-
2
-
-
85018269433
-
Beyond genes and molecules - a precision delivery initiative for precision medicine
-
PID: 28445664
-
Parikh, R. B., Schwartz, J. S. & Navathe, A. S. Beyond genes and molecules - a precision delivery initiative for precision medicine. N. Engl. J. Med. 376, 1609–1612 (2017)
-
(2017)
N. Engl. J. Med.
, vol.376
, pp. 1609-1612
-
-
Parikh, R.B.1
Schwartz, J.S.2
Navathe, A.S.3
-
3
-
-
84958692123
-
Integrating predictive analytics into high-value care: the dawn of precision delivery
-
COI: 1:CAS:528:DC%2BC28XhtFGqsb%2FJ, PID: 26881365
-
Parikh, R. B., Kakad, M. & Bates, D. W. Integrating predictive analytics into high-value care: the dawn of precision delivery. JAMA 315, 651–652 (2016)
-
(2016)
JAMA
, vol.315
, pp. 651-652
-
-
Parikh, R.B.1
Kakad, M.2
Bates, D.W.3
-
4
-
-
84905990877
-
Big data in health care: using analytics to identify and manage high-risk and high-cost patients
-
Bates, D. W., Saria, S., Ohno-Machado, L., Shah, A. & Escobar, G. Big data in health care: using analytics to identify and manage high-risk and high-cost patients. Health Aff. 33, 1123–1131 (2014)
-
(2014)
Health Aff.
, vol.33
, pp. 1123-1131
-
-
Bates, D.W.1
Saria, S.2
Ohno-Machado, L.3
Shah, A.4
Escobar, G.5
-
5
-
-
84905965765
-
Big data and new knowledge in medicine: the thinking, training, and tools needed for a learning health system
-
Krumholz, H. M. Big data and new knowledge in medicine: the thinking, training, and tools needed for a learning health system. Health Aff. 33, 1163–1170 (2014)
-
(2014)
Health Aff.
, vol.33
, pp. 1163-1170
-
-
Krumholz, H.M.1
-
6
-
-
84930535796
-
Precision medicine--personalized, problematic, and promising
-
COI: 1:CAS:528:DC%2BC2MXhtFyrsbfK, PID: 26014593
-
Jameson, J. L. & Longo, D. L. Precision medicine--personalized, problematic, and promising. N. Engl. J. Med. 372, 2229–2234 (2015)
-
(2015)
N. Engl. J. Med.
, vol.372
, pp. 2229-2234
-
-
Jameson, J.L.1
Longo, D.L.2
-
7
-
-
85014666740
-
Opportunities and challenges in developing risk prediction models with electronic health records data: a systematic review
-
PID: 27189013
-
Goldstein, B. A., Navar, A. M., Pencina, M. J. & Ioannidis, J. P. A. Opportunities and challenges in developing risk prediction models with electronic health records data: a systematic review. J. Am. Med. Inform. Assoc. 24, 198–208 (2017)
-
(2017)
J. Am. Med. Inform. Assoc.
, vol.24
, pp. 198-208
-
-
Goldstein, B.A.1
Navar, A.M.2
Pencina, M.J.3
Ioannidis, J.P.A.4
-
10
-
-
84908279239
-
Insights into the problem of alarm fatigue with physiologic monitor devices: a comprehensive observational study of consecutive intensive care unit patients
-
PID: 25338067
-
Drew, B. J. et al. Insights into the problem of alarm fatigue with physiologic monitor devices: a comprehensive observational study of consecutive intensive care unit patients. PLoS ONE 9, e110274 (2014)
-
(2014)
PLoS ONE
, vol.9
-
-
Drew, B.J.1
-
11
-
-
84896658805
-
Redesigning hospital alarms for patient safety: alarmed and potentially dangerous
-
COI: 1:CAS:528:DC%2BC2cXlvVGnsrc%3D, PID: 24590296
-
Chopra, V. & McMahon, L. F. Jr. Redesigning hospital alarms for patient safety: alarmed and potentially dangerous. JAMA 311, 1199–1200 (2014)
-
(2014)
JAMA
, vol.311
, pp. 1199-1200
-
-
Chopra, V.1
McMahon, L.F.2
-
12
-
-
84928485055
-
Systemic inflammatory response syndrome criteria in defining severe sepsis
-
COI: 1:CAS:528:DC%2BC2MXhtFOls7fO, PID: 25776936
-
Kaukonen, K.-M., Bailey, M., Pilcher, D., Cooper, D. J. & Bellomo, R. Systemic inflammatory response syndrome criteria in defining severe sepsis. N. Engl. J. Med. 372, 1629–1638 (2015)
-
(2015)
