-
1
-
-
84901196253
-
Correcting the optimal resampling-based error rate by estimating the error rate of wrapper algorithms
-
Bernau, C., Augustin, T. and Boulesteix, A. L. (2013). Correcting the optimal resampling-based error rate by estimating the error rate of wrapper algorithms. Biometrics 69, 693-702.
-
(2013)
Biometrics
, vol.69
, pp. 693-702
-
-
Bernau, C.1
Augustin, T.2
Boulesteix, A.L.3
-
2
-
-
84873187093
-
Overview of random forest methodology and practical guidance with emphasis on computational biology and bioinformatics
-
Boulesteix, A.-L., Janitza, S., Kruppa, J. and König, I. R. (2012). Overview of random forest methodology and practical guidance with emphasis on computational biology and bioinformatics. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 2, 493-507.
-
(2012)
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery
, vol.2
, pp. 493-507
-
-
Boulesteix, A.-L.1
Janitza, S.2
Kruppa, J.3
König, I.R.4
-
3
-
-
84892564387
-
Complexity selection with cross-validation for lasso and sparse partial least squares using high-dimensional data
-
In: Springer, Berlin, DE
-
Boulesteix, A.-L., Richter, A. and Bernau, C. (2013). Complexity selection with cross-validation for lasso and sparse partial least squares using high-dimensional data. In: Algorithms from and for Nature and Life. Springer, Berlin, DE, pp. 261-268.
-
(2013)
Algorithms from and for Nature and Life
, pp. 261-268
-
-
Boulesteix, A.-L.1
Richter, A.2
Bernau, C.3
-
4
-
-
76649101119
-
Optimal classifier selection and negative bias in error rate estimation: an empirical study on high-dimensional prediction
-
Boulesteix, A. L. and Strobl, C. (2009). Optimal classifier selection and negative bias in error rate estimation: an empirical study on high-dimensional prediction. BMC Medical Research Methodology 9, 85.
-
(2009)
BMC Medical Research Methodology
, vol.9
, pp. 85
-
-
Boulesteix, A.L.1
Strobl, C.2
-
5
-
-
0000245743
-
Statistical modeling: The two cultures (with comments and a rejoinder by the author)
-
Breiman, L. (2001). Statistical modeling: The two cultures (with comments and a rejoinder by the author). Statistical Science 16, 199-231.
-
(2001)
Statistical Science
, vol.16
, pp. 199-231
-
-
Breiman, L.1
-
7
-
-
77956921559
-
Model-based boosting 2.0
-
Hothorn, T., Bühlmann, P., Kneib, T., Schmid, M. and Hofner, B. (2010). Model-based boosting 2.0. Journal of Machine Learning Research 11, 2109-2113.
-
(2010)
Journal of Machine Learning Research
, vol.11
, pp. 2109-2113
-
-
Hothorn, T.1
Bühlmann, P.2
Kneib, T.3
Schmid, M.4
Hofner, B.5
-
8
-
-
70350702464
-
Biometrical journal and reproducible research
-
Hothorn, T., Held, L. and Friede, T. (2009). Biometrical journal and reproducible research. Biometrical Journal 51, 553-555.
-
(2009)
Biometrical Journal
, vol.51
, pp. 553-555
-
-
Hothorn, T.1
Held, L.2
Friede, T.3
-
9
-
-
77955362768
-
Over-optimism in bioinformatics: an illustration
-
Jelizarow, M., Guillemot, V., Tenenhaus, A., Strimmer, K. and Boulesteix, A.-L. (2010). Over-optimism in bioinformatics: an illustration. Bioinformatics 26, 1990-1998.
-
(2010)
Bioinformatics
, vol.26
, pp. 1990-1998
-
-
Jelizarow, M.1
Guillemot, V.2
Tenenhaus, A.3
Strimmer, K.4
Boulesteix, A.-L.5
-
10
-
-
84903648854
-
Probability estimation with machine learning methods for dichotomous and multicategory outcome: Theory
-
Kruppa, J., Liu, Y., Biau, G., Kohler, M., König, I. R., Malley, J. D. and Ziegler, A. (2014a). Probability estimation with machine learning methods for dichotomous and multicategory outcome: Theory. Biometrical Journal 56, 534-563.
