메뉴 건너뛰기




Volumn 1, Issue 1, 2018, Pages

Scalable and accurate deep learning with electronic health records

(35)  Rajkomar, Alvin a,b   Oren, Eyal a   Chen, Kai a   Dai, Andrew M a   Hajaj, Nissan a   Hardt, Michaela a   Liu, Peter J a   Liu, Xiaobing a   Marcus, Jake a   Sun, Mimi a   Sundberg, Patrik a   Yee, Hector a   Zhang, Kun a   Zhang, Yi a   Flores, Gerardo a   Duggan, Gavin E a   Irvine, Jamie a   Le, Quoc a   Litsch, Kurt a   Mossin, Alexander a   more..


Author keywords

[No Author keywords available]

Indexed keywords

DEEP LEARNING; DIAGNOSIS; DIGITAL STORAGE; E-LEARNING; EHEALTH; HOSPITALS; RECORDS MANAGEMENT;

EID: 85127431078     PISSN: None     EISSN: 23986352     Source Type: Journal    
DOI: 10.1038/s41746-018-0029-1     Document Type: Article
Times cited : (1765)

References (89)
  • 2
    • 85018269433 scopus 로고    scopus 로고
    • Beyond genes and molecules - a precision delivery initiative for precision medicine
    • PID: 28445664
    • Parikh, R. B., Schwartz, J. S. & Navathe, A. S. Beyond genes and molecules - a precision delivery initiative for precision medicine. N. Engl. J. Med. 376, 1609–1612 (2017)
    • (2017) N. Engl. J. Med. , vol.376 , pp. 1609-1612
    • Parikh, R.B.1    Schwartz, J.S.2    Navathe, A.S.3
  • 3
    • 84958692123 scopus 로고    scopus 로고
    • Integrating predictive analytics into high-value care: the dawn of precision delivery
    • COI: 1:CAS:528:DC%2BC28XhtFGqsb%2FJ, PID: 26881365
    • Parikh, R. B., Kakad, M. & Bates, D. W. Integrating predictive analytics into high-value care: the dawn of precision delivery. JAMA 315, 651–652 (2016)
    • (2016) JAMA , vol.315 , pp. 651-652
    • Parikh, R.B.1    Kakad, M.2    Bates, D.W.3
  • 4
    • 84905990877 scopus 로고    scopus 로고
    • Big data in health care: using analytics to identify and manage high-risk and high-cost patients
    • Bates, D. W., Saria, S., Ohno-Machado, L., Shah, A. & Escobar, G. Big data in health care: using analytics to identify and manage high-risk and high-cost patients. Health Aff. 33, 1123–1131 (2014)
    • (2014) Health Aff. , vol.33 , pp. 1123-1131
    • Bates, D.W.1    Saria, S.2    Ohno-Machado, L.3    Shah, A.4    Escobar, G.5
  • 5
    • 84905965765 scopus 로고    scopus 로고
    • Big data and new knowledge in medicine: the thinking, training, and tools needed for a learning health system
    • Krumholz, H. M. Big data and new knowledge in medicine: the thinking, training, and tools needed for a learning health system. Health Aff. 33, 1163–1170 (2014)
    • (2014) Health Aff. , vol.33 , pp. 1163-1170
    • Krumholz, H.M.1
  • 6
    • 84930535796 scopus 로고    scopus 로고
    • Precision medicine--personalized, problematic, and promising
    • COI: 1:CAS:528:DC%2BC2MXhtFyrsbfK, PID: 26014593
    • Jameson, J. L. & Longo, D. L. Precision medicine--personalized, problematic, and promising. N. Engl. J. Med. 372, 2229–2234 (2015)
    • (2015) N. Engl. J. Med. , vol.372 , pp. 2229-2234
    • Jameson, J.L.1    Longo, D.L.2
  • 7
    • 85014666740 scopus 로고    scopus 로고
    • Opportunities and challenges in developing risk prediction models with electronic health records data: a systematic review
    • PID: 27189013
    • Goldstein, B. A., Navar, A. M., Pencina, M. J. & Ioannidis, J. P. A. Opportunities and challenges in developing risk prediction models with electronic health records data: a systematic review. J. Am. Med. Inform. Assoc. 24, 198–208 (2017)
    • (2017) J. Am. Med. Inform. Assoc. , vol.24 , pp. 198-208
    • Goldstein, B.A.1    Navar, A.M.2    Pencina, M.J.3    Ioannidis, J.P.A.4
  • 10
    • 84908279239 scopus 로고    scopus 로고
    • Insights into the problem of alarm fatigue with physiologic monitor devices: a comprehensive observational study of consecutive intensive care unit patients
    • PID: 25338067
    • Drew, B. J. et al. Insights into the problem of alarm fatigue with physiologic monitor devices: a comprehensive observational study of consecutive intensive care unit patients. PLoS ONE 9, e110274 (2014)