N. Engl. J. Med.
, vol.372
, pp. 1629-1638
-
-
Kaukonen, K.M.1
Bailey, M.2
Pilcher, D.3
Cooper, D.J.4
Bellomo, R.5
-
13
-
-
84930630277
-
Deep learning
-
COI: 1:CAS:528:DC%2BC2MXht1WlurzP, PID: 26017442
-
LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015)
-
(2015)
Nature
, vol.521
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
14
-
-
84898958665
-
DeViSE: A deep visual-semantic embedding model
-
eds Burges, C. J. C., Bottou, L., Welling, M., Ghahramani, Z. & Weinberger, K. Q, Curran Associates, Inc. Red Hook, NY
-
Frome, A. et al. DeViSE: a deep visual-semantic embedding model. In Advances in Neural Information Processing Systems 26 (eds Burges, C. J. C., Bottou, L., Welling, M., Ghahramani, Z. & Weinberger, K. Q.), pp 2121–2129 (Curran Associates, Inc. Red Hook, NY, 2013)
-
(2013)
Advances in Neural Information Processing Systems 26
, pp. 2121-2129
-
-
Frome, A.1
-
15
-
-
85007529863
-
Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
-
PID: 27898976
-
Gulshan, V. et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316, 2402–2410 (2016)
-
(2016)
JAMA
, vol.316
, pp. 2402-2410
-
-
Gulshan, V.1
-
17
-
-
84965138788
-
Semi-supervised sequence learning
-
eds Cortes, C., Lawrence, N. D., Lee, D. D., Sugiyama, M. & Garnett, R, Curran Associates, Inc. Red Hook, NY
-
Dai, A. M. & Le, Q. V. Semi-supervised sequence learning. In Advances in Neural Information Processing Systems 28 (eds Cortes, C., Lawrence, N. D., Lee, D. D., Sugiyama, M. & Garnett, R.), pp 3079–3087 (Curran Associates, Inc. Red Hook, NY, 2015)
-
(2015)
Advances in Neural Information Processing Systems
, vol.28
, pp. 3079-3087
-
-
Dai, A.M.1
Le, Q.V.2
-
18
-
-
84879854889
-
Representation learning: a review and new perspectives
-
PID: 23787338
-
Bengio, Y., Courville, A. & Vincent, P. Representation learning: a review and new perspectives. IEEE. Trans. Pattern Anal. Mach. Intell. 35, 1798–1828 (2013)
-
(2013)
IEEE. Trans. Pattern Anal. Mach. Intell.
, vol.35
, pp. 1798-1828
-
-
Bengio, Y.1
Courville, A.2
Vincent, P.3
-
19
-
-
0014425280
-
Medical records that guide and teach
-
COI: 1:STN:280:DyaF1c7jtFSrtw%3D%3D, PID: 5637250, concl
-
Weed, L. L. Medical records that guide and teach. N. Engl. J. Med. 278, 652–657 (1968). concl
-
(1968)
N. Engl. J. Med.
, vol.278
, pp. 652-657
-
-
Weed, L.L.1
-
20
-
-
84951059010
-
Electronic health record adoption In US hospitals: progress continues, but challenges persist
-
Adler-Milstein, J. et al. Electronic health record adoption In US hospitals: progress continues, but challenges persist. Health Aff. 34, 2174–2180 (2015)
-
(2015)
Health Aff.
, vol.34
, pp. 2174-2180
-
-
Adler-Milstein, J.1
-
21
-
-
33847155159
-
Infectious Diseases Society of America/American Thoracic Society consensus guidelines on the management of community-acquired pneumonia in adults
-
COI: 1:CAS:528:DC%2BD2sXjtVWrs74%3D, PID: 17278083
-
Mandell, L. A. et al. Infectious Diseases Society of America/American Thoracic Society consensus guidelines on the management of community-acquired pneumonia in adults. Clin. Infect. Dis. 44, S27–S72 (2007). Suppl 2
-
(2007)
Clin. Infect. Dis.
, vol.44
, pp. S27-S72
-
-
Mandell, L.A.1
-
22
-
-
84946953992
-
British Thoracic Society community acquired pneumonia guideline and the NICE pneumonia guideline: how they fit together
-
COI: 1:STN:280:DC%2BC2MfotF2itw%3D%3D, PID: 26019876
-
Lim, W. S., Smith, D. L., Wise, M. P. & Welham, S. A. British Thoracic Society community acquired pneumonia guideline and the NICE pneumonia guideline: how they fit together. BMJ Open Respir. Res. 2, e000091 (2015)
-
(2015)
BMJ Open Respir. Res.
, vol.2
-
-
Lim, W.S.1
Smith, D.L.2
Wise, M.P.3
Welham, S.A.4
-
23
-
-
84954349720
-
Multicenter comparison of machine learning methods and conventional regression for predicting clinical deterioration on the wards
-
PID: 26771782
-
Churpek, M. M. et al. Multicenter comparison of machine learning methods and conventional regression for predicting clinical deterioration on the wards. Crit. Care. Med. 44, 368–374 (2016)
-
(2016)
Crit. Care. Med.