-
(2014)
Biometrical Journal
, vol.56
, pp. 534-563
-
-
Kruppa, J.1
Liu, Y.2
Biau, G.3
Kohler, M.4
König, I.R.5
Malley, J.D.6
Ziegler, A.7
-
11
-
-
84903610080
-
Probability estimation with machine learning methods for dichotomous and multicategory outcome: Applications
-
Kruppa, J., Liu, Y., Diener, H.-C., Holste, T., Weimar, C., König, I. R. and Ziegler, A. (2014b). Probability estimation with machine learning methods for dichotomous and multicategory outcome: Applications. Biometrical Journal 56, 564-583.
-
(2014)
Biometrical Journal
, vol.56
, pp. 564-583
-
-
Kruppa, J.1
Liu, Y.2
Diener, H.-C.3
Holste, T.4
Weimar, C.5
König, I.R.6
Ziegler, A.7
-
12
-
-
25144494760
-
Prediction error estimation: a comparison of resampling methods
-
Molinaro, A. M., Simon, R. and Pfeiffer, R. M. (2005). Prediction error estimation: a comparison of resampling methods. Bioinformatics 21, 3301-3307.
-
(2005)
Bioinformatics
, vol.21
, pp. 3301-3307
-
-
Molinaro, A.M.1
Simon, R.2
Pfeiffer, R.M.3
-
14
-
-
77954485448
-
On safari to random jungle: a fast implementation of random forests for high-dimensional data
-
Schwarz, D. F., König, I. R. and Ziegler, A. (2010). On safari to random jungle: a fast implementation of random forests for high-dimensional data. Bioinformatics 26, 1752-1758.
-
(2010)
Bioinformatics
, vol.26
, pp. 1752-1758
-
-
Schwarz, D.F.1
König, I.R.2
Ziegler, A.3
-
15
-
-
78751611452
-
To explain or to predict?
-
Shmueli, G. (2010). To explain or to predict? Statistical Science 25, 289-310.
-
(2010)
Statistical Science
, vol.25
, pp. 289-310
-
-
Shmueli, G.1
-
16
-
-
80555145867
-
False-positive psychology undisclosed flexibility in data collection and analysis allows presenting anything as significant
-
Simmons, J. P., Nelson, L. D. and Simonsohn, U. (2011). False-positive psychology undisclosed flexibility in data collection and analysis allows presenting anything as significant. Psychological Science 22, 1359-1366.
-
(2011)
Psychological Science
, vol.22
, pp. 1359-1366
-
-
Simmons, J.P.1
Nelson, L.D.2
Simonsohn, U.3
-
17
-
-
33646704537
-
Prediction of patient-specific risk of early preterm delivery using maternal history and sonographic measurement of cervical length: a population-based prospective study
-
To, M., Skentou, C., Royston, P., Yu, C. and Nicolaides, K. (2006). Prediction of patient-specific risk of early preterm delivery using maternal history and sonographic measurement of cervical length: a population-based prospective study. Ultrasound in Obstetrics & Gynecology 27, 362-367.
-
(2006)
Ultrasound in Obstetrics & Gynecology
, vol.27
, pp. 362-367
-
-
To, M.1
Skentou, C.2
Royston, P.3
Yu, C.4
Nicolaides, K.5
-
18
-
-
33847181085
-
The supervised learning no-free-lunch theorems
-
In Proceedings of the 6th Online World Conference on Soft Computing in Industrial Applications.
-
Wolpert, D. (2001). The supervised learning no-free-lunch theorems. In Proceedings of the 6th Online World Conference on Soft Computing in Industrial Applications. pp. 10-24.
-
(2001)
, pp. 10-24
-
-
Wolpert, D.1
|