    • (2014) PLoS ONE , vol.9
    • Drew, B.J.1
  • 11
    • 84896658805 scopus 로고    scopus 로고
    • Redesigning hospital alarms for patient safety: alarmed and potentially dangerous
    • COI: 1:CAS:528:DC%2BC2cXlvVGnsrc%3D, PID: 24590296
    • Chopra, V. & McMahon, L. F. Jr. Redesigning hospital alarms for patient safety: alarmed and potentially dangerous. JAMA 311, 1199–1200 (2014)
    • (2014) JAMA , vol.311 , pp. 1199-1200
    • Chopra, V.1    McMahon, L.F.2
  • 12
    • 84928485055 scopus 로고    scopus 로고
    • Systemic inflammatory response syndrome criteria in defining severe sepsis
    • COI: 1:CAS:528:DC%2BC2MXhtFOls7fO, PID: 25776936
    • Kaukonen, K.-M., Bailey, M., Pilcher, D., Cooper, D. J. & Bellomo, R. Systemic inflammatory response syndrome criteria in defining severe sepsis. N. Engl. J. Med. 372, 1629–1638 (2015)
    • (2015) N. Engl. J. Med. , vol.372 , pp. 1629-1638
    • Kaukonen, K.M.1    Bailey, M.2    Pilcher, D.3    Cooper, D.J.4    Bellomo, R.5
  • 13
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • COI: 1:CAS:528:DC%2BC2MXht1WlurzP, PID: 26017442
    • LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015)
    • (2015) Nature , vol.521 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3
  • 14
    • 84898958665 scopus 로고    scopus 로고
    • DeViSE: A deep visual-semantic embedding model
    • eds Burges, C. J. C., Bottou, L., Welling, M., Ghahramani, Z. & Weinberger, K. Q, Curran Associates, Inc. Red Hook, NY
    • Frome, A. et al. DeViSE: a deep visual-semantic embedding model. In Advances in Neural Information Processing Systems 26 (eds Burges, C. J. C., Bottou, L., Welling, M., Ghahramani, Z. & Weinberger, K. Q.), pp 2121–2129 (Curran Associates, Inc. Red Hook, NY, 2013)
    • (2013) Advances in Neural Information Processing Systems 26 , pp. 2121-2129
    • Frome, A.1
  • 15
    • 85007529863 scopus 로고    scopus 로고
    • Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
    • PID: 27898976
    • Gulshan, V. et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316, 2402–2410 (2016)
    • (2016) JAMA , vol.316 , pp. 2402-2410
    • Gulshan, V.1
  • 17
    • 84965138788 scopus 로고    scopus 로고
    • Semi-supervised sequence learning
    • eds Cortes, C., Lawrence, N. D., Lee, D. D., Sugiyama, M. & Garnett, R, Curran Associates, Inc. Red Hook, NY
    • Dai, A. M. & Le, Q. V. Semi-supervised sequence learning. In Advances in Neural Information Processing Systems 28 (eds Cortes, C., Lawrence, N. D., Lee, D. D., Sugiyama, M. & Garnett, R.), pp 3079–3087 (Curran Associates, Inc. Red Hook, NY, 2015)
    • (2015) Advances in Neural Information Processing Systems , vol.28 , pp. 3079-3087
    • Dai, A.M.1    Le, Q.V.2
  • 19
    • 0014425280 scopus 로고
    • Medical records that guide and teach
    • COI: 1:STN:280:DyaF1c7jtFSrtw%3D%3D, PID: 5637250, concl
    • Weed, L. L. Medical records that guide and teach. N. Engl. J. Med. 278, 652–657 (1968). concl
    • (1968) N. Engl. J. Med. , vol.278 , pp. 652-657
    • Weed, L.L.1
  • 20
    • 84951059010 scopus 로고    scopus 로고
    • Electronic health record adoption In US hospitals: progress continues, but challenges persist
    • Adler-Milstein, J. et al. Electronic health record adoption In US hospitals: progress continues, but challenges persist. Health Aff. 34, 2174–2180 (2015)
    • (2015) Health Aff. , vol.34 , pp. 2174-2180
    • Adler-Milstein, J.1
  • 21
    • 33847155159 scopus 로고    scopus 로고
    • Infectious Diseases Society of America/American Thoracic Society consensus guidelines on the management of community-acquired pneumonia in adults
    • COI: 1:CAS:528:DC%2BD2sXjtVWrs74%3D, PID: 17278083
    • Mandell, L. A. et al. Infectious Diseases Society of America/American Thoracic Society consensus guidelines on the management of community-acquired pneumonia in adults. Clin. Infect. Dis. 44, S27–S72 (2007). Suppl 2
    • (2007) Clin. Infect. Dis. , vol.44 , pp. S27-S72
    • Mandell, L.A.1
  • 22
    • 84946953992 scopus 로고    scopus 로고