, vol.44
, pp. 368-374
-
-
Churpek, M.M.1
-
24
-
-
84865511927
-
Sustained effectiveness of a primary-team-based rapid response system
-
PID: 22732285
-
Howell, M. D. et al. Sustained effectiveness of a primary-team-based rapid response system. Crit. Care. Med. 40, 2562–2568 (2012)
-
(2012)
Crit. Care. Med.
, vol.40
, pp. 2562-2568
-
-
Howell, M.D.1
-
25
-
-
84947923608
-
Semantic processing of EHR data for clinical research
-
PID: 26515501
-
Sun, H. et al. Semantic processing of EHR data for clinical research. J. Biomed. Inform. 58, 247–259 (2015)
-
(2015)
J. Biomed. Inform.
, vol.58
, pp. 247-259
-
-
Sun, H.1
-
26
-
-
84881328205
-
Validation of electronic medical record-based phenotyping algorithms: results and lessons learned from the eMERGE network
-
PID: 23531748
-
Newton, K. M. et al. Validation of electronic medical record-based phenotyping algorithms: results and lessons learned from the eMERGE network. J. Am. Med. Inform. Assoc. 20, e147–e154 (2013)
-
(2013)
J. Am. Med. Inform. Assoc.
, vol.20
, pp. e147-e154
-
-
Newton, K.M.1
-
28
-
-
84995784013
-
SMART on FHIR: a standards-based, interoperable apps platform for electronic health records
-
PID: 26911829
-
Mandel, J. C., Kreda, D. A., Mandl, K. D., Kohane, I. S. & Ramoni, R. B. SMART on FHIR: a standards-based, interoperable apps platform for electronic health records. J. Am. Med. Inform. Assoc. 23, 899–908 (2016)
-
(2016)
J. Am. Med. Inform. Assoc.
, vol.23
, pp. 899-908
-
-
Mandel, J.C.1
Kreda, D.A.2
Mandl, K.D.3
Kohane, I.S.4
Ramoni, R.B.5
-
29
-
-
84968813824
-
Deep patient: an unsupervised representation to predict the future of patients from the electronic health records
-
COI: 1:CAS:528:DC%2BC28Xot1Gnu7s%3D, PID: 27185194
-
Miotto, R., Li, L., Kidd, B. A. & Dudley, J. T. Deep patient: an unsupervised representation to predict the future of patients from the electronic health records. Sci. Rep. 6, 26094 (2016)
-
(2016)
Sci. Rep.
, vol.6
-
-
Miotto, R.1
Li, L.2
Kidd, B.A.3
Dudley, J.T.4
-
30
-
-
84980051800
-
-
arXiv [cs.LG]
-
Lipton, Z. C., Kale, D. C., Elkan, C. & Wetzel, R. Learning to diagnose with LSTM recurrent neural networks. arXiv [cs.LG] (2015)
-
(2015)
Learning to Diagnose with LSTM Recurrent Neural Networks
-
-
Lipton, Z.C.1
Kale, D.C.2
Elkan, C.3
Wetzel, R.4
-
32
-
-
85029767500
-
Doctor AI: Predicting clinical events via recurrent neural networks
-
eds F. Doshi-Velez, J. Fackler, D. Kale and B. Wallace, J. Wiens, PMLR, Los Angeles, CA
-
Choi, E., Bahadori, M. T., Schuetz, A., Stewart, W. F. & Sun, J. Doctor AI: predicting clinical events via recurrent neural networks. In Proceedings of the 1st Machine Learning for Healthcare Conference, vol 56 (eds F. Doshi-Velez, J. Fackler, D. Kale and B. Wallace, J. Wiens) 301–318 (PMLR, Los Angeles, CA, 2016)
-
(2016)
Proceedings of the 1St Machine Learning for Healthcare Conference
, vol.56
, pp. 301-318
-
-
Choi, E.1
Bahadori, M.T.2
Schuetz, A.3
Stewart, W.F.4
Sun, J.5
-
33
-
-
85048542747
-
-
arXiv [cs.LG], PMLR, Los Angeles, CA, USA
-
Suresh, H. et al. Clinical intervention prediction and understanding using deep networks. arXiv [cs.LG] (PMLR, Los Angeles, CA, USA, 2017)
-
(2017)
Clinical intervention prediction and understanding using deep networks
-
-
Suresh, H.1
-
34
-
-
85029127032
-
Multi-task prediction of disease onsets from longitudinal laboratory tests
-
eds F. Doshi-Velez, J. Fackler, D. Kale and B. Wallace, J. Wiens, PMLR, Los Angeles, CA
-
Razavian, N., Marcus, J. & Sontag, D. Multi-task prediction of disease onsets from longitudinal laboratory tests. In Proceedings of the 1st Machine Learning for Healthcare Conference, (eds F. Doshi-Velez, J. Fackler, D. Kale and B. Wallace, J. Wiens) Vol. 56, pp 73–100 (PMLR, Los Angeles, CA, 2016)
-
(2016)
Proceedings of the 1St Machine Learning for Healthcare Conference
