메뉴 건너뛰기




Volumn 38, Issue 23, 2017, Pages 1805-1814

Moving beyond regression techniques in cardiovascular risk prediction: Applying machine learning to address analytic challenges

Author keywords

Electronic health records; Personalized medicine; Precision medicine; Risk prediction

Indexed keywords

ACUTE HEART INFARCTION; ALGORITHM; CARDIOVASCULAR RISK; CLASSIFICATION; ELECTRONIC HEALTH RECORD; HOSPITAL PATIENT; HUMAN; LABORATORY TEST; MACHINE LEARNING; PARAMETERS; PERSONALIZED MEDICINE; PREDICTOR VARIABLE; PRIORITY JOURNAL; REGRESSION ANALYSIS; REVIEW; RISK ASSESSMENT; BIOLOGICAL MODEL; CARDIOVASCULAR DISEASE; RISK FACTOR; STATISTICS AND NUMERICAL DATA;

EID: 85021953748     PISSN: 0195668X     EISSN: 15229645     Source Type: Journal    
DOI: 10.1093/eurheartj/ehw302     Document Type: Review
Times cited : (375)

References (49)
  • 1
    • 84902576469 scopus 로고    scopus 로고
    • 2013 acc/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: A report of the American college of cardiology/American Heart Association task force on practice guidelines
    • American College of Cardiology/ American Heart Association Task Force on Practice Guidelines Pt B
    • Stone NJ, Robinson JG, Lichtenstein AH, Bairey Merz CN, Blum CB, Eckel RH, Goldberg AC, Gordon D, Levy D, Lloyd-Jones DM, McBride P, Schwartz JS, Shero ST, Smith SC, Watson K, Wilson PWF, American College of Cardiology/ American Heart Association Task Force on Practice Guidelines. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 2014; 63(25 Pt B):2889-2934
    • (2014) J Am Coll Cardiol , vol.63 , Issue.25 , pp. 2889-2934
    • Stone, N.J.1    Robinson, J.G.2    Lichtenstein, A.H.3    Bairey Merz, C.N.4    Blum, C.B.5    Eckel, R.H.6    Goldberg, A.C.7    Gordon, D.8    Levy, D.9    Lloyd-Jones, D.M.10    McBride, P.11    Schwartz, J.S.12    Shero, S.T.13    Smith, S.C.14    Watson, K.15    Wilson, P.W.F.16
  • 3
    • 0034711145 scopus 로고    scopus 로고
    • TIMI risk score for ST-elevation myocardial infarction: A convenient, bedside, clinical score for risk assessment at presentation: An intravenous nPA for treatment of infarcting myocardium early II trial substudy
    • Morrow DA, Antman EM, Charlesworth A, Cairns R, Murphy SA, Lemos JA, Giugliano RP, McCabe CH, Braunwald E. TIMI risk score for ST-elevation myocardial infarction: a convenient, bedside, clinical score for risk assessment at presentation: an intravenous nPA for treatment of infarcting myocardium early II trial substudy. Circulation 2000;102:2031-2037
    • (2000) Circulation , vol.102 , pp. 2031-2037
    • Morrow, D.A.1    Antman, E.M.2    Charlesworth, A.3    Cairns, R.4    Murphy, S.A.5    Lemos, J.A.6    Giugliano, R.P.7    McCabe, C.H.8    Braunwald, E.9
  • 6
    • 85022007221 scopus 로고    scopus 로고
    • Opportunities and challenges in developing risk prediction models with electronic health records: A systematic review
    • (in press)
    • Goldstein BA, Navar AM, Pencina MJ, Ioannidis JPA. Opportunities and challenges in developing risk prediction models with electronic health records: a systematic review. J Am Med Inform Assoc (in press)
    • J Am Med Inform Assoc
    • Goldstein, B.A.1    Navar, A.M.2    Pencina, M.J.3    Ioannidis, J.P.A.4
  • 7
    • 84866731649 scopus 로고    scopus 로고
    • Risk estimation and risk prediction using machinelearning methods
    • Kruppa J, Ziegler A, Konig IR. Risk estimation and risk prediction using machinelearning methods. Hum Genet 2012;131:1639-1654
    • (2012) Hum Genet , vol.131 , pp. 1639-1654
    • Kruppa, J.1    Ziegler, A.2    Konig, I.R.3
  • 8
    • 77953351710 scopus 로고    scopus 로고