    • British Thoracic Society community acquired pneumonia guideline and the NICE pneumonia guideline: how they fit together
    • COI: 1:STN:280:DC%2BC2MfotF2itw%3D%3D, PID: 26019876
    • Lim, W. S., Smith, D. L., Wise, M. P. & Welham, S. A. British Thoracic Society community acquired pneumonia guideline and the NICE pneumonia guideline: how they fit together. BMJ Open Respir. Res. 2, e000091 (2015)
    • (2015) BMJ Open Respir. Res. , vol.2
    • Lim, W.S.1    Smith, D.L.2    Wise, M.P.3    Welham, S.A.4
  • 23
    • 84954349720 scopus 로고    scopus 로고
    • Multicenter comparison of machine learning methods and conventional regression for predicting clinical deterioration on the wards
    • PID: 26771782
    • Churpek, M. M. et al. Multicenter comparison of machine learning methods and conventional regression for predicting clinical deterioration on the wards. Crit. Care. Med. 44, 368–374 (2016)
    • (2016) Crit. Care. Med. , vol.44 , pp. 368-374
    • Churpek, M.M.1
  • 24
    • 84865511927 scopus 로고    scopus 로고
    • Sustained effectiveness of a primary-team-based rapid response system
    • PID: 22732285
    • Howell, M. D. et al. Sustained effectiveness of a primary-team-based rapid response system. Crit. Care. Med. 40, 2562–2568 (2012)
    • (2012) Crit. Care. Med. , vol.40 , pp. 2562-2568
    • Howell, M.D.1
  • 25
    • 84947923608 scopus 로고    scopus 로고
    • Semantic processing of EHR data for clinical research
    • PID: 26515501
    • Sun, H. et al. Semantic processing of EHR data for clinical research. J. Biomed. Inform. 58, 247–259 (2015)
    • (2015) J. Biomed. Inform. , vol.58 , pp. 247-259
    • Sun, H.1
  • 26
    • 84881328205 scopus 로고    scopus 로고
    • Validation of electronic medical record-based phenotyping algorithms: results and lessons learned from the eMERGE network
    • PID: 23531748
    • Newton, K. M. et al. Validation of electronic medical record-based phenotyping algorithms: results and lessons learned from the eMERGE network. J. Am. Med. Inform. Assoc. 20, e147–e154 (2013)
    • (2013) J. Am. Med. Inform. Assoc. , vol.20 , pp. e147-e154
    • Newton, K.M.1
  • 28
    • 84995784013 scopus 로고    scopus 로고
    • SMART on FHIR: a standards-based, interoperable apps platform for electronic health records
    • PID: 26911829
    • Mandel, J. C., Kreda, D. A., Mandl, K. D., Kohane, I. S. & Ramoni, R. B. SMART on FHIR: a standards-based, interoperable apps platform for electronic health records. J. Am. Med. Inform. Assoc. 23, 899–908 (2016)
    • (2016) J. Am. Med. Inform. Assoc. , vol.23 , pp. 899-908
    • Mandel, J.C.1    Kreda, D.A.2    Mandl, K.D.3    Kohane, I.S.4    Ramoni, R.B.5
  • 29
    • 84968813824 scopus 로고    scopus 로고
    • Deep patient: an unsupervised representation to predict the future of patients from the electronic health records
    • COI: 1:CAS:528:DC%2BC28Xot1Gnu7s%3D, PID: 27185194
    • Miotto, R., Li, L., Kidd, B. A. & Dudley, J. T. Deep patient: an unsupervised representation to predict the future of patients from the electronic health records. Sci. Rep. 6, 26094 (2016)
    • (2016) Sci. Rep. , vol.6
    • Miotto, R.1    Li, L.2    Kidd, B.A.3    Dudley, J.T.4
  • 32
    • 85029767500 scopus 로고    scopus 로고
    • Doctor AI: Predicting clinical events via recurrent neural networks
    • eds F. Doshi-Velez, J. Fackler, D. Kale and B. Wallace, J. Wiens, PMLR, Los Angeles, CA
    • Choi, E., Bahadori, M. T., Schuetz, A., Stewart, W. F. & Sun, J. Doctor AI: predicting clinical events via recurrent neural networks. In Proceedings of the 1st Machine Learning for Healthcare Conference, vol 56 (eds F. Doshi-Velez, J. Fackler, D. Kale and B. Wallace, J. Wiens) 301–318 (PMLR, Los Angeles, CA, 2016)
    • (2016) Proceedings of the 1St Machine Learning for Healthcare Conference , vol.56 , pp. 301-318
    • Choi, E.1    Bahadori, M.T.2    Schuetz, A.3    Stewart, W.F.4    Sun, J.5
  • 34
    • 85029127032 scopus 로고    scopus 로고
    • Multi-task prediction of disease onsets from longitudinal laboratory tests