, vol.56
, pp. 73-100
-
-
Razavian, N.1
Marcus, J.2
Sontag, D.3
-
35
-
-
85014889431
-
-
cs.LG
-
Che, Z., Purushotham, S., Cho, K., Sontag, D. & Liu, Y. Recurrent neural networks for multivariate time series with missing values. arXiv [cs.LG] (2016)
-
(2016)
Recurrent neural networks for multivariate time series with missing values
-
-
Che, Z.1
Purushotham, S.2
Cho, K.3
Sontag, D.4
Liu, Y.5
-
36
-
-
84971287198
-
MIMIC-III, a freely accessible critical care database
-
COI: 1:CAS:528:DC%2BC28Xos1Wnu74%3D, PID: 27219127
-
Johnson, A. E. W. et al. MIMIC-III, a freely accessible critical care database. Sci. Data 3, 160035 (2016)
-
(2016)
Sci. Data
, vol.3
-
-
Johnson, A.E.W.1
-
37
-
-
85048714110
-
-
arXiv [stat.ML]
-
Harutyunyan, H., Khachatrian, H., Kale, D. C. & Galstyan, A. Multitask learning and benchmarking with clinical time series data. arXiv [stat.ML] (2017)
-
(2017)
Multitask Learning and Benchmarking with Clinical Time Series Data
-
-
Harutyunyan, H.1
Khachatrian, H.2
Kale, D.C.3
Galstyan, A.4
-
38
-
-
85135599844
-
-
Critical care statistics, (Accessed 25 Jan 2018)
-
Society of Critical Care Medicine. Critical care statistics. Available at: http://www.sccm.org/Communications/Pages/CriticalCareStats.aspx (Accessed 25 Jan 2018)
-
-
-
-
40
-
-
85040199907
-
-
Shickel, B., Tighe, P., Bihorac, A. & Rashidi, P. Deep EHR: a survey of recent advances in deep learning techniques for electronic health record (EHR) analysis. arXiv [cs.LG] (2017)
-
(2017)
Deep EHR: A Survey of Recent Advances in Deep Learning Techniques for Electronic Health Record (EHR) Analysis
-
-
Shickel, B.1
Tighe, P.2
Bihorac, A.3
Rashidi, P.4
-
41
-
-
0023254767
-
The braden scale for predicting pressure sore risk
-
COI: 1:STN:280:DyaL2s3mtVSmuw%3D%3D, PID: 3299278
-
Bergstrom, N., Braden, B. J., Laguzza, A. & Holman, V. The braden scale for predicting pressure sore risk. Nurs. Res. 36, 205–210 (1987)
-
(1987)
Nurs. Res.
, vol.36
, pp. 205-210
-
-
Bergstrom, N.1
Braden, B.J.2
Laguzza, A.3
Holman, V.4
-
42
-
-
84901819329
-
Using electronic health record data to develop inpatient mortality predictive model: Acute Laboratory Risk of Mortality Score (ALaRMS)
-
PID: 24097807
-
Tabak, Y. P., Sun, X., Nunez, C. M. & Johannes, R. S. Using electronic health record data to develop inpatient mortality predictive model: Acute Laboratory Risk of Mortality Score (ALaRMS). J. Am. Med. Inform. Assoc. 21, 455–463 (2014)
-
(2014)
J. Am. Med. Inform. Assoc.
, vol.21
, pp. 455-463
-
-
Tabak, Y.P.1
Sun, X.2
Nunez, C.M.3
Johannes, R.S.4
-
43
-
-
84990213423
-
Predicting all-cause readmissions using electronic health record data from the entire hospitalization: Model development and comparison
-
PID: 26929062
-
Nguyen, O. K. et al. Predicting all-cause readmissions using electronic health record data from the entire hospitalization: Model development and comparison. J. Hosp. Med. 11, 473–480 (2016)
-
(2016)
J. Hosp. Med.
, vol.11
, pp. 473-480
-
-
Nguyen, O.K.1
-
44
-
-
77954954080
-
Length of stay predictions: improvements through the use of automated laboratory and comorbidity variables
-
PID: 20613662
-
Liu, V., Kipnis, P., Gould, M. K. & Escobar, G. J. Length of stay predictions: improvements through the use of automated laboratory and comorbidity variables. Med. Care 48, 739–744 (2010)
-
(2010)
Med. Care
, vol.48
, pp. 739-744
-
-
Liu, V.1
Kipnis, P.2
Gould, M.K.3
Escobar, G.J.4
-
45
-
-
84919650511
-
The effects of data sources, cohort selection, and outcome definition on a predictive model of risk of thirty-day hospital readmissions
-
PID: 25182868
-
Walsh, C. & Hripcsak, G. The effects of data sources, cohort selection, and outcome definition on a predictive model of risk of thirty-day hospital readmissions. J. Biomed. Inform. 52, 418–426 (2014)
-
(2014)