    • An application of Random Forests to a genome-wide association dataset: Methodological considerations &new findings
    • Goldstein BA, Hubbard AE, Cutler A, Barcellos LF. An application of Random Forests to a genome-wide association dataset: methodological considerations &new findings. BMC Genet 2010;11:49
    • (2010) BMC Genet , vol.11 , pp. 49
    • Goldstein, B.A.1    Hubbard, A.E.2    Cutler, A.3    Barcellos, L.F.4
  • 9
    • 84905656517 scopus 로고    scopus 로고
    • Towards better clinical prediction models: Seven steps for development and an ABCD for validation
    • Steyerberg EW, Vergouwe Y. Towards better clinical prediction models: seven steps for development and an ABCD for validation. Eur Heart J 2014;35: 1925-1931
    • (2014) Eur Heart J , vol.35 , pp. 1925-1931
    • Steyerberg, E.W.1    Vergouwe, Y.2
  • 10
    • 0000459353 scopus 로고    scopus 로고
    • The lack of a priori distinctions between leaning algorithms
    • Wolpert D. The lack of a priori distinctions between leaning algorithms. Neural Comput 1996;8:1341-1390
    • (1996) Neural Comput , vol.8 , pp. 1341-1390
    • Wolpert, D.1
  • 13
    • 84903607237 scopus 로고    scopus 로고
    • Risk prediction with machine learning and regression methods
    • Steyerberg EW, van der Ploeg T, Van Calster B. Risk prediction with machine learning and regression methods. Biom J Biom Z 2014;56:601-606
    • (2014) Biom J Biom Z , vol.56 , pp. 601-606
    • Steyerberg, E.W.1    Vander Ploeg, T.2    Van Calster, B.3
  • 14
    • 0023092594 scopus 로고
    • A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation
    • Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis 1987;40:373-383
    • (1987) J Chronic Dis , vol.40 , pp. 373-383
    • Charlson, M.E.1    Pompei, P.2    Ales, K.L.3    MacKenzie, C.R.4
  • 15
    • 84871876293 scopus 로고    scopus 로고
    • R: A language and environment for statistical computing
    • (22 June 2016)
    • R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing, 2012. www.R-project.org (22 June 2016)
    • (2012) Vienna, Austria: R Foundation for Statistical Computing
  • 17
    • 79952605428 scopus 로고    scopus 로고
    • Gene-air pollution interaction and cardiovascular disease: A review
    • Zanobetti A, Baccarelli A, Schwartz J. Gene-air pollution interaction and cardiovascular disease: a review. Prog Cardiovasc Dis 2011;53:344-352
    • (2011) Prog Cardiovasc Dis , vol.53 , pp. 344-352
    • Zanobetti, A.1    Baccarelli, A.2    Schwartz, J.3
  • 19
    • 85027952408 scopus 로고    scopus 로고
    • Relation of black race between high density lipoprotein cholesterol content, high density lipoprotein particles and coronary events (from the Dallas Heart Study)
    • Chandra A, Neeland IJ, Das SR, Khera A, Turer AT, Ayers CR, McGuire DK, Rohatgi A. Relation of black race between high density lipoprotein cholesterol content, high density lipoprotein particles and coronary events (from the Dallas Heart Study). Am J Cardiol 2015;115:890-894
    • (2015) Am J Cardiol , vol.115 , pp. 890-894
    • Chandra, A.1    Neeland, I.J.2    Das, S.R.3    Khera, A.4    Turer, A.T.5    Ayers, C.R.6    McGuire, D.K.7    Rohatgi, A.8
  • 20
    • 0029613841 scopus 로고
    • Importance of events per independent variable in proportional hazards regression analysis II Accuracy and precision of regression estimates
    • Peduzzi P, Concato J, Feinstein AR, Holford TR. Importance of events per independent variable in proportional hazards regression analysis. II. Accuracy and precision of regression estimates. J Clin Epidemiol 1995;48:1503-1510
    • (1995) J Clin Epidemiol , vol.48 , pp. 1503-1510
    • Peduzzi, P.1    Concato, J.2    Feinstein, A.R.3    Holford, T.R.4