    • eds F. Doshi-Velez, J. Fackler, D. Kale and B. Wallace, J. Wiens, PMLR, Los Angeles, CA
    • Razavian, N., Marcus, J. & Sontag, D. Multi-task prediction of disease onsets from longitudinal laboratory tests. In Proceedings of the 1st Machine Learning for Healthcare Conference, (eds F. Doshi-Velez, J. Fackler, D. Kale and B. Wallace, J. Wiens) Vol. 56, pp 73–100 (PMLR, Los Angeles, CA, 2016)
    • (2016) Proceedings of the 1St Machine Learning for Healthcare Conference , vol.56 , pp. 73-100
    • Razavian, N.1    Marcus, J.2    Sontag, D.3
  • 36
    • 84971287198 scopus 로고    scopus 로고
    • MIMIC-III, a freely accessible critical care database
    • COI: 1:CAS:528:DC%2BC28Xos1Wnu74%3D, PID: 27219127
    • Johnson, A. E. W. et al. MIMIC-III, a freely accessible critical care database. Sci. Data 3, 160035 (2016)
    • (2016) Sci. Data , vol.3
    • Johnson, A.E.W.1
  • 38
    • 85135599844 scopus 로고    scopus 로고
    • Critical care statistics, (Accessed 25 Jan 2018)
    • Society of Critical Care Medicine. Critical care statistics. Available at: http://www.sccm.org/Communications/Pages/CriticalCareStats.aspx (Accessed 25 Jan 2018)
  • 41
    • 0023254767 scopus 로고
    • The braden scale for predicting pressure sore risk
    • COI: 1:STN:280:DyaL2s3mtVSmuw%3D%3D, PID: 3299278
    • Bergstrom, N., Braden, B. J., Laguzza, A. & Holman, V. The braden scale for predicting pressure sore risk. Nurs. Res. 36, 205–210 (1987)
    • (1987) Nurs. Res. , vol.36 , pp. 205-210
    • Bergstrom, N.1    Braden, B.J.2    Laguzza, A.3    Holman, V.4
  • 42
    • 84901819329 scopus 로고    scopus 로고
    • Using electronic health record data to develop inpatient mortality predictive model: Acute Laboratory Risk of Mortality Score (ALaRMS)
    • PID: 24097807
    • Tabak, Y. P., Sun, X., Nunez, C. M. & Johannes, R. S. Using electronic health record data to develop inpatient mortality predictive model: Acute Laboratory Risk of Mortality Score (ALaRMS). J. Am. Med. Inform. Assoc. 21, 455–463 (2014)
    • (2014) J. Am. Med. Inform. Assoc. , vol.21 , pp. 455-463
    • Tabak, Y.P.1    Sun, X.2    Nunez, C.M.3    Johannes, R.S.4
  • 43
    • 84990213423 scopus 로고    scopus 로고
    • Predicting all-cause readmissions using electronic health record data from the entire hospitalization: Model development and comparison
    • PID: 26929062
    • Nguyen, O. K. et al. Predicting all-cause readmissions using electronic health record data from the entire hospitalization: Model development and comparison. J. Hosp. Med. 11, 473–480 (2016)
    • (2016) J. Hosp. Med. , vol.11 , pp. 473-480
    • Nguyen, O.K.1
  • 44
    • 77954954080 scopus 로고    scopus 로고
    • Length of stay predictions: improvements through the use of automated laboratory and comorbidity variables
    • PID: 20613662
    • Liu, V., Kipnis, P., Gould, M. K. & Escobar, G. J. Length of stay predictions: improvements through the use of automated laboratory and comorbidity variables. Med. Care 48, 739–744 (2010)
    • (2010) Med. Care , vol.48 , pp. 739-744
    • Liu, V.1    Kipnis, P.2    Gould, M.K.3    Escobar, G.J.4
  • 45
    • 84919650511 scopus 로고    scopus 로고
    • The effects of data sources, cohort selection, and outcome definition on a predictive model of risk of thirty-day hospital readmissions
    • PID: 25182868
    • Walsh, C. & Hripcsak, G. The effects of data sources, cohort selection, and outcome definition on a predictive model of risk of thirty-day hospital readmissions. J. Biomed. Inform. 52, 418–426 (2014)
    • (2014) J. Biomed. Inform. , vol.52 , pp. 418-426
    • Walsh, C.1    Hripcsak, G.2
  • 46
    • 84857046946 scopus 로고    scopus 로고
    • TM Early Warning Score (ViEWS) in 75,419 consecutive admissions to a Canadian regional hospital
    • PID: 21907689
    • TM Early Warning Score (ViEWS) in 75,419 consecutive admissions to a Canadian regional hospital. Resuscitation 83, 297–302 (2012)
    • (2012) Resuscitation , vol.83 , pp. 297-302
    • Kellett, J.1    Kim, A.2
  • 47
    • 42449097690 scopus 로고    scopus 로고