J. Biomed. Inform.
, vol.52
, pp. 418-426
-
-
Walsh, C.1
Hripcsak, G.2
-
46
-
-
84857046946
-
TM Early Warning Score (ViEWS) in 75,419 consecutive admissions to a Canadian regional hospital
-
PID: 21907689
-
TM Early Warning Score (ViEWS) in 75,419 consecutive admissions to a Canadian regional hospital. Resuscitation 83, 297–302 (2012)
-
(2012)
Resuscitation
, vol.83
, pp. 297-302
-
-
Kellett, J.1
Kim, A.2
-
47
-
-
42449097690
-
Risk-adjusting hospital inpatient mortality using automated inpatient, outpatient, and laboratory databases
-
PID: 18388836
-
Escobar, G. J. et al. Risk-adjusting hospital inpatient mortality using automated inpatient, outpatient, and laboratory databases. Med. Care. 46, 232–239 (2008)
-
(2008)
Med. Care.
, vol.46
, pp. 232-239
-
-
Escobar, G.J.1
-
48
-
-
77951240308
-
Derivation and validation of an index to predict early death or unplanned readmission after discharge from hospital to the community
-
PID: 20194559
-
van Walraven, C. et al. Derivation and validation of an index to predict early death or unplanned readmission after discharge from hospital to the community. CMAJ 182, 551–557 (2010)
-
(2010)
CMAJ
, vol.182
, pp. 551-557
-
-
van Walraven, C.1
-
49
-
-
84935519452
-
Procedure-based severity index for inpatients: development and validation using administrative database
-
PID: 26152112
-
Yamana, H., Matsui, H., Fushimi, K. & Yasunaga, H. Procedure-based severity index for inpatients: development and validation using administrative database. BMC Health Serv. Res. 15, 261 (2015)
-
(2015)
BMC Health Serv. Res.
, vol.15
-
-
Yamana, H.1
Matsui, H.2
Fushimi, K.3
Yasunaga, H.4
-
50
-
-
59549101827
-
Modifying ICD-9-CM coding of secondary diagnoses to improve risk-adjustment of inpatient mortality rates
-
PID: 18812585
-
Pine, M. et al. Modifying ICD-9-CM coding of secondary diagnoses to improve risk-adjustment of inpatient mortality rates. Med. Decis. Making 29, 69–81 (2009)
-
(2009)
Med. Decis. Making
, vol.29
, pp. 69-81
-
-
Pine, M.1
-
51
-
-
84875239334
-
The ability of the National Early Warning Score (NEWS) to discriminate patients at risk of early cardiac arrest, unanticipated intensive care unit admission, and death
-
PID: 23295778
-
Smith, G. B., Prytherch, D. R., Meredith, P., Schmidt, P. E. & Featherstone, P. I. The ability of the National Early Warning Score (NEWS) to discriminate patients at risk of early cardiac arrest, unanticipated intensive care unit admission, and death. Resuscitation 84, 465–470 (2013)
-
(2013)
Resuscitation
, vol.84
, pp. 465-470
-
-
Smith, G.B.1
Prytherch, D.R.2
Meredith, P.3
Schmidt, P.E.4
Featherstone, P.I.5
-
52
-
-
84969581368
-
Real-time automated sampling of electronic medical records predicts hospital mortality
-
PID: 27019043
-
Khurana, H. S. et al. Real-time automated sampling of electronic medical records predicts hospital mortality. Am. J. Med. 129, 688–698.e2 (2016)
-
(2016)
Am. J. Med.
, vol.129
, pp. 688-698
-
-
Khurana, H.S.1
-
53
-
-
84883746095
-
Development and validation of a continuous measure of patient condition using the electronic medical record
-
PID: 23831554
-
Rothman, M. J., Rothman, S. I. & Beals, J. 4th Development and validation of a continuous measure of patient condition using the electronic medical record. J. Biomed. Inform. 46, 837–848 (2013)
-
(2013)
J. Biomed. Inform.
, vol.46
, pp. 837-848
-
-
Rothman, M.J.1
Rothman, S.I.2
Beals, J.3
-
54
-
-
84893812665
-
Measuring the modified early warning score and the Rothman index: advantages of utilizing the electronic medical record in an early warning system
-
PID: 24357519
-
Finlay, G. D., Rothman, M. J. & Smith, R. A. Measuring the modified early warning score and the Rothman index: advantages of utilizing the electronic medical record in an early warning system. J. Hosp. Med. 9, 116–119 (2014)
-
(2014)
J. Hosp. Med.
, vol.9
, pp. 116-119
-
-
Finlay, G.D.1
Rothman, M.J.2
Smith, R.A.3
-
55
-
-
84863004143
-
Predictive model of readmission to internal medicine wards
-
PID: 22726375
-
Zapatero, A. et al. Predictive model of readmission to internal medicine wards. Eur. J. Intern. Med. 23, 451–456 (2012)
-
(2012)
Eur. J. Intern. Med.
