.2015.37 PMID: 25626037
    • (2015) JAMA , vol.313 , pp. 409-410
    • Fitzgerald, M.1    Saville, B.R.2    Lewis, R.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.