    • Risk-adjusting hospital inpatient mortality using automated inpatient, outpatient, and laboratory databases
    • PID: 18388836
    • Escobar, G. J. et al. Risk-adjusting hospital inpatient mortality using automated inpatient, outpatient, and laboratory databases. Med. Care. 46, 232–239 (2008)
    • (2008) Med. Care. , vol.46 , pp. 232-239
    • Escobar, G.J.1
  • 48
    • 77951240308 scopus 로고    scopus 로고
    • Derivation and validation of an index to predict early death or unplanned readmission after discharge from hospital to the community
    • PID: 20194559
    • van Walraven, C. et al. Derivation and validation of an index to predict early death or unplanned readmission after discharge from hospital to the community. CMAJ 182, 551–557 (2010)
    • (2010) CMAJ , vol.182 , pp. 551-557
    • van Walraven, C.1
  • 49
    • 84935519452 scopus 로고    scopus 로고
    • Procedure-based severity index for inpatients: development and validation using administrative database
    • PID: 26152112
    • Yamana, H., Matsui, H., Fushimi, K. & Yasunaga, H. Procedure-based severity index for inpatients: development and validation using administrative database. BMC Health Serv. Res. 15, 261 (2015)
    • (2015) BMC Health Serv. Res. , vol.15
    • Yamana, H.1    Matsui, H.2    Fushimi, K.3    Yasunaga, H.4
  • 50
    • 59549101827 scopus 로고    scopus 로고
    • Modifying ICD-9-CM coding of secondary diagnoses to improve risk-adjustment of inpatient mortality rates
    • PID: 18812585
    • Pine, M. et al. Modifying ICD-9-CM coding of secondary diagnoses to improve risk-adjustment of inpatient mortality rates. Med. Decis. Making 29, 69–81 (2009)
    • (2009) Med. Decis. Making , vol.29 , pp. 69-81
    • Pine, M.1
  • 51
    • 84875239334 scopus 로고    scopus 로고
    • The ability of the National Early Warning Score (NEWS) to discriminate patients at risk of early cardiac arrest, unanticipated intensive care unit admission, and death
    • PID: 23295778
    • Smith, G. B., Prytherch, D. R., Meredith, P., Schmidt, P. E. & Featherstone, P. I. The ability of the National Early Warning Score (NEWS) to discriminate patients at risk of early cardiac arrest, unanticipated intensive care unit admission, and death. Resuscitation 84, 465–470 (2013)
    • (2013) Resuscitation , vol.84 , pp. 465-470
    • Smith, G.B.1    Prytherch, D.R.2    Meredith, P.3    Schmidt, P.E.4    Featherstone, P.I.5
  • 52
    • 84969581368 scopus 로고    scopus 로고
    • Real-time automated sampling of electronic medical records predicts hospital mortality
    • PID: 27019043
    • Khurana, H. S. et al. Real-time automated sampling of electronic medical records predicts hospital mortality. Am. J. Med. 129, 688–698.e2 (2016)
    • (2016) Am. J. Med. , vol.129 , pp. 688-698
    • Khurana, H.S.1
  • 53
    • 84883746095 scopus 로고    scopus 로고
    • Development and validation of a continuous measure of patient condition using the electronic medical record
    • PID: 23831554
    • Rothman, M. J., Rothman, S. I. & Beals, J. 4th Development and validation of a continuous measure of patient condition using the electronic medical record. J. Biomed. Inform. 46, 837–848 (2013)
    • (2013) J. Biomed. Inform. , vol.46 , pp. 837-848
    • Rothman, M.J.1    Rothman, S.I.2    Beals, J.3
  • 54
    • 84893812665 scopus 로고    scopus 로고
    • Measuring the modified early warning score and the Rothman index: advantages of utilizing the electronic medical record in an early warning system
    • PID: 24357519
    • Finlay, G. D., Rothman, M. J. & Smith, R. A. Measuring the modified early warning score and the Rothman index: advantages of utilizing the electronic medical record in an early warning system. J. Hosp. Med. 9, 116–119 (2014)
    • (2014) J. Hosp. Med. , vol.9 , pp. 116-119
    • Finlay, G.D.1    Rothman, M.J.2    Smith, R.A.3
  • 55
    • 84863004143 scopus 로고    scopus 로고
    • Predictive model of readmission to internal medicine wards
    • PID: 22726375
    • Zapatero, A. et al. Predictive model of readmission to internal medicine wards. Eur. J. Intern. Med. 23, 451–456 (2012)