, vol.23
, pp. 451-456
-
-
Zapatero, A.1
-
56
-
-
84936996800
-
A predictive analytics approach to reducing 30-day avoidable readmissions among patients with heart failure, acute myocardial infarction, pneumonia, or COPD
-
PID: 24792081
-
Shams, I., Ajorlou, S. & Yang, K. A predictive analytics approach to reducing 30-day avoidable readmissions among patients with heart failure, acute myocardial infarction, pneumonia, or COPD. Health Care. Manag. Sci. 18, 19–34 (2015)
-
(2015)
Health Care. Manag. Sci.
, vol.18
, pp. 19-34
-
-
Shams, I.1
Ajorlou, S.2
Yang, K.3
-
57
-
-
84924953699
-
Development of an automated model to predict the risk of elderly emergency medical admissions within a month following an index hospital visit: A Hong Kong experience
-
Tsui, E., Au, S. Y., Wong, C. P., Cheung, A. & Lam, P. Development of an automated model to predict the risk of elderly emergency medical admissions within a month following an index hospital visit: A Hong Kong experience. Health Inform. J. 21, 46–56 (2013)
-
(2013)
Health Inform. J.
, vol.21
, pp. 46-56
-
-
Tsui, E.1
Au, S.Y.2
Wong, C.P.3
Cheung, A.4
Lam, P.5
-
58
-
-
84894637209
-
A public-private partnership develops and externally validates a 30-day hospital readmission risk prediction model
-
PID: 24224068
-
Choudhry, S. A. et al. A public-private partnership develops and externally validates a 30-day hospital readmission risk prediction model. Online J. Public Health Inform. 5, 219 (2013)
-
(2013)
Online J. Public Health Inform.
, vol.5
, pp. 219
-
-
Choudhry, S.A.1
-
59
-
-
84954180053
-
Intelligible models for healthcare: Predicting pneumonia risk and hospital 30-day readmission
-
ACM, Sydney, NSW, Australia
-
Caruana, R. et al. Intelligible models for healthcare: predicting pneumonia risk and hospital 30-day readmission. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp 1721–1730. http://doi.acm.org/10.1145/2783258.2788613 (ACM, Sydney, NSW, Australia, 2015)
-
(2015)
Proceedings of the 21Th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 1721-1730
-
-
Caruana, R.1
-
60
-
-
84985972786
-
Functional status before and during acute hospitalization and readmission risk identification
-
PID: 27130176
-
Tonkikh, O. et al. Functional status before and during acute hospitalization and readmission risk identification. J. Hosp. Med. 11, 636–641 (2016)
-
(2016)
J. Hosp. Med.
, vol.11
, pp. 636-641
-
-
Tonkikh, O.1
-
61
-
-
84944511978
-
An absolute risk prediction model to determine unplanned cardiovascular readmissions for adults with chronic heart failure
-
PID: 26048319
-
Betihavas, V. et al. An absolute risk prediction model to determine unplanned cardiovascular readmissions for adults with chronic heart failure. Heart Lung Circ. 24, 1068–1073 (2015)
-
(2015)
Heart Lung Circ.
, vol.24
, pp. 1068-1073
-
-
Betihavas, V.1
-
62
-
-
78751706620
-
A scoring system to predict readmission of patients with acute pancreatitis to the hospital within thirty days of discharge
-
PID: 20832502, quiz e18
-
Whitlock, T. L. et al. A scoring system to predict readmission of patients with acute pancreatitis to the hospital within thirty days of discharge. Clin. Gastroenterol. Hepatol. 9, 175–180 (2011). quiz e18
-
(2011)
Clin. Gastroenterol. Hepatol.
, vol.9
, pp. 175-180
-
-
Whitlock, T.L.1
-
63
-
-
4844220089
-
Posthospital care transitions: patterns, complications, and risk identification
-
PID: 15333117
-
Coleman, E. A., Min, S.-J., Chomiak, A. & Kramer, A. M. Posthospital care transitions: patterns, complications, and risk identification. Health Serv. Res. 39, 1449–1465 (2004)
-
(2004)
Health Serv. Res.