  • 21
    • 0030069896 scopus 로고    scopus 로고
    • Multivariable prognostic models: Issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors
    • Harrell FE, Lee KL, Mark DB. Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med 1996;15:361-387
    • (1996) Stat Med , vol.15 , pp. 361-387
    • Harrell, F.E.1    Lee, K.L.2    Mark, D.B.3
  • 22
    • 84959490685 scopus 로고    scopus 로고
    • Review and evaluation of penalised regression methods for risk prediction in low-dimensional data with few events
    • Pavlou M, Ambler G, Seaman S, De Iorio M, Omar RZ. Review and evaluation of penalised regression methods for risk prediction in low-dimensional data with few events. Stat Med 2015;35:1159-1177
    • (2015) Stat Med , vol.35 , pp. 1159-1177
    • Pavlou, M.1    Ambler, G.2    Seaman, S.3    De Iorio, M.4    Omar, R.Z.5
  • 24
    • 84923873960 scopus 로고    scopus 로고
    • Modern modelling techniques are data hungry: A simulation study for predicting dichotomous endpoints
    • van der Ploeg T, Austin PC, Steyerberg EW. Modern modelling techniques are data hungry: a simulation study for predicting dichotomous endpoints. BMC Med Res Methodol 2014;14:137
    • (2014) BMC Med Res Methodol , vol.14 , pp. 137
    • Vander Ploeg, T.1    Austin, P.C.2    Steyerberg, E.W.3
  • 25
    • 0033213971 scopus 로고    scopus 로고
    • Stepwise selection in small data sets: A simulation study of bias in logistic regression analysis
    • Steyerberg EW, Eijkemans MJ, Habbema JD. Stepwise selection in small data sets: a simulation study of bias in logistic regression analysis. J Clin Epidemiol 1999;52: 935-942
    • (1999) J Clin Epidemiol , vol.52 , pp. 935-942
    • Steyerberg, E.W.1    Eijkemans, M.J.2    Habbema, J.D.3
  • 26
    • 0002161961 scopus 로고
    • Application of ridge analysis to regression problems
    • Hoerl A. Application of ridge analysis to regression problems. Chem Eng Prog 1962; 1958:54-59
    • (1962) Chem Eng Prog , vol.1958 , pp. 54-59
    • Hoerl, A.1
  • 27
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc Ser B 1996; 58:267-288
    • (1996) J R Stat Soc ser B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 29
    • 33847350805 scopus 로고    scopus 로고
    • Component selection and smoothing in smoothing spline analysis of variance models
    • Lin Y, Zhang HH. Component selection and smoothing in smoothing spline analysis of variance models. Ann Stat 2006;34:2272-2297
    • (2006) Ann Stat , vol.34 , pp. 2272-2297
    • Lin, Y.1    Zhang, H.H.2
  • 31
    • 84919773193 scopus 로고    scopus 로고
    • Do we need hundreds of classifiers to solve real world classification problems?
    • Fernandez-Delgado M, Cernadas E, Barro S, Amorim D. Do we need hundreds of classifiers to solve real world classification problems? J Mach Learn Res 2014;15: 3133-3181
    • (2014) J Mach Learn Res , vol.15 , pp. 3133-3181
    • Fernandez-Delgado, M.1    Cernadas, E.2    Barro, S.3    Amorim, D.4
  • 32
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Mach Learn 2001;45:5-32
    • (2001) Mach Learn , vol.45 , pp. 5-32
    • Breiman, L.1
  • 33
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci 1997;55:119-139
    • (1997) J Comput Syst Sci , vol.55 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 35
    • 0003480124 scopus 로고    scopus 로고
    • Paperback ed. 1997, reprinted 2009. Cambridge: Cambridge University Press
    • Ripley BD. Pattern recognition and neural networks. Paperback ed. 1997, reprinted 2009. Cambridge: Cambridge University Press; 2009. p 403
    • (2009) Pattern Recognition and Neural Networks , pp. 403
    • Ripley, B.D.1
  • 36
    • 84920579212 scopus 로고    scopus 로고