    • (2012) Eur. J. Intern. Med. , vol.23 , pp. 451-456
    • Zapatero, A.1
  • 56
    • 84936996800 scopus 로고    scopus 로고
    • A predictive analytics approach to reducing 30-day avoidable readmissions among patients with heart failure, acute myocardial infarction, pneumonia, or COPD
    • PID: 24792081
    • Shams, I., Ajorlou, S. & Yang, K. A predictive analytics approach to reducing 30-day avoidable readmissions among patients with heart failure, acute myocardial infarction, pneumonia, or COPD. Health Care. Manag. Sci. 18, 19–34 (2015)
    • (2015) Health Care. Manag. Sci. , vol.18 , pp. 19-34
    • Shams, I.1    Ajorlou, S.2    Yang, K.3
  • 57
    • 84924953699 scopus 로고    scopus 로고
    • Development of an automated model to predict the risk of elderly emergency medical admissions within a month following an index hospital visit: A Hong Kong experience
    • Tsui, E., Au, S. Y., Wong, C. P., Cheung, A. & Lam, P. Development of an automated model to predict the risk of elderly emergency medical admissions within a month following an index hospital visit: A Hong Kong experience. Health Inform. J. 21, 46–56 (2013)
    • (2013) Health Inform. J. , vol.21 , pp. 46-56
    • Tsui, E.1    Au, S.Y.2    Wong, C.P.3    Cheung, A.4    Lam, P.5
  • 58
    • 84894637209 scopus 로고    scopus 로고
    • A public-private partnership develops and externally validates a 30-day hospital readmission risk prediction model
    • PID: 24224068
    • Choudhry, S. A. et al. A public-private partnership develops and externally validates a 30-day hospital readmission risk prediction model. Online J. Public Health Inform. 5, 219 (2013)
    • (2013) Online J. Public Health Inform. , vol.5 , pp. 219
    • Choudhry, S.A.1
  • 59
    • 84954180053 scopus 로고    scopus 로고
    • Intelligible models for healthcare: Predicting pneumonia risk and hospital 30-day readmission
    • ACM, Sydney, NSW, Australia
    • Caruana, R. et al. Intelligible models for healthcare: predicting pneumonia risk and hospital 30-day readmission. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp 1721–1730. http://doi.acm.org/10.1145/2783258.2788613 (ACM, Sydney, NSW, Australia, 2015)
    • (2015) Proceedings of the 21Th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining , pp. 1721-1730
    • Caruana, R.1
  • 60
    • 84985972786 scopus 로고    scopus 로고
    • Functional status before and during acute hospitalization and readmission risk identification
    • PID: 27130176
    • Tonkikh, O. et al. Functional status before and during acute hospitalization and readmission risk identification. J. Hosp. Med. 11, 636–641 (2016)
    • (2016) J. Hosp. Med. , vol.11 , pp. 636-641
    • Tonkikh, O.1
  • 61
    • 84944511978 scopus 로고    scopus 로고
    • An absolute risk prediction model to determine unplanned cardiovascular readmissions for adults with chronic heart failure
    • PID: 26048319
    • Betihavas, V. et al. An absolute risk prediction model to determine unplanned cardiovascular readmissions for adults with chronic heart failure. Heart Lung Circ. 24, 1068–1073 (2015)
    • (2015) Heart Lung Circ. , vol.24 , pp. 1068-1073
    • Betihavas, V.1
  • 62
    • 78751706620 scopus 로고    scopus 로고
    • A scoring system to predict readmission of patients with acute pancreatitis to the hospital within thirty days of discharge
    • PID: 20832502, quiz e18
    • Whitlock, T. L. et al. A scoring system to predict readmission of patients with acute pancreatitis to the hospital within thirty days of discharge. Clin. Gastroenterol. Hepatol. 9, 175–180 (2011). quiz e18
    • (2011) Clin. Gastroenterol. Hepatol. , vol.9 , pp. 175-180
    • Whitlock, T.L.1
  • 63
    • 4844220089 scopus 로고    scopus 로고
    • Posthospital care transitions: patterns, complications, and risk identification
    • PID: 15333117
    • Coleman, E. A., Min, S.-J., Chomiak, A. & Kramer, A. M. Posthospital care transitions: patterns, complications, and risk identification. Health Serv. Res. 39, 1449–1465 (2004)