, vol.39
, pp. 1449-1465
-
-
Coleman, E.A.1
Min, S.J.2
Chomiak, A.3
Kramer, A.M.4
-
64
-
-
84884309606
-
Risk factors for unplanned hospital readmission in otolaryngology patients
-
PID: 24042556
-
Graboyes, E. M., Liou, T.-N., Kallogjeri, D., Nussenbaum, B. & Diaz, J. A. Risk factors for unplanned hospital readmission in otolaryngology patients. Otolaryngol. Head Neck Surg. 149, 562–571 (2013)
-
(2013)
Otolaryngol. Head Neck Surg.
, vol.149
, pp. 562-571
-
-
Graboyes, E.M.1
Liou, T.N.2
Kallogjeri, D.3
Nussenbaum, B.4
Diaz, J.A.5
-
65
-
-
84894080916
-
Mining high-dimensional administrative claims data to predict early hospital readmissions
-
PID: 24076748
-
He, D., Mathews, S. C., Kalloo, A. N. & Hutfless, S. Mining high-dimensional administrative claims data to predict early hospital readmissions. J. Am. Med. Inform. Assoc. 21, 272–279 (2014)
-
(2014)
J. Am. Med. Inform. Assoc.
, vol.21
, pp. 272-279
-
-
He, D.1
Mathews, S.C.2
Kalloo, A.N.3
Hutfless, S.4
-
66
-
-
84938596257
-
A comparison of models for predicting early hospital readmissions
-
PID: 26044081
-
Futoma, J., Morris, J. & Lucas, J. A comparison of models for predicting early hospital readmissions. J. Biomed. Inform. 56, 229–238 (2015)
-
(2015)
J. Biomed. Inform.
, vol.56
, pp. 229-238
-
-
Futoma, J.1
Morris, J.2
Lucas, J.3
-
67
-
-
84876785353
-
Potentially avoidable 30-day hospital readmissions in medical patients: derivation and validation of a prediction model
-
PID: 23529115
-
Donzé, J., Aujesky, D., Williams, D. & Schnipper, J. L. Potentially avoidable 30-day hospital readmissions in medical patients: derivation and validation of a prediction model. JAMA Intern. Med. 173, 632–638 (2013)
-
(2013)
JAMA Intern. Med.
, vol.173
, pp. 632-638
-
-
Donzé, J.1
Aujesky, D.2
Williams, D.3
Schnipper, J.L.4
-
68
-
-
84894070857
-
Diagnosis code assignment: models and evaluation metrics
-
PID: 24296907
-
Perotte, A. et al. Diagnosis code assignment: models and evaluation metrics. J. Am. Med. Inform. Assoc. 21, 231–237 (2014)
-
(2014)
J. Am. Med. Inform. Assoc.
, vol.21
, pp. 231-237
-
-
Perotte, A.1
-
69
-
-
84997208328
-
Data acquisition, curation, and use for a continuously learning health system
-
PID: 27668668
-
Krumholz, H. M., Terry, S. F. & Waldstreicher, J. Data acquisition, curation, and use for a continuously learning health system. JAMA 316, 1669–1670 (2016)
-
(2016)
JAMA
, vol.316
, pp. 1669-1670
-
-
Krumholz, H.M.1
Terry, S.F.2
Waldstreicher, J.3
-
70
-
-
84896471495
-
Transforming from centers of learning to learning health systems: the challenge for academic health centers
-
COI: 1:CAS:528:DC%2BC2cXltVWisLs%3D, PID: 24643597
-
Grumbach, K., Lucey, C. R. & Claiborne Johnston, S. Transforming from centers of learning to learning health systems: the challenge for academic health centers. JAMA 311, 1109–1110 (2014)
-
(2014)
JAMA
, vol.311
, pp. 1109-1110
-
-
Grumbach, K.1
Lucey, C.R.2
Claiborne Johnston, S.3
-
71
-
-
85029092887
-
The HITECH era in retrospect
-
PID: 28877012
-
Halamka, J. D. & Tripathi, M. The HITECH era in retrospect. N. Engl. J. Med. 377, 907–909 (2017)
-
(2017)
N. Engl. J. Med.
, vol.377
, pp. 907-909
-
-
Halamka, J.D.1
Tripathi, M.2
-
72
-
-
0242664599
-
Ten commandments for effective clinical decision support: making the practice of evidence-based medicine a reality
-
PID: 12925543
-
Bates, D. W. et al. Ten commandments for effective clinical decision support: making the practice of evidence-based medicine a reality. J. Am. Med. Inform. Assoc. 10, 523–530 (2003)
-
(2003)
J. Am. Med. Inform. Assoc.
, vol.10
, pp. 523-530
-
-
Bates, D.W.1
-
73
-
-
84990046464
-
Predicting the future --- big data, machine learning, and clinical medicine
-
PID: 27682033
-
Obermeyer, Z. & Emanuel, E. J. Predicting the future --- big data, machine learning, and clinical medicine. N. Engl. J. Med. 375, 1216–1219 (2016)
-
(2016)
N. Engl. J. Med.
, vol.375
, pp. 1216-1219
-
-
Obermeyer, Z.1
Emanuel, E.J.2
-
76
-
-
84944319129
-
Nonelective rehospitalizations and postdischarge mortality: predictive models suitable for use in real time
-
PID: 26465120
-
Escobar, G. J. et al. Nonelective rehospitalizations and postdischarge mortality: predictive models suitable for use in real time. Med. Care. 53, 916–923 (2015)
-
(2015)
Med. Care.