    • Transparent reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): The TRIPOD statement
    • Collins GS, Reitsma JB, Altman DG, Moons KGM. Transparent reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): the TRIPOD statement. J Clin Epidemiol 2015;68:134-143
    • (2015) J Clin Epidemiol , vol.68 , pp. 134-143
    • Collins, G.S.1    Reitsma, J.B.2    Altman, D.G.3    Moons, K.G.M.4
  • 38
    • 33750905259 scopus 로고    scopus 로고
    • Decision curve analysis: A novel method for evaluating prediction models
    • Vickers AJ, Elkin EB. Decision curve analysis: a novel method for evaluating prediction models. Med Decis Mak 2006;26:565-574
    • (2006) Med Decis Mak , vol.26 , pp. 565-574
    • Vickers, A.J.1    Elkin, E.B.2
  • 40
    • 84975253355 scopus 로고    scopus 로고
    • Testing the relative performance of data adaptive prediction algorithms: A generalized test of conditional risk differences
    • Goldstein BA, Polley EC, Briggs FBS, van der Laan MJ, Hubbard A. Testing the relative performance of data adaptive prediction algorithms: a generalized test of conditional risk differences. Int J Biostat 2015;12:117-129
    • (2015) J Biostat , vol.12 , pp. 117-129
    • Goldstein, B.A.1    Polley, E.C.2    Briggs, F.B.S.3    Vander Laan, M.J.4    Hubbard, A.5
  • 42
    • 84934993654 scopus 로고    scopus 로고
    • Statistical learning and selective inference
    • Taylor J, Tibshirani RJ. Statistical learning and selective inference. Proc Natl Acad Sci USA 2015;112:7629-7634
    • (2015) Proc Natl Acad Sci USA , vol.112 , pp. 7629-7634
    • Taylor, J.1    Tibshirani, R.J.2
  • 44
    • 84947262801 scopus 로고    scopus 로고
    • Effects of different missing data imputation techniques on the performance of undiagnosed diabetes risk prediction models in a mixed-ancestry population of South Africa
    • Masconi KL, Matsha TE, Erasmus RT, Kengne AP. Effects of different missing data imputation techniques on the performance of undiagnosed diabetes risk prediction models in a mixed-ancestry population of South Africa. PLoS ONE 2015;10: e0139210
    • (2015) PLoS ONE , vol.10 , pp. e0139210
    • Masconi, K.L.1    Matsha, T.E.2    Erasmus, R.T.3    Kengne, A.P.4
  • 46
    • 84903648854 scopus 로고    scopus 로고
    • Probability estimation with machine learning methods for dichotomous and multicategory outcome: Theory
    • Kruppa J, Liu Y, Biau G, Kohler M, Konig IR, Malley JD, Ziegler A. Probability estimation with machine learning methods for dichotomous and multicategory outcome: theory. Biom J Biom Z 2014;56:534-563
    • (2014) Biom J Biom Z , vol.56 , pp. 534-563
    • Kruppa, J.1    Liu, Y.2    Biau, G.3    Kohler, M.4    Konig, I.R.5    Malley, J.D.6    Ziegler, A.7
  • 47
    • 15044357936 scopus 로고    scopus 로고
    • Survival model predictive accuracy and ROC curves
    • Heagerty PJ, Zheng Y. Survival model predictive accuracy and ROC curves. Biometrics 2005;61:92-105
    • (2005) Biometrics , vol.61 , pp. 92-105
    • Heagerty, P.J.1    Zheng, Y.2
  • 48
    • 84875243337 scopus 로고    scopus 로고
    • Using methods from the data-mining and machine-learning literature for disease classification and prediction: A case study examining classification of heart failure subtypes
    • Austin PC, Tu JV, Ho JE, Levy D, Lee DS. Using methods from the data-mining and machine-learning literature for disease classification and prediction: a case study examining classification of heart failure subtypes. J Clin Epidemiol 2013;66: 398-407
    • (2013) J Clin Epidemiol , vol.66 , pp. 398-407
    • Austin, P.C.1    Tu, J.V.2    Ho, J.E.3    Levy, D.4    Lee, D.S.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.