    • (2004) Health Serv. Res. , vol.39 , pp. 1449-1465
    • Coleman, E.A.1    Min, S.J.2    Chomiak, A.3    Kramer, A.M.4
  • 65
    • 84894080916 scopus 로고    scopus 로고
    • Mining high-dimensional administrative claims data to predict early hospital readmissions
    • PID: 24076748
    • He, D., Mathews, S. C., Kalloo, A. N. & Hutfless, S. Mining high-dimensional administrative claims data to predict early hospital readmissions. J. Am. Med. Inform. Assoc. 21, 272–279 (2014)
    • (2014) J. Am. Med. Inform. Assoc. , vol.21 , pp. 272-279
    • He, D.1    Mathews, S.C.2    Kalloo, A.N.3    Hutfless, S.4
  • 66
    • 84938596257 scopus 로고    scopus 로고
    • A comparison of models for predicting early hospital readmissions
    • PID: 26044081
    • Futoma, J., Morris, J. & Lucas, J. A comparison of models for predicting early hospital readmissions. J. Biomed. Inform. 56, 229–238 (2015)
    • (2015) J. Biomed. Inform. , vol.56 , pp. 229-238
    • Futoma, J.1    Morris, J.2    Lucas, J.3
  • 67
    • 84876785353 scopus 로고    scopus 로고
    • Potentially avoidable 30-day hospital readmissions in medical patients: derivation and validation of a prediction model
    • PID: 23529115
    • Donzé, J., Aujesky, D., Williams, D. & Schnipper, J. L. Potentially avoidable 30-day hospital readmissions in medical patients: derivation and validation of a prediction model. JAMA Intern. Med. 173, 632–638 (2013)
    • (2013) JAMA Intern. Med. , vol.173 , pp. 632-638
    • Donzé, J.1    Aujesky, D.2    Williams, D.3    Schnipper, J.L.4
  • 68
    • 84894070857 scopus 로고    scopus 로고
    • Diagnosis code assignment: models and evaluation metrics
    • PID: 24296907
    • Perotte, A. et al. Diagnosis code assignment: models and evaluation metrics. J. Am. Med. Inform. Assoc. 21, 231–237 (2014)
    • (2014) J. Am. Med. Inform. Assoc. , vol.21 , pp. 231-237
    • Perotte, A.1
  • 69
    • 84997208328 scopus 로고    scopus 로고
    • Data acquisition, curation, and use for a continuously learning health system
    • PID: 27668668
    • Krumholz, H. M., Terry, S. F. & Waldstreicher, J. Data acquisition, curation, and use for a continuously learning health system. JAMA 316, 1669–1670 (2016)
    • (2016) JAMA , vol.316 , pp. 1669-1670
    • Krumholz, H.M.1    Terry, S.F.2    Waldstreicher, J.3
  • 70
    • 84896471495 scopus 로고    scopus 로고
    • Transforming from centers of learning to learning health systems: the challenge for academic health centers
    • COI: 1:CAS:528:DC%2BC2cXltVWisLs%3D, PID: 24643597
    • Grumbach, K., Lucey, C. R. & Claiborne Johnston, S. Transforming from centers of learning to learning health systems: the challenge for academic health centers. JAMA 311, 1109–1110 (2014)
    • (2014) JAMA , vol.311 , pp. 1109-1110
    • Grumbach, K.1    Lucey, C.R.2    Claiborne Johnston, S.3
  • 71
    • 85029092887 scopus 로고    scopus 로고
    • The HITECH era in retrospect
    • PID: 28877012
    • Halamka, J. D. & Tripathi, M. The HITECH era in retrospect. N. Engl. J. Med. 377, 907–909 (2017)
    • (2017) N. Engl. J. Med. , vol.377 , pp. 907-909
    • Halamka, J.D.1    Tripathi, M.2
  • 72
    • 0242664599 scopus 로고    scopus 로고
    • Ten commandments for effective clinical decision support: making the practice of evidence-based medicine a reality
    • PID: 12925543
    • Bates, D. W. et al. Ten commandments for effective clinical decision support: making the practice of evidence-based medicine a reality. J. Am. Med. Inform. Assoc. 10, 523–530 (2003)
    • (2003) J. Am. Med. Inform. Assoc. , vol.10 , pp. 523-530
    • Bates, D.W.1
  • 73
    • 84990046464 scopus 로고    scopus 로고
    • Predicting the future --- big data, machine learning, and clinical medicine
    • PID: 27682033
    • Obermeyer, Z. & Emanuel, E. J. Predicting the future --- big data, machine learning, and clinical medicine. N. Engl. J. Med. 375, 1216–1219 (2016)
    • (2016) N. Engl. J. Med. , vol.375 , pp. 1216-1219
    • Obermeyer, Z.1    Emanuel, E.J.2
  • 76
    • 84944319129 scopus 로고    scopus 로고
    • Nonelective rehospitalizations and postdischarge mortality: predictive models suitable for use in real time
    • PID: 26465120
    • Escobar, G. J. et al. Nonelective rehospitalizations and postdischarge mortality: predictive models suitable for use in real time. Med. Care. 53, 916–923 (2015)
    • (2015) Med. Care. , vol.53 , pp. 916-923
    • Escobar, G.J.1
  • 78
    • 0022256529 scopus 로고
    • APACHE II: a severity of disease classification system
    • COI: 1:STN:280:DyaL2M3otlyqtQ%3D%3D, PID: 3928249
    • Knaus, W. A., Draper, E. A., Wagner, D. P. & Zimmerman, J. E. APACHE II: a severity of disease classification system. Crit. Care Med. 13, 818–829 (1985)
    • (1985) Crit. Care Med. , vol.13 , pp. 818-829
    • Knaus, W.A.1    Draper, E.A.2    Wagner, D.P.3    Zimmerman, J.E.4
  • 79
    • 80054764509 scopus 로고    scopus 로고
    • Risk prediction models for hospital readmission: a systematic review
    • COI: 1:CAS:528:DC%2BC3MXhtlKgs73J, PID: 22009101
    • Kansagara, D. et al. Risk prediction models for hospital readmission: a systematic review. JAMA 306, 1688–1698 (2011)
    • (2011) JAMA , vol.306 , pp. 1688-1698
    • Kansagara, D.1
  • 80
    • 0031573117 scopus 로고    scopus 로고
    • Long short-term memory
    • COI: 1:STN:280:DyaK1c%2FhvVahsQ%3D%3D, PID: 9377276
    • Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural Comput. 9, 1735–1780 (1997)
    • (1997) Neural Comput. , vol.9 , pp. 1735-1780
    • Hochreiter, S.1    Schmidhuber, J.2
  • 81
    • 75149176174 scopus 로고    scopus 로고
    • Ensemble-based Classifiers
    • Rokach, L. Ensemble-based Classifiers. Artif. Intell. Rev. 33, 1–39 (2010)
    • (2010) Artif. Intell. Rev. , vol.33 , pp. 1-39
    • Rokach, L.1
  • 82
    • 85027869169 scopus 로고    scopus 로고
    • Unintended consequences of machine learning in medicine
    • Cabitza, F., Rasoini, R. & Gensini, G. F. Unintended consequences of machine learning in medicine. JAMA 18, 517–518 (2017)
    • (2017) JAMA , vol.18 , pp. 517-518
    • Cabitza, F.1    Rasoini, R.2    Gensini, G.F.3
  • 84
    • 80555140075 scopus 로고    scopus 로고
    • Scikit-learn: machine learning in python
    • Pedregosa, F. et al. Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)
    • (2011) J. Mach. Learn. Res. , vol.12 , pp. 2825-2830
    • Pedregosa, F.1
  • 85
    • 84941662354 scopus 로고    scopus 로고
    • Evaluating discrimination of risk prediction models: the C statistic
    • COI: 1:CAS:528:DC%2BC28XkslKisA%3D%3D, PID: 26348755
    • Pencina, M. J. & D’Agostino, R. B. Sr. Evaluating discrimination of risk prediction models: the C statistic. JAMA 314, 1063–1064 (2015)
    • (2015) JAMA , vol.314 , pp. 1063-1064
    • Pencina, M.J.1    D’Agostino, R.B.2
  • 86
    • 34548258778 scopus 로고    scopus 로고
    • Assessing the calibration of mortality benchmarks in critical care: the Hosmer-Lemeshow test revisited
    • PID: 17568333
    • Kramer, A. A. & Zimmerman, J. E. Assessing the calibration of mortality benchmarks in critical care: the Hosmer-Lemeshow test revisited. Crit. Care Med. 35, 2052–2056 (2007)
    • (2007) Crit. Care Med. , vol.35 , pp. 2052-2056
    • Kramer, A.A.1    Zimmerman, J.E.2
  • 87
    • 84939187754 scopus 로고    scopus 로고
    • Why the C-statistic is not informative to evaluate early warning scores and what metrics to use
    • PID: 26268570
    • Romero-Brufau, S., Huddleston, J. M., Escobar, G. J. & Liebow, M. Why the C-statistic is not informative to evaluate early warning scores and what metrics to use. Crit. Care 19, 285 (2015)
    • (2015) Crit. Care , vol.19
    • Romero-Brufau, S.1    Huddleston, J.M.2    Escobar, G.J.3    Liebow, M.4
  • 88
  • 89
    • 85135598218 scopus 로고    scopus 로고
    • Accessed 3 Aug
    • SciKit Learn. SciKit learn documentation on F1 score. Available at: http://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html (Accessed 3 Aug 2017)
    • (2017) Scikit Learn Documentation on F1 Score


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.