, vol.53
, pp. 916-923
-
-
Escobar, G.J.1
-
78
-
-
0022256529
-
APACHE II: a severity of disease classification system
-
COI: 1:STN:280:DyaL2M3otlyqtQ%3D%3D, PID: 3928249
-
Knaus, W. A., Draper, E. A., Wagner, D. P. & Zimmerman, J. E. APACHE II: a severity of disease classification system. Crit. Care Med. 13, 818–829 (1985)
-
(1985)
Crit. Care Med.
, vol.13
, pp. 818-829
-
-
Knaus, W.A.1
Draper, E.A.2
Wagner, D.P.3
Zimmerman, J.E.4
-
79
-
-
80054764509
-
Risk prediction models for hospital readmission: a systematic review
-
COI: 1:CAS:528:DC%2BC3MXhtlKgs73J, PID: 22009101
-
Kansagara, D. et al. Risk prediction models for hospital readmission: a systematic review. JAMA 306, 1688–1698 (2011)
-
(2011)
JAMA
, vol.306
, pp. 1688-1698
-
-
Kansagara, D.1
-
80
-
-
0031573117
-
Long short-term memory
-
COI: 1:STN:280:DyaK1c%2FhvVahsQ%3D%3D, PID: 9377276
-
Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural Comput. 9, 1735–1780 (1997)
-
(1997)
Neural Comput.
, vol.9
, pp. 1735-1780
-
-
Hochreiter, S.1
Schmidhuber, J.2
-
81
-
-
75149176174
-
Ensemble-based Classifiers
-
Rokach, L. Ensemble-based Classifiers. Artif. Intell. Rev. 33, 1–39 (2010)
-
(2010)
Artif. Intell. Rev.
, vol.33
, pp. 1-39
-
-
Rokach, L.1
-
82
-
-
85027869169
-
Unintended consequences of machine learning in medicine
-
Cabitza, F., Rasoini, R. & Gensini, G. F. Unintended consequences of machine learning in medicine. JAMA 18, 517–518 (2017)
-
(2017)
JAMA
, vol.18
, pp. 517-518
-
-
Cabitza, F.1
Rasoini, R.2
Gensini, G.F.3
-
84
-
-
80555140075
-
Scikit-learn: machine learning in python
-
Pedregosa, F. et al. Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)
-
(2011)
J. Mach. Learn. Res.
, vol.12
, pp. 2825-2830
-
-
Pedregosa, F.1
-
85
-
-
84941662354
-
Evaluating discrimination of risk prediction models: the C statistic
-
COI: 1:CAS:528:DC%2BC28XkslKisA%3D%3D, PID: 26348755
-
Pencina, M. J. & D’Agostino, R. B. Sr. Evaluating discrimination of risk prediction models: the C statistic. JAMA 314, 1063–1064 (2015)
-
(2015)
JAMA
, vol.314
, pp. 1063-1064
-
-
Pencina, M.J.1
D’Agostino, R.B.2
-
86
-
-
34548258778
-
Assessing the calibration of mortality benchmarks in critical care: the Hosmer-Lemeshow test revisited
-
PID: 17568333
-
Kramer, A. A. & Zimmerman, J. E. Assessing the calibration of mortality benchmarks in critical care: the Hosmer-Lemeshow test revisited. Crit. Care Med. 35, 2052–2056 (2007)
-
(2007)
Crit. Care Med.
, vol.35
, pp. 2052-2056
-
-
Kramer, A.A.1
Zimmerman, J.E.2
-
87
-
-
84939187754
-
Why the C-statistic is not informative to evaluate early warning scores and what metrics to use
-
PID: 26268570
-
Romero-Brufau, S., Huddleston, J. M., Escobar, G. J. & Liebow, M. Why the C-statistic is not informative to evaluate early warning scores and what metrics to use. Crit. Care 19, 285 (2015)
-
(2015)
Crit. Care
, vol.19
-
-
Romero-Brufau, S.1
Huddleston, J.M.2
Escobar, G.J.3
Liebow, M.4
-
89
-
-
85135598218
-
-
Accessed 3 Aug
-
SciKit Learn. SciKit learn documentation on F1 score. Available at: http://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html (Accessed 3 Aug 2017)
-
(2017)
Scikit Learn Documentation on F1 Score
-